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The Influence of Ca2DBuffers on Free [Ca2D] Fluctuations and the Effective
Volume of Ca2D Microdomains
Seth H. Weinberg and Gregory D. Smith*
Department of Applied Science, The College of William & Mary, Williamsburg, Virginia
ABSTRACT Intracellular calcium (Ca2þ) plays a significant role in many cell signaling pathways, some of which are localized to
spatially restricted microdomains. Ca2þ binding proteins (Ca2þ buffers) play an important role in regulating Ca2þ concentration
([Ca2þ]). Buffers typically slow [Ca2þ] temporal dynamics and increase the effective volume of Ca2þ domains. Because fluctu-
ations in [Ca2þ] decrease in proportion to the square-root of a domain’s physical volume, one might conjecture that buffers
decrease [Ca2þ] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca2þ signaling.
We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their
stochastic dynamics during free Ca2þ influx with passive exchange of both Ca2þ and buffer with bulk concentrations. We derive
Langevin equations for the fluctuating dynamics of Ca2þ and buffer and use these stochastic differential equations to determine
the magnitude of [Ca2þ] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked
contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models
of Ca2þ signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca2þ] fluctuations during
periods of Ca2þ influx, whereas stationary (immobile) Ca2þ buffers do not. Also contrary to expectations, we find that in the
absence of Ca2þ influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca2þ] fluctuations. We derive
an analytical formula describing the influence of rapid Ca2þ buffers on [Ca2þ] fluctuations and, importantly, identify the stochastic
analog of (deterministic) effective domain volume. Our results demonstrate that Ca2þ buffers alter the dynamics of [Ca2þ]
fluctuations in a nonintuitive manner. The finding that Ca2þ buffers do not suppress intrinsic domain [Ca2þ] fluctuations raises
the intriguing question of whether or not [Ca2þ] fluctuations are a physiologically significant aspect of local Ca2þ signaling.
INTRODUCTION
The regulation of intracellular calcium (Ca2þ) concentration
([Ca2þ]) is a fundamental aspect of many cell signaling
pathways (1). In many types of cells, spatially localized
Ca2þ signals known as Ca2þ micro- or nanodomains regu-
late specific cellular processes in different subcellular
regions. Significant examples include pre- and postsynaptic
signaling in neuronal dendrites (2–4), contraction regulation
in cardiac dyadic subspaces (3,5–7), localized control of
mitochondria (8–10), and nuclear gene transcription (4,8),
and localized mechanical and olfactory sensing in primary
cilia (11–13).

Ca2þ buffers play an important role in modulating
spatially localizing Ca2þ signals. The term ‘‘Ca2þ buffers’’
is generic and includes endogenous binding proteins, exog-
enous Ca2þ chelators (e.g., EGTA and BAPTA), indicator
dyes (e.g., Fluo-4 and Rhod-2), and other nonspecific
Ca2þ binding molecules (e.g., membrane phospholipids).
In addition to regulating the levels of free Ca2þ in the cyto-
plasm, Ca2þ buffers influence the spatiotemporal dynamics
of Ca2þ signaling. Because Ca2þ buffer binding rates, affin-
ities, and diffusivities can range over several orders of
magnitude (14), it is important to understand the influence
of these parameters on Ca2þ-dependent signaling. Using
deterministic formulations for Ca2þ and buffer dynamics,
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investigators have derived analytical results pertaining to
the influence of rapid mobile and immobile buffers on
Ca2þ signaling, demonstrating that buffers can greatly
alter the [Ca2þ] profile in the proximity of Ca2þ channels
(15–19). Immobile buffers have been shown to reduce the
effective diffusivity of Ca2þ, whereas mobile buffers can
facilitate diffusion near an open Ca2þ channel and produce
steep [Ca2þ] gradients (20). Experimental and simulation
studies have shown that the decay of residual Ca2þ after
Ca2þ channel closure can be longer for rapid buffers than
slow buffers (21,22). The influence of buffers on Ca2þ

signaling can be counterintuitive, because it depends subtly
on binding rate kinetics and competition between Ca2þ-
binding sites. For example, analytical results have shown
that increased buffer diffusivity may increase or decrease
the speed of a propagating Ca2þ wave, depending on the
excitability of Ca2þ dynamics and buffer properties (23).

Assuming a rapidly equilibrating bimolecular association
reaction between Ca2þ and buffer (B),

Ca2þ þ B#
kþ

k�
CaB; (1)

the time evolution of [Ca2þ], denoted by c below, can be

described by the ordinary differential equation (ODE) (24)

U _c ¼ bJ; (2)

where the dot indicates a time derivative, U is the

compartmental volume, J ¼ Jin – Jout is the net flux of
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Ca2þ molecules into the compartment, and the buffering
factor b is the differential fraction of free-to-total Ca2þ

that takes values between 0 and 1,

b ¼ 1

1þ w
; and

w ¼ bTk

ðcþ kÞ2:
(3)

In this expression, total buffer concentration bT ¼ b þ cb is
the sum of free and Ca2þ-bound buffer concentration, b and
cb, respectively; k ¼ k� /kþ is the dissociation constant for
Ca2þ; and the ratio w ¼ bTk/(c þ k)2 is the buffering capac-
ity, i.e., the differential fraction of bound-to-free Ca2þ.
Concentration balance equations such as Eq. 2 are often
written in the form

Ueff _c ¼ J; (4)

where the effective volume Ueff is defined as Ueff ¼
U/b R U.

It is well known that the number of molecules in
biochemical reaction networks randomly fluctuate, and
the resulting concentration fluctuations for each chemical
species are larger amplitude when the system size is small
(25,26). For a sufficiently large system, i.e., large volume
and number of molecules, concentration fluctuations
become negligible and deterministic modeling is appro-
priate (26). However, in physiological settings of local
Ca2þ signaling, i.e., Ca2þ microdomains, the system
size is often small and concentration fluctuations may
be significant. Intracellular [Ca2þ] is very low in resting
cells, typically 100 nM, and the volume of Ca2þ microdo-
mains or subspaces are ~10�17–10�15 liters, values that
correspond to 0.6–60 Ca2þ ions at rest. A large amount
of prior work has focused on the influence of stochastic
gating of Ca2þ-regulated Ca2þ channels on [Ca2þ]
(19,27–32), but only a few have considered the role of
concentration fluctuations associated with the small num-
ber of Ca2þ ions typically present in domains (30,33,34).
The relative size of [Ca2þ] fluctuations can be character-
ized by their coefficient of variation (cv), defined as the
standard deviation of [Ca2þ] divided by the mean
[Ca2þ]. In a spatially restricted domain and in the absence
of Ca2þ buffers, the relative size of [Ca2þ] fluctuations is
given by (35)

c0v ¼ 1ffiffiffiffiffiffiffiffiffi
cssU

p ; (5)

where css is the steady-state [Ca2þ] and U is the physical
volume of the domain (the superscripted 0 indicates no
buffers). Because cssU is the number of Ca2þ ions in the
domain, this expression is consistent with the influence of
system size on molecular fluctuations well known in statis-
Biophysical Journal 106(12) 2693–2709
tical physics (26). For the small volume domains mentioned
above, this c0v is in the range of 1.3–0.13. Our prior work
suggests that fluctuations in [Ca2þ] of this magnitude could
significantly influence the gating of Ca2þ-regulated Ca2þ

channels in Ca2þ microdomains, such as dyadic subspaces
or dendritic spines (35).

Although prior work makes it clear that [Ca2þ] fluctua-
tions are a nonnegligible aspect of Ca2þ signaling, the influ-
ence of Ca2þ buffers on the dynamics of [Ca2þ] fluctuations
has not previously been studied. Based on the notion of
effective volume, one might conjecture that buffers decrease
[Ca2þ] fluctuations and, consequently, mitigate the signifi-
cance of small domain volume vis-a-vis downstream Ca2þ

signaling (e.g., Ca2þ-triggered events). Do Ca2þ buffers in-
fluence [Ca2þ] fluctuations? If so, how do these fluctuations
depend on Ca2þ buffer properties such as dissociation con-
stant and total concentration (Ca2þ free plus bound)? To
answer these questions, we develop and analyze a minimal
stochastic model that includes Ca2þ and buffer in a domain
of small volume.

Our analysis focuses on Ca2þ microdomains that arise
from Ca2þ influx into a spatially restricted subcellular
compartment that may contain Ca2þ buffers, e.g., a den-
dritic spine or cardiac dyadic subspace (Fig. 1, A
and B). The theory is most directly applicable to Ca2þ

signaling complexes with membrane configurations or
other obstructions to diffusion (e.g., molecular crowding)
resulting in spatially confined Ca2þ signaling, for
example, the primary cilium (Fig. 1 C), mitochondria-
endoplasmic reticulum (ER) junctions, and presynaptic
boutons (2–13). Free Ca2þ and buffer (Ca2þ-bound and
-free) may exchange between domain and bulk via diffu-
sion represented as a first-order reaction (Fig. 1 D). We
specify the volume but not the detailed geometry of the
spatially confined region that delimits the domain. Spatial
gradients between domain and bulk are minimally repre-
sented in the model, but the microdomain itself is treated
as a well-stirred compartment. The compartmental model
formulation is most applicable and relevant to microdo-
mains for which the time constant for domain escape is
longer than the characteristic time for diffusion across
the domain (36).

For clarity and readability, we first present the stochastic
model representing [Ca2þ] fluctuations in a microdomain
with no Ca2þ buffer. This preliminary calculation illus-
trates our approach and provides a reference point in our
interpretation of results that include influx and efflux of
both Ca2þ and buffer. We perform parameter studies to
determine how Ca2þ buffers influence the size of [Ca2þ]
fluctuations, derive the fluctuating rapid buffer approxima-
tion to the dynamics of domain [Ca2þ] fluctuations, and
illustrate how the influence of buffers on the effective sys-
tem size and the time course of [Ca2þ] fluctuations depend
on buffer parameters. We conclude with a discussion of our
findings.



FIGURE 1 The analysis of the effect of Ca2þ

buffers on domain [Ca2þ] fluctuations is applicable
to microdomains that arise from Ca2þ influx into a

spatially restricted subcellular compartment. (A) In

a dendritic spine (U denotes volume of spine head),

Ca2þ influx occurs via ionotropic receptors (e.g.,

NMDA) or plasma membrane (PM) Ca2þ channels

downstream of metabotropic receptors (e.g.,

mGluRs) (2). (B) In the cardiac dyad, Ca2þ influx

via PM L-type Ca2þ channels trigger Ca2þ influx

from Ca2þ-activated sarcoplasmic reticulum (SR)

Ca2þ channels (ryanodine receptors) (7). Close

associations of endoplasmic reticulum (ER) and

PM are observed in many cell types. During ER

depletion in Jurkat T cells, luminal Ca2þ sensor

STIM1 aggregates on the ER membrane and binds

the Ca2þ channel Orai1 providing store-operated

Ca2þ entry. (C) In olfactory primary cilium,

odorant detection induces a rise in second

messenger cAMP, activating cyclic nucleotide-

gated channels allowing entry of Ca2þ and Naþ

ions (11). (D) Model components and fluxes em-

ployed in the microdomain model. The stochastic

ODE model includes Ca2þ influx, association of

Ca2þ and buffer, and passive exchange of Ca2þ

and buffer between the domain of volume U and

the bulk cytosol.
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MODEL FORMULATION

Domain [Ca2D] fluctuations in the absence
of buffer

Deterministic ODE formulation

The deterministic ODE that minimally describes the time
evolution of [Ca2þ] in the domain depicted in Fig. 1 without
buffer, constant influx jin, and passive exchange with the
bulk is

_c ¼ jin � kcðc� cNÞhf ðcÞ; (6)

where kc is the exchange rate (due to diffusion) that has
physical dimensions of inverse time. Setting the left-hand
side of Eq. 6 to zero, steady-state [Ca2þ] is found to be

css ¼ jin=kc þ cN: (7)

This deterministic formulation assumes that concentration
fluctuations are negligible (i.e., large system size, U /
N). The following section presents the corresponding sto-
chastic ODEs that are valid for small domain volume.

Stochastic ODE (Langevin) formulation

In a domain with physical volume small enough that fluctu-
ations are not negligible, but large enough that molecular
concentrations can be modeled continuously, [Ca2þ]
dynamics may be described by a Langevin equation. This
would be a stochastic differential equation (SDE) similar
to the deterministic ODE (Eq. 6), but augmented by a
fluctuating term, xc(t), with properties determined by the
elementary molecular events that drive concentration fluctu-
ations (26,37,38),

_c ¼ f ðcÞ þ xcðtÞ: (8)

In this stochastic ODE, xc(t) is Gaussian noise (specifically,
a random function of time with zero mean),

hxcðtÞi ¼ 0 (9)

and two-time covariance

hxcðtÞxcðt 0Þi ¼ gcdðt � t 0Þ; (10)

where d is the Dirac delta function and gc is given by

gc ¼ jin þ kcðcþ cNÞ
U

: (11)

Note that the signs in the numerator are correct; gc is pro-
portional to the sum of rates of the elementary processes
leading to changes in [Ca2þ], which includes increases
through influx (jin) as well as decreases and increases due
to exchange with the bulk (kcc and kccN). The reader who
is unfamiliar with chemical Langevin equations may review
the general form of the two-time covariance (see Appendix
A in the Supporting Material).

Employing a linear noise approximation (26) for
fluctuations around the stable steady-state css transforms
Eq. 8 into

_dc ¼ �kcdcþ xssc ðtÞ; (12)
Biophysical Journal 106(12) 2693–2709
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where dc is the deviation of the fluctuating [Ca2þ] from the
steady-state value, css, that is,

dcðtÞ ¼ cðtÞ � css; (13)

and we have used f 0(css) ¼ �kc and hxcss(t)i ¼ 0. The two-
time covariance of the random term takes the form�

xssc ðtÞxssc ðt0Þ
� ¼ gss

c dðt � t0Þ;

where the constant gss
c is found by evaluating Eq. 11 at

steady state, that is,

gss
c ¼ 2kccss

U
; (14)

where we have used the balance of Ca2þ influx and efflux at
steady state, jin ¼ kc(css – cN), to express the numerator as
2kccss rather than jin þ kc(css þ cN) (compare to Eq. 14).

Analysis of concentration fluctuations

To understand the dynamics of [Ca2þ] fluctuations implied
by Eq. 12, consider an ensemble of domains with initial
state c(0) ¼ css, that is, dc(0) ¼ 0. The time evolution of
the ensemble variance of the deviations dc, defined by
sc(t) ¼ hd2c(t)i, follows from Eq. 12,

_sc ¼ �2kcsc þ gss
c ; (15)

where kc¼ jf 0(css)j is the relaxation rate. By assumption, the
ensemble variance is initially zero, that is, dc(0) ¼ 0 implies
sc(0)¼ 0, but as time proceeds, sc(t) is given by the solution
of Eq. 15,

scðtÞ ¼ s0
c

�
1� e�2kct

�
; (16)

where steady-state ensemble variance s0c is found by setting
_sc ¼ 0 in Eq. 15,

s0
c ¼ gss

c

2kc
¼ css

U
: (17)

The first equality in Eq. 17 relating s0c and gss
c is called the

‘‘fluctuation-dissipation theorem’’ (25,26,39).
Thus, the relative size of the steady-state [Ca2þ] fluctua-

tions in the Langevin formulation, given by the coefficient
of variation of the fluctuating [Ca2þ], is

c0v ¼
ffiffiffiffiffi
s0
c

p
css

¼ 1ffiffiffiffiffiffiffiffiffi
cssU

p : (18)

Using the Langevin equation for a fluctuating Ca2þ micro-
domain, we have derived the well-known result (35) that
the relative magnitude of concentration fluctuations is
inversely proportional to the square-root of the system
size, i.e., the expected number of Ca2þ ions in the domain
Biophysical Journal 106(12) 2693–2709
at steady-state (cssU). This result is a reference point for
our analysis of domain [Ca2þ] fluctuations in the presence
of buffer.
Domain [Ca2D] fluctuations in the presence of
buffer

Deterministic ODE formulation

In this section we characterize [Ca2þ] fluctuations in a
domain model that includes Ca2þ buffers, Ca2þ influx,
and exchange of both Ca2þ and buffer with the bulk (see
Fig. 1). Assuming mass-action kinetics and bimolecular
association of Ca2þ and buffer (Eq. 1), we write the
following deterministic system of ODEs,

_c ¼ Rþ jin � kcðc� cNÞ; (19a)

_b ¼ R� k ðb� b Þ; (19b)
b N

_cb ¼ �R� kbðcb� cbNÞ; (19c)
where kc and kb are the Ca
2þ and buffer exchange rates, and

the reaction terms are given by R ¼ �k þ c � b þ k � cb,
with c, b, and cb denoting free Ca2þ, free buffer, and bound
buffer, respectively. We assume that the free and Ca2þ-
bound buffer have the same exchange rate kb and, further-
more, that the bulk concentrations bN and cbN are in
equilibrium with the bulk free [Ca2þ],

bN ¼ kbNT
cN þ k

; and

cbN ¼ cNb
N
T

cN þ k
:

Setting the time derivatives of Eq. 19 to 0, we find that the
steady-state domain [Ca2þ], denoted by css, solves the
implicit expression

jin � kcðcss � cNÞ � kbðcbss � cbNÞ ¼ 0; (20a)

where the steady-state Ca2þ-free and -bound buffer concen-
trations are given by

bss ¼ kbNT þ kbbN
�
kþ

css þ kþ kb=kþ
; and

cbss ¼ cssb
N
T þ kbcbN

�
kþ

css þ kþ kb=kþ
:

(20b)

In the presence of Ca2þ influx, jin > 0, and because
vcbss/vcss > 0, css > cN, cbss > cN, and bss > bN.
Also note that cbss þ bss ¼ bNT at this nonequilibrium
steady state, because buffer in the bulk is at equilibrium,
cbN þ bN ¼ bNT , and the exchange of Ca2þ-bound buffer
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between domain and bulk, balances the exchange of Ca2þ-
free buffer, kb(cbss � cbN) ¼ kb(bN � bss) > 0.

Stochastic ODE (Langevin) formulation

As in the previous section, the Langevin-type stochastic
Ca2þ domain model is found by adding the appropriate
random terms to the deterministic ODEs (Eq. 19),

_c ¼ Rþ jin � kcðc� cNÞ þ xcðtÞ; (21a)

_b ¼ R� kbðb� bNÞ þ xbðtÞ; (21b)
_cb ¼ �R� kbðcb� cbNÞ þ x ðtÞ; (21c)
cb

where hxi(t)i ¼ 0 for i ˛ {c,b,cb}. Because the xi(t) are cor-
related, the two-time covariances are most easily expressed
in matrix form,�

xðtÞxT�t0�� ¼ Gðc; b; cbÞd�t � t
0�
; (22)

where x is the column vector (xc, xb, xcb)
T and G is the state-

dependent covariance matrix (see Appendix A in the
Supporting Material),

Gðc; b; cbÞ ¼
0
@gr þ gc gr �gr

gr gr þ gb �gr

�gr �gr gr þ gcb

1
A; (23a)

where

grðc; b; cbÞ ¼ kþc � bþ k�cb
U

;

gcðcÞ ¼ jin þ kcðcþ cNÞ
U

;

gbðbÞ ¼ kbðbþ bNÞ
U

;

gcbðcbÞ ¼ kbðcbþ cbNÞ
U

:

(23b)

Denoting the fluctuations around steady state by dc¼ c – css,
db ¼ b – bss, and dcb ¼ cb – cbss, the linear SDE system for
the concentration fluctuations in the presence of buffer is

_d ¼ Hss dþ xssðtÞ; (24)

where d ¼ (dc, dc, dcb)T is a column vector, Hss is the Jaco-
bian of the full system of SDEs evaluated at steady state,

Hss ¼
0
@�kþbss � kc �kþcss k�

�kþbss �kþcss � kb k�
kþbss kþcss �k� � kb

1
A;

hxss(t)i ¼ 0, and hxss(t) xTss(t 0) i ¼ Gssd(t – t 0) with steady-
state covariance matrix (compare to Eq. 23),
Gss ¼
0
@gss

r þ gss
c gss

r �gss
r

gss
r gss

r þ gss
b �gss

r

�gss
r �gss

r gss
r þ gss

cb

1
A; (25a)

where

gss
r ¼ kþcss � bss þ k�cbss

U
;

gss
c ¼ jin þ kcðcss þ cNÞ

U
;

gss
b ¼ kbðbss þ bNÞ

U
;

gss
cb ¼ kbðcbss þ cbNÞ

U
:

(25b)

If one prefers, the Langevin system for the fluctuations
(Eq. 24) can be written as

_dc ¼ �ðkþbss þ kcÞ dc� kþcss dbþ k� dcbþ xssc ðtÞ; (26a)

_db ¼ �kþbss dc� ðkþcss þ kbÞ dbþ k� dcbþ xssb ðtÞ; (26b)
_dcb ¼ kþbss dcþ kþcss db� ðk� þ kbÞ dcbþ xsscbðtÞ: (26c)
Analysis of concentration fluctuations

Our analysis of concentration fluctuations in the presence of
buffer begins by defining a symmetric 3�3 covariance
matrix for the fluctuating concentrations, S(t) ¼ (sij) for i,
j ˛{c,b,cb}, that is,

SðtÞ ¼ �
dðtÞdTðtÞ� ¼

0
@ hdc2i hdc dbi hdc dcbi

+ hdb2i hdb dcbi
+ + hdcb2i

1
A;

where each star indicates a redundant entry. The time-
dependent dynamics of S(t) follows from Eq. 24 (26),

_S ¼ HssSþ SHT
ss þ Gss; (27)

which is the matrix version of Eq. 15. Solving Eq. 27 with
the initial condition Sð0Þ ¼ 0 corresponds to an ensemble
of domains with initial state c(0) ¼ css, b(0) ¼ bss, and
cb(0) ¼ cbss, that is, dc ¼ db ¼ dcb ¼ 0. This equation rep-
resents a linear system of 6 ODEs simultaneously solved by
the six covariances hdc2i, hdcdbi,., hdcb2i.

The covariances S(t) that solve Eq. 27 are the focus of
this article’s mathematical and computational analysis of
domain [Ca2þ] fluctuations in the presence of buffer. The
solution of Eq. 27 with S(0) ¼ 0 is (26),

SðtÞ ¼
Z t

0

expðHsŝtÞGssexp
�
HT

sŝt
�
dt̂: (28)
Biophysical Journal 106(12) 2693–2709
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The steady-state ensemble variance is the limiting value of
this expression as t / N,

Sss ¼
ZN
0

expðHsstÞGssexp
�
HT

sst
�
dt; (29)

but the steady-state ensemble variance Sss is often more

conveniently found by solving the linear algebraic system
for the steady state of Eq. 27, the continuous Lyapunov
equation, and the more general form of the fluctuation-dissi-
pation theorem,

HssSss þ SssH
T
ss ¼ �Gss: (30)

Equation 30 can be solved numerically using the command

LYAP available in the software MATLAB (The MathWorks,
Natick, MA). For symbolic and analytical calculations, we
rewrite Eq. 30 as

ðHss4HssÞvecðSssÞ ¼ �vecðGssÞ (31)

and then expand in terms of the parameters of the problem

and the unknown entries of Sss. In Eq. 31, I is the 3�3 iden-
tity matrix, Hss 4 Hss is a Kronecker sum given by

Hss4Hss ¼ I 5 Hss þ Hss 5 I;

where5 is the Kronecker product, the vec operation creates

a column vector from a matrix by stacking its column vec-
tors, and we have used

vecðABÞ ¼ ðI 5 AÞvecðBÞ ¼ �
BT 5 I

�
vecðAÞ:

Although Hss 5 Hss is 9�9 and vec(Sss) and vec(Gss) are

9�1, Sss and Gss are symmetric and thus Eq. 31 can be con-
tracted to a 6�6 linear system by eliminating rows 4, 7, and
A

B

C

Biophysical Journal 106(12) 2693–2709
8 of vec(Sss) and vec(Gss) and the corresponding rows and
columns of the Hss 4 Hss.

The remainder of this article communicates numerical
and analytical results obtained using this Langevin formula-
tion for domain [Ca2þ] fluctuations in the presence of buffer.
RESULTS

The influence of Ca2D buffers on domain [Ca2D]
fluctuations

Fig. 2 shows parameter studies that characterize the depen-
dence of the relative magnitude of domain [Ca2þ] fluctua-
tions on Ca2þ buffer parameters. Results were obtained by
numerically solving the continuous Lyapunov equation
(Eq. 30) for a range of total buffer concentrations (bNT )
and rate constants (kþ and k�), fast and slow exchange rates
for Ca2þ-free and -bound buffer with the bulk (kb), and Ca

2þ

influx rates leading to steady-state free [Ca2þ] of css¼ 1, 10,
and 100 mM. The relative magnitude of domain [Ca2þ] fluc-
tuations are characterized by the coefficient of variation

cv ¼
ffiffiffiffiffiffi
sss
c

p
css

; (32)

where the steady-state domain concentration css is deter-
mined by the Ca2þ influx rate via Eq. 20 and sssc ¼ hdc2iss
is the germane element of Sss found by numerical solution
of Eq. 30. Numerically calculated cv values that were gener-
ated from Monte Carlo simulations of an ensemble of do-
mains using Gillespie’s stochastic simulation algorithm
(40) agree with the linear noise approximation, validating
our approach (see Fig. S1 in the Supporting Material).

Fig. 2 reveals that the relative magnitude of domain
[Ca2þ] fluctuations (cv) is a biphasic (bell-shaped) function
of the total buffer concentration bNT (gray lines). For small
FIGURE 2 Dependence of the relative magni-

tude of domain [Ca2þ] fluctuations probed by plot-
ting the coefficient of variation (cv) of the deviation

of the fluctuating [Ca2þ] on buffer parameters.

(Shaded lines) cv for different values of buffer

binding reaction rate kþ. (Solid lines) c0v in the

absence of buffer (Eq. 5). (Dotted line) cv predicted

from a naive application of the concept of effective

volume employed in deterministic models of Ca2þ

signaling (Eq. 33). (Dashed lines) c0v, the (correctly
derived) influence of buffer on cv in the rapid buffer

limit (Eq. 39). Parameters: css ¼ 1 (A), 10 (B), and

100 (C) mM, cN ¼ 0.1 mM, k ¼ 0.2 mM, kc ¼
0.2 ms�1, kþ ¼ 10�3, and 1 mM�1 ms�1. The

domain volume U ¼ 10�17 L corresponds to 0.01

mm3 z (0.22 mm)3.
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or large total buffer concentrations (bNT ), the relative fluctu-
ation magnitude (cv) asymptotically approaches the value
obtained in the absence of buffer (c0v ¼ 1=

ffiffiffiffiffiffiffiffiffi
cssU

p
, solid black

line). This asymptotic value represents the minimum fluctu-
ation size; cv is enhanced for intermediate total buffer con-
centrations. Rapid Ca2þ buffers increase the relative
fluctuation magnitude, that is, for fixed k ¼ k�/kþ, the cv
increases with increasing kþ. High mobility Ca2þ buffer
(represented in this compartmental formulation by
increasing the exchange rate kb) also enhances domain
[Ca2þ] fluctuations (compare left and right columns). High
Ca2þ influx rates (jin) amplify domain [Ca2þ] fluctuations
for intermediate, but not extreme, concentrations of buffer.
Taken together, these results indicate that domain [Ca2þ]
fluctuations are significantly enhanced by Ca2þ buffer and
nontrivially dependent on Ca2þ buffer properties.

The response of domain [Ca2þ] to buffer parameters
documented in Fig. 2 are counterintuitive in the sense that
our numerical calculations are precisely the opposite of
what one would predict using a naive application of the
concept of effective volume. As mentioned in the Introduc-
tion, the effective volume derived from the rapid buffer limit
of the deterministic equations for buffered Ca2þ dynamics
(Eq. 19) is Ueff ¼ U/b, where the buffering factor b is given
by Eq. 3. If one replaces the physical volume U in Eq. 18
with this effective volume, one might conjecture that

cv
?¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

cssUeff

p ¼
ffiffiffiffiffiffiffiffiffi
bss

cssU

s
; (33)

where bss ¼ b(css). However, the numerical calculations

presented in Fig. 2 show that this is incorrect (dotted line).
In fact, this naive application of the concept of buffer-medi-
ated increase in effective volume is quite misleading. Com-
parison of solid and dotted lines in Fig. 2 show that Eq. 33
incorrectly suggests that the size of [Ca2þ] fluctuations
is suppressed by buffer (by increasing the system size,
cssUeff > cssU). The conjecture of Eq. 33 also incorrectly
suggests that domain [Ca2þ] fluctuations can be eliminated
(cv / 0) as total buffer concentration bNT increases and
drives the differential fraction of free to total calcium to
zero (bss / 0). On the contrary, the numerical results of
this section (and analytical results presented below) are
definitive: during periods of Ca2þ influx, Ca2þ buffers
enhance domain [Ca2þ] fluctuations.
The size of [Ca2D] fluctuations in the rapid buffer
limit

Although closed-form analytical solution for the entries of
the steady-state covariances Sss (and in particular sssc ) can
be obtained beginning with Eq. 31, the algebra is tedious,
the result is unwieldy, and little insight is gained from these
expressions (not shown). On the other hand, numerical eval-
uation of symbolic solutions of Eq. 31 confirm the results of
the previous section obtained by numerically solving the
Lyapunov equation (Eq. 30).

To obtain more insight into the enhancement of domain
[Ca2þ] fluctuations mediated by Ca2þ buffers, we sought
to derive a stochastic version of the rapid buffer approxima-
tion (RBA) that correctly accounts for the influence of fast
Ca2þ buffering on domain [Ca2þ] fluctuations. Two distinct
approaches were identified and successfully employed, both
yielding the same analytical result. In the first approach, the
above-mentioned cumbersome analytical expression for sssc
was symbolically evaluated in the limit that kþ, k�/N for
fixed k¼ k� /kþ. The second approach involves no symbolic
computations, but rather implements a general method for
deriving a 0th-order approximation to the size of fluctua-
tions in chemical reaction networks with widely separated
timescales (26).

Briefly, beginning with the stochastic ODEs for buffered
Ca2þ dynamics (Eq. 26), we identify the fluctuations in total
calcium (dcT ¼ dc þ dcb) and total buffer (dbT ¼ db þ dcb)
as the slow variables. Differentiating these expressions and
adding equations, we obtain the fast/slow system

_dc ¼�½kþðcss þ bssÞ þ k� þ kc�dcþðkþcss þ k�ÞdcT
� kþcss dbTþxssc ðtÞ;

(34a)

d _cT ¼ �ðkc � kbÞdc� kb dcT þ xssc ðtÞ; (34b)

T

d _b ¼ �k db þ xss ðtÞ; (34c)
T b T bT

where dc is the fast variable, dcT and dbT are slow variables,
and we define

xsscT ðtÞ ¼ xssc ðtÞ þ xsscbðtÞ and xssbT ðtÞ ¼ xssb ðtÞ þ xsscbðtÞ:

In the rapid buffer limit (kþ, k� / N with k ¼ k� /kþ
fixed), a quasistatic approximation for the average value of
the [Ca2þ] fluctuation that is valid on the slow (outer) time-
scale is

hdci�zbss½dcT � nss dbT �; (35)

where we have written nss ¼ css/(css þ k), and h,i
*
indicates

a time average (as opposed to an ensemble average) and we
have used the fact that bss / bTk/(css þ k) in the RBA limit
(compare to Eq. 20b). Replacing dc in the slow equations by
this average value gives

d _cT ¼ �bssðkc þ wsskbÞdcT þ bssðkc � kbÞnss dbT þ xsscT ðtÞ;
(36a)

d _bT ¼ �kbdbT þ xssbT ðtÞ; (36b)
thereby expressing the slow SDEs in terms of dcT and dbT.
Next, the 2�2 covariance matrix Gslow

ss for xsscT and xssbT is
Biophysical Journal 106(12) 2693–2709
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calculated, and the 2�2 matrix Sslow
ss , whose entries corre-

spond to hdc2Ti, hdcTdbT i, and hdb2Ti, is found by solving a
2�2 Lyapunov equation (Eq. 30). Finally, the values of
hdc2i, hdcdcT i, and hdcdbTi consistent with Eq. 34 are
found by solving a 3�3 Lyapunov equation for hdc2i,
hdcdcTi, and hdcdbTi. From the perspective of analytical
work, this two-step process is far easier than solving the
Lyapunov equation for the covariance matrix Sss for dc,
db, and dcb, because the fast and slow versions of the
Gss and Hss matrices are simpler than those that appear
in the full calculation (see Appendix B in the Supporting
Material for details).

Using both of the above-mentioned approaches (symbolic
and analytical), we find that the variance of the free [Ca2þ]
fluctuations in the presence of rapid Ca2þ buffer (denoted
by s0c) is given by

s
0
c ¼ css

U
� ð1þ cÞ;

c ¼ bss �
wsskb

kc þ wsskb
� css � cN

kþ cN
;

(37)

where bss and wss are evaluated at the steady-state domain
[Ca2þ],

bss ¼ 1

1þ wss

;

wss ¼ bNT k

ðcss þ kÞ2;
(38)

and we note that css R cN and thus c R 0. The variance s0c
implies that in the rapid buffer limit the coefficient of
variation for domain [Ca2þ] fluctuations is given by

c0v ¼
ffiffiffiffiffi
s0
c

p
css

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

cssU

r
¼ c0v

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
; (39)

where c0v ¼ 1=
ffiffiffiffiffiffiffiffiffi
cssU

p
is the result in absence of buffer.

Noting that c R 0, we find

c0v
c0v

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
R1 (40)

and conclude that Ca2þ buffers may enhance but cannot
suppress domain [Ca2þ] fluctuations.

One way to represent the effect of rapid buffers on
domain [Ca2þ] fluctuations involves rewriting Eq. 37 as

s
0
c ¼ css

U
0
eff

;

U
0
eff ¼ U

1þ c
;

(41)

where U0
eff denotes an effective volume that appropriately

accounts for the influence of rapid Ca2þ buffers on [Ca2þ]
Biophysical Journal 106(12) 2693–2709
fluctuations. The fluctuating RBA is readily generalizable
to multiple buffers (see Eq. S1 in the Supporting Mate-
rial). We show that domain [Ca2þ] fluctuations in the
presence of two rapid buffers with different dissociation
constants and exchange rates is given by the multiple
buffer fluctuating RBA and not a naive weighted average
utilizing total buffer concentration (see Fig. S2 in the Sup-
porting Material).
Interpretation of the fluctuating rapid buffer limit

Some salient observations can be made regarding domain
[Ca2þ] fluctuations in the rapid buffer limit (Eqs. 37 and 41):

1. The effective volume in the fluctuating RBA is smaller
than the physical volume (c R 0 and thus U

0
eff % U).

This is in marked contrast to the effective volume for
the deterministic RBA that is greater than the physical
volume (U

0
eff ¼ U/bss > U). This is to say, we have

analytically confirmed our previous numerical result
demonstrating that rapid buffers typically increase the
magnitude of domain [Ca2þ] fluctuations (Fig. 2).

2. The c in s0c is proportional to the concentration differ-
ence css � cN (Eq. 37). That is, the buffer-mediated
enhancement of domain [Ca2þ] fluctuations is an
increasing function of the disequilibrium between the
steady-state domain [Ca2þ] (css) and the bulk (cN).

3. The numerically observed biphasic dependence of
the relative magnitude of domain [Ca2þ] fluctuations
(cv in Fig. 2) corresponds to the factor bsswsskb/(kc þ
wsskb) in c that is a biphasic function of bNT through bss
and wss.

4. In several limiting parameter regimes, the steady-state
variance of domain [Ca2þ] fluctuations is not affected
by Ca2þ buffer (c ¼ 0 and thus s0c ¼ s0c ¼ css/U). These
include the absence of Ca2þ influx (jin ¼ 0, css ¼ cN),
immobile buffer that is unable to exchange with the
bulk (kb¼ 0), and extreme values for the total buffer con-
centration (both bNT / 0 and bNT /N). However, even
in these limiting parameter regimes, buffers do not
decrease [Ca2þ] fluctuations to a size less than that
observed in the absence of buffer.

5. The total buffer concentration that maximizes domain
[Ca2þ] fluctuations for a given fixed css,

bNT � ¼
ffiffiffiffi
kc
kb

r
� ðcss þ kÞ2

k
; (42)

is found as the bNT that zeros v(1 þ c)/vbNT ¼ vc/vbNT .
This corresponds to

w�
ss ¼

ffiffiffiffiffiffiffiffiffiffiffi
kc=kb

p
;

b�
ss ¼

ffiffiffiffiffiffiffiffiffiffiffi
kb=kc

p .�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
kb=kc

p 	
;

and
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U
0�
eff ¼ U

1þ c�;

c
0�
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c�

cssU

s
;

c� ¼ kb=kc�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
kb=kc

p 	2
� css � cN

kþ cN
:

(43)

6. Equation 43 indicates that the maximum fluctuation
magnitude is determined in part by the relative exchange
rate kb/kc. Because c* is a monotone increasing function
of kb/kc, domain [Ca2þ] fluctuations can, formally, be
made as large as possible by choosing kb [ kc and
optimal bNT� (Eq. 42). However, the molecular weight
of Ca2þ-bound buffer is greater than Ca2þ and, conse-
quently, one expects Ca2þ-bound buffer to diffuse and
exchange with the bulk more slowly than free Ca2þ.
This physical consideration implies that kb % kc and,
after imposing this constraint, the physiologically real-
istic parameter choice that maximizes domain [Ca2þ]
fluctuations (kb z kc) leads to c* z 1/4(css –cN)/
(cN þ k) and thus

c
0
v

c0v






�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ css � cN

4ðcN þ kÞ
r

:

7. The buffer dissociation constant k influences buffer-
2þ
mediated increase in [Ca ] fluctuations in a complex

manner. For example, the variance of free [Ca2þ] fluc-
tuations (s0c, Eqs. 37 and 38) depends on the relative
(as opposed to absolute) concentrations of domain
(css/k) and bulk (cN/k) Ca2þ and total buffer (bNT /k)
via the dimensionless quantities bss and wss. This is
because the buffering capacity can expressed as
wss ¼ (bNT /k)/(1 þ css/k)

2 and, similarly, the second
factor of c can be written as (css/k � cN/k)/(1 þ cN/
k). For a given steady-state [Ca2þ], css, the total buffer
concentration with maximal effect (bNT�, Eq. 42) is a u-
shaped function of the buffer dissociation constant k

(see Supporting Results and Fig. S3 in the Supporting
Material).
Applicability of the fluctuating rapid buffer
approximation

In the spatial and deterministic formulation of the buffered
diffusion of intracellular Ca2þ, the rapid buffer approxima-
tion is valid when the equilibration time for buffers is much
smaller than the time constant for Ca2þ diffusion. In this
minimal model of domain [Ca2þ] fluctuations, Ca2þ and
buffer diffusion are represented as first-order reactions
(rate constants kc and kb) that couple the domain with the
bulk. The validity of the fluctuating RBA depends on buffer
kinetics being faster than exchange. Consequently, the phys-
ical domain volume influences the validity of this approxi-
mate result.

The time constant for diffusion-mediated passive ex-
change between compartments can be characterized by the
mean escape time for a Brownian particle with diffusion
constant D leaving a domain of volume U via a small open-
ing of radius a (36),

t ¼ U

4aD
: (44)

As illustrated in Fig. 3 A, a cubical domain (U¼ L3) with an
opening whose radius scales with linear dimension (r ¼
a/L < 1) would yield rate constant k ¼ 1/t and thus ki ¼
4rDi/L

2, where i ˛{c, b} and Dc and Db are the diffusion co-
efficients for Ca2þ and buffer, respectively. Using parame-
ters for the fast, mobile buffer BAPTA, Fig. 3 B plots the
coefficient of variation of domain [Ca2þ] fluctuations (cv)
and the buffer-mediated relative decrease in system size
(s0c /s

ss
c , where s

0
c ¼ css/U) as functions of physical domain

volume U for different values of the dimensionless escape
radius r (shaded lines). As expected, both cv and s0c /s

ss
c

decrease with system size U. Narrowing the dimensionless
escape radius (decreasing r) leads to an increase in cv and
a decrease in s0c /s

ss
c for any physical domain volume U.

Comparison of the solid and dotted lines in Fig. 3 B shows
that the fluctuating RBA agrees with the full calculation
when the physical domain volume U is sufficiently large
and/or the escape opening is sufficiently narrow (small r).
Both situations lead to exchange rates (kc and kb) that are
small compared to rate of buffer equilibration (an increasing
function of both kþ and k�).
[Ca2D] fluctuations in a physiological setting

Neuronal dendritic spines are a good setting to illustrate the
influence of Ca2þ buffer on domain [Ca2þ] fluctuations and
explore the validity of the fluctuating RBA, in part because
such spines are highly variable in shape and size. Although
it is difficult to define an average spine geometry,
most spines have a clearly defined neck (corresponding
to the escape opening of radius a in the previous para-
graph) and head (corresponding to the microdomain
of volume U). Fig. 3 C illustrates three frequently observed
spine shapes—thin, mushroom, and stubby—whose geo-
metric parameters (a and U) have been experimentally
quantified (41).

Fig. 3 D shows that over a wide range of concentrations,
the fast buffer BAPTA increases the coefficient of variation,
compared with the absence of buffer (cv/c

0
v), by as much as a

factor of 2 (top). The largest increase occurs in the case
of the mushroom-shaped dendritic spine, for which the ratio
of the spine-neck opening cross-sectional area, and the
spine-head volume, is smallest (a/U).
Biophysical Journal 106(12) 2693–2709
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FIGURE 3 The geometric parameters of a Ca2þ

domain determine the time constant for escape of

Ca2þ and buffer and the range of applicability of

the fluctuating rapid buffer approximation (RBA).

(A) Diagram of restricted subspace with volume

U, linear dimension L, and radius of domain escape

a. (B) (Shaded lines) Coefficient of variation of

domain [Ca2þ] fluctuations (cv, top) and buffer-

mediated relative decrease in system size (s0c /s
ss
c ,

bottom) as functions of physical domain volume

U using four decades of dimensionless escape radii

r ¼ a/L ¼ 10�4,.,10�1. (Dashed black lines)

Fluctuating RBA (Eq. 39) well approximates the

full calculation when r is small. css ¼ 1 mM. (C)

Illustration of three frequent spine shapes adapted

from Harris et al. (41). (D, top) Relative increase

in cv in the presence of BAPTA, compared with

the absence of buffer c0v, for different spine shapes.

(D, bottom) Percent difference between cv as calcu-

lated using the fluctuating RBA, c0v and the full

calculation, cv. css ¼ 10 mM. Parameters: cN ¼
0.1 mM, Dc ¼ 0.2 mm2/ms. BAPTA (72): Db ¼
0.1 mm2/ms, kþ ¼ 0.6 mM�1 ms�1 , k ¼ 0.2 mM,

and bNT ¼ 100 mM. Spine geometries (41): thin (a¼
0.05 mm, U ¼ 4 � 10�17 L), mushroom (a ¼ 0.1

mm, U ¼ 2.9 � 10�16 L), and stubby (a ¼ 0.16

mm, U ¼ 3 � 10�17 L).
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For small and large BAPTA concentrations, there is a
negligible difference between the fluctuating RBA and the
corresponding full calculation, even measured in relative
terms (Fig. 3D, bottom). When the BAPTA concentration in-
duces comparatively large [Ca2þ] fluctuations, the fluctuating
RBA overestimates the cv (depending on spine shape by as
much as 50–150% in the worst case). When the steady-state
domain [Ca2þ] (css) is decreased, the disequilibrium between
domain Ca2þ and buffer is attenuated, and the relative devia-
tion between the RBA and full calculation is smaller (not
shown). The fluctuating RBAworks best for the mushroom-
shaped dendritic spine, because a/U is smallest.
Influence of buffers on the relaxation time for
domain [Ca2D] fluctuations

We have demonstrated that in the presence of Ca2þ influx
(jin > 0), Ca2þ buffer may significantly increase the
steady-state covariance of [Ca2þ] fluctuations, especially
when buffers are mobile and rapid (Eq. 37). On the other
hand, the fluctuating RBA shows that in the absence
of Ca2þ influx (jin ¼ 0, css ¼ cN), fluctuation amplitude
is not influenced by total buffer concentration
(cv ¼ c0v ¼ 1=

ffiffiffiffiffiffiffiffiffi
cssU

p
as when bNT ¼ 0), a result that holds

generally (e.g., when buffers are slow) in numerical simula-
tions (not shown). This occurs because Gss and Hss scale in
such a way that the steady-state covariance matrix Sss is not
a function of bNT when jin ¼ 0 (Eq. 30). On the other hand,
the time-dependent stochastic dynamics of the fluctuating
concentrations (dc, db, dcb) and the relaxation of the covari-
ance matrix S to steady state are a function of buffer prop-
Biophysical Journal 106(12) 2693–2709
erties in both the absence or presence of Ca2þ influx
(Eq. 27). For example, the relaxation rates governing the
dynamics of Eq. 27 are given by the pairwise sums of the
eigenvalues of Hss (by properties of Kronecker sums and
Eq. 31 (42)), and these are a function of bNT in both the pres-
ence and absence of Ca2þ influx.

Fig. 4A showsMonte Carlo simulations of domain [Ca2þ],
c(t), fluctuating around the steady-state css that were gener-
ated by numerical integration of Eq. 21 using the Euler-
Maruyama method. In the absence of buffer, the fluctuations
dc(t) ¼ c(t) – css are typically small and long-lasting (Fig. 4
Aa). Similar dynamics are observed in the presence of slow
buffers (Fig. 4 Ab). Conversely, in the presence of rapid
buffer, free [Ca2þ] fluctuations and subsequent relaxation
to steady state occurs on a fast timescale (Fig. 4 Ac).

One characterization of the influence of buffer on the time
evolution of [Ca2þ] fluctuations is given by the 3�3 steady-
state correlation function F ¼ (fi,j) with i,j ˛ {c,b,cb},

FðtÞh�
dðtÞdTð0Þ�;

where F(0) ¼ Sss. In the presence of buffer the correlation
function for the domain [Ca2þ] fluctuation dc is given by
fc,c(t), where �N < t < N and

FðtÞ ¼ expð � jtjHssÞSss; (45)

whereas in the absence of buffer f0
c;cðtÞ ¼ s0cexpð�kcjtjÞ

(26). Fig. 4 B plots fc,c(t) using parameters that correspond

to the three previously shown stochastic trajectories (Fig. 4
Aa–c). In the absence of buffer, fc,c(t) decays by 50%
when t z 5 ms, consistent with the time constant for
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FIGURE 4 Influence of buffer on the time evolu-

tion of [Ca2þ] fluctuations. (A) Monte Carlo simula-

tion of domain [Ca2þ], c(t), for different buffer

parameters. (B) Autocorrelation function (fc,c (t),

Eq. 45) and (C) power spectrum (sc,c(u), Eq. 46) in

the presence of slow (open circles) and fast (dashed

line) buffer and in the absence of buffer (solid line).

Autocorrelation function curves are normalized by

the steady-state variance such that fc,c (0) ¼ 1.

Parameters: css ¼ 0.1 mM, cN ¼ 0.1 mM, kc ¼
0.2 ms�1, and U ¼ 10�17 L. Buffer parameters:

bNT mM, k ¼ 0.2 mM, kb ¼ 10�1 ms�1, kþ ¼ 10�3

(slow), and 1 (fast) mM�1 ms�1.
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Ca2þ exchange (kc ¼ 0.2 ms�1, solid line). In the presence
of slow buffer, fc,c(t) is nearly identical (open circles), but
in the presence of fast buffer the 50% decay occurs at a
much shorter time (t z 0.1 ms, dashed line).

The time evolution of the domain [Ca2þ] fluctuation dc(t)
can also be characterized by its (colored) power spectrum,
that is, the 3�3 matrix S(u) ¼ (si,j),

SðuÞ ¼ ðiuI þ HssÞ�1
Gss

�� iuI þ HT
ss

��1
(46)

that reduces to

s0c;cðuÞ ¼ 2kccss

.�
U
�
u2 þ k2c

��

in the absence of buffer (26). Fig. 4 C shows the power spec-
trum sc,c(u) in the absence of buffer and in the presence of
slow buffer (solid line, open circles). In both cases, the spec-
trum is low-pass, but for fast buffer, sc,c(u) drops off at
higher frequency (smaller t, dashed line), consistent with
the higher frequency fluctuations observed in Fig. 4 A. In
addition to clarifying the frequency content of domain
[Ca2þ] fluctuations, this power spectrum analysis illustrates
how buffers influence fluctuations even in the absence of
Ca2þ influx. Further analysis of the influence of buffers on
the timescale of domain [Ca2þ] fluctuations is provided in
Fig. S4 and Fig. S5.
DISCUSSION

Relation to prior work

The influence of Ca2þ buffers on Ca2þ diffusion, oscilla-
tions, propagating Ca2þ waves, and spatially localized
Ca2þ elevations has received considerable attention in
recent years (for reviews focused on local signaling, see
Berridge (2,43), Smith et al. (45), and Augustine et al.
(46)). Previous studies have presented theoretical analysis
of buffered Ca2þ diffusion and localized Ca2þ elevations
(16–18,20,47–49), as well as stochastic aspects of Ca2þ-
induced Ca2þ release, Ca2þ oscillations, and propagating
Ca2þ waves (34,50–53). A subset of these studies utilized
a Langevin formulation for the dynamics of intracellular
Ca2þ channels (54–56).

Models of Ca2þ-regulated Ca2þ channels and stochastic
Ca2þ release usually incorporate buffering into the domain
description and, more rarely, consider the fluctuations in
free [Ca2þ] that result from the small volume of subcellular
compartments (e.g., the cardiac dyadic subspace) (30,33–
35). To our knowledge, this is the first study that formulates
Langevin equations for the buffered dynamics of intracel-
lular Ca2þ and, subsequently, characterizes the influence
of Ca2þ buffers on [Ca2þ] fluctuations that arise from the
association and dissociation of Ca2þ and buffer. The analyt-
ical results pertaining to the fluctuating rapid buffer approx-
imation (RBA) and the influence of buffers’ properties on
fluctuation amplitude is, to our knowledge, entirely novel.

Previous studies have, of course, utilized Langevin
equations to simulate concentration fluctuations in other
biochemical systems (30,33,57–60) and the stochastic
gating of plasma membrane and intercellular ion channels
(54,55,61–64), and used the fluctuation-dissipation theorem
to characterize concentration fluctuations in biochemical
reaction networks, e.g., in models of gene networks and
Michaelis-Menten enzyme reactions (65–68). However, to
our knowledge, this is the first mathematical analysis of
domain [Ca2þ] fluctuations in the presence of Ca2þ buffers.
Summary of findings

The fluctuating RBA derived above shows how the Ca2þ and
buffer exchange rates (kc and kb), total buffer concentration
(bNT ), and dissociation constant (k) influence [Ca2þ] fluctu-
ations. Typically, fast buffer binding and high exchange
rates increase the size of [Ca2þ] fluctuations (sssc ¼ hdc2i).
The fluctuating RBA derived here shows that the relative in-
crease in fluctuation size due to buffers, i.e., the ratio of
Biophysical Journal 106(12) 2693–2709
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coefficients of variation (Eq. 40), is an increasing function
of the steady-state domain [Ca2þ] (css) and thus an
increasing function of Ca2þ influx rate (jin). For fixed
steady-state domain [Ca2þ], css > cN, Fig. 2 and Eq. 40
show that the relative fluctuation size c0v/c

0
v is a biphasic

function of the total buffer concentration bNT . At low bNT ,
the fluctuation amplitude approaches that observed in the
absence of buffer (c0v z c0v , wss / 0 in Eq. 37). At high
bNT , the ratio c0v/c

0
v z 1 because increased buffering capacity

attenuates the buffer-mediated increase in free [Ca2þ] fluc-
tuations (bss / 0 in Eq. 37). The total buffer concentration
that maximizes c0v/c

0
v is given by Eq. 42. For a fixed Ca2þ

influx rate jin, css is a decreasing sigmoidal function of bNT
that approaches cN (Eq. 20). In this case, sssc is a decreasing
sigmoidal function that approaches cN/U. However, the
buffer-mediated change in fluctuation size as measured by

c
0
v

.
c0v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
R1;
jin, Ca buffers increase the amplitude of domain [Ca ]
fluctuation.
remains a biphasic function of bNT . For fixed css and for fixed
2þ 2þ

We explore the validity of the RBA for realistic buffer pa-
rameters and microdomain geometries and find the fluctu-
ating RBA is a good approximation when buffer kinetics
are rapid compared to the Ca2þ and buffer exchange rates.
Exchange rates on domain volume depends on the presumed
relationship between escape target size and linear dimension
of the domain. However, the fluctuating RBA agrees with
the full calculation whenever the physical domain volume
is sufficiently large and/or the escape passage is sufficiently
narrow, because both situations lead to exchange rate
constants (kc and kb) that are small compared to the buffer
equilibration rate (an increasing function of both kþ and k�).
As one would expect based on these considerations, the fluc-
tuating RBA is a better approximation to the full equations
for domain [Ca2þ] fluctuations for mushroom-shaped (as
opposed to thin or stubby) dendritic spine geometries
(Fig. 3 D).

Our analysis shows that a buffer-mediated increase in
intrinsic [Ca2þ] fluctuations requires a nonequilibrium
steady state, that is, a gradient between domain and bulk
Ca2þ (css > cN), which implies disequilibrium between
Ca2þ and buffer within the domain. However, our primary
result that buffers do not suppress intrinsic [Ca2þ] fluctua-
tions—due to the buffer’s contribution to these fluctua-
tions—is true in the absence, as well as the presence, of
elevated domain [Ca2þ]. Although buffers do not influence
the steady-state variance of domain [Ca2þ] fluctuations in
the absence of Ca2þ influx, power spectrum analysis shows
that buffers do alter the temporal dynamics of domain
[Ca2þ] fluctuations. For fixed k¼ k�/kþ, a faster association
rate constant (kþ) leads to higher frequency free [Ca

2þ] fluc-
tuations and shorter autocorrelation times.
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Buffers suppress extrinsic (not intrinsic) domain
[Ca2D] fluctuations

As discussed in the Introduction, the effective volume that
arises in the deterministic equations for the buffered diffu-
sion of intracellular Ca2þ is

Ueff ¼ U
�
bðcÞ;

where Ueff R U because 0 < b(c) % 1 (24). Because the
relative size of concentration fluctuations decreases as sys-
tem size increases, one might expect that domain [Ca2þ]
fluctuations would decrease as total buffer concentration in-
creases. In marked contrast to this conjecture, the analysis of
domain [Ca2þ] fluctuations presented here demonstrates
that buffers increase the size of [Ca2þ] fluctuations (during
periods of Ca2þ influx) or have no influence (when there is
no influx). That is, buffers typically lead to domain [Ca2þ]
fluctuations with variance sssc that is consistent with a
domain that lacks buffers but has smaller physical volume.

Some clarity with regard to this counterintuitive result
can be obtained by revisiting the fast/slow system of
stochastic ODEs for buffered Ca2þ dynamics (Eq. 34) under
the restriction that Ca2þ-free or Ca2þ-bound buffer do not
exchange with bulk (kb ¼ 0),

_dc¼�½kþðcssþbssÞþk� þ kc�dcþ ðkþcss þ k�ÞdcT þ xssc ðtÞ;
(47a)

d _cT ¼ �kcdcþ xss ðtÞ: (47b)
cT

Here the fluctuation is free [Ca2þ]. The value (dc) is the fast
variable and dcT is the only slow variable because the
domain total buffer concentration is a conserved quantity
given by initial conditions (bT ¼ b(0) þ cb(0)) and does
not fluctuate (dbT ¼ 0). Setting kb ¼ 0 in Eq. 37, we see
that under this restriction c ¼ 0, and the fluctuating RBA
result is identical to the case without buffers,

c0v ¼ c0v ¼ 1
. ffiffiffiffiffiffiffiffiffi

cssU
p

;

because immobile buffers (kb¼ 0) do not change the steady-
state variance of domain [Ca2þ] fluctuations. Note that when
kb ¼ 0, the differential fraction of free to total calcium (bss)
appears in the quasistatic approximation,

hdci�zbssdcT

and the slow equation,

d _cT ¼ �bsskcdcT þ xsscT ðtÞ; (48)

precisely as one would expect. Using the fluctuation-dissi-
pation equation (Eq. 30), we calculate the steady-state
covariance of the total calcium concentration,
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�
dc2T

� ¼ gss
c

2bsskc
¼ 2kccss

2bsskcU
¼ css

bssU
; (49)

as well as the covariances that involve the fast variable dc. In
the RBA limit with kb ¼ 0, the latter are given by

hdc dcTi ¼ bss

�
dc2T

� ¼ css
U

(50a)

and

�
dc2

� ¼ gss
r

2½kþðcss þ bssÞ þ k�� þ b2
ss

�
dc2T

�
(50b)

css css css
¼ ð1� bssÞ U þ bssU
¼

U
; (50c)

where for the second equality we have used bsswss ¼ 1 – bss
and the definition of gss

r (Eq. 23).
Equation 49 shows that the covariance of the total [Ca2þ]

fluctuation (hdc2Ti) responds to the elementary processes of
Ca2þ influx and exchange with the bulk

gss
c ¼ ½jin þ kcðcss þ cNÞ�

�
U ¼ 2kccss

�
U:

The covariance of the free [Ca2þ] is also dependent on
influx and exchange (gss

c ) through the term b2sshdc2Ti. The
value hdc2i is influenced by the elementary processes of
Ca2þ and buffer association and dissociation

gss
r ¼ ½kþcssbss þ k�cbss�

�
U;

whereas hdc2Ti is not. Increasing buffer concentration (bNT )
decreases bss and increases hdc2Ti. The value bNT also scales
gss
r in such a way that hdc2i is unchanged. Stationary buffers

do not influence the steady-state covariance of domain
[Ca2þ] fluctuations (kb ¼ 0), because the intrinsic nature
of the fluctuating force xssc (t) causes gss

r and bss to be related
in a manner that makes hdc2i ¼ css/U invariant to the buffer
parameter bNT and k.

However, if the influx rate were modulated so that there
was an extrinsic component to the fluctuations,

jinðtÞ ¼ j0in þ j1inðtÞ

where

j0in ¼ kcðcss � cNÞ and
�
j1inðtÞ j1inðt0Þ

� ¼ gss
ind

�
t � t

0�
;

where gss
in ¼ jssext/U, then the fluctuating terms in both Eqs.

47a and 47b would have greater variance and Eqs. 49 and
50b become

�
dc2T

� ¼ gss
c þ gss

in

2bsskc
¼ css

bssU


1þ jssext

2kccss

�

and

hdc2i ¼ gss
r þ gss

in

2½kþðcss þ bssÞ þ k�� þ b2
ss

�
dc2T

�

¼ ð1� bssÞ
css
U

þ bss

css
U


1þ jssext

2kccss

�
¼ css

U


1þ bss

jssext
2kccss

�
;

where we have used the fact that gss
in/kþ / 0 in the RBA
limit. From the last equality we conclude that the variance
of the external drive gss

in increases the steady-state vari-
ance of domain [Ca2þ] fluctuations. The location of the
coefficient bss in the term ð1þ bssj

ss
ext=2kccssÞ shows that

stationary buffers are able to suppress such extrinsic vari-
ability of Ca2þ influx/efflux rate, despite the fact that the
buffers do not suppress intrinsic fluctuations (compare to
Eq. 50b).
Analysis of the fluctuating RBA and intrinsic
fluctuations

Analysis of the fluctuating RBA also provides insight into
intrinsic (buffer-driven) fluctuations when both Ca2þ and
buffer exchange with bulk (kb s 0). The quasistatic
approximation for the average value of the [Ca2þ] fluctua-
tion in the fluctuating RBA (Eq. 35) shows that the free
(dc) and total (dcT) calcium fluctuations are related by
the factor bss as expected. Also, Eq. 36a shows that total
buffer concentration bNT slows the relaxation of total cal-
cium fluctuations (dcT) through the factor bss. However,
the relaxation of total buffer (dbT) fluctuations are not
slowed in this manner (Eq. 36b) and, importantly, the en-
tries of the covariance matrix for the random terms xssc , x

ss
cT
,

and xssbT , are all proportional to the total buffer con-
centration bNT (Eq. S18 and Eq. S20 in the Supporting
Material).

To understand the interplay between the effect of bNT on
the random terms (fluctuation) and the relaxation rate
(dissipation) in the case of mobile buffers (kb > 0), we
analyze the Langevin domain model when the exchange
rates for Ca2þ and buffer are identical (kc ¼ kb ¼ k). Under
this restriction, the covariances of the slow variables are
given by

�
dc2T

� ¼ css þ cbss
U

;

hdcT dbTi ¼ cbss þ cbN
2U

;

�
db2T

� ¼ bNT
U
;

(51)

where the css þ cbss value in the numerator of hdc2Ti is the
steady-state total calcium concentration in the domain.
The variance of the fast variable hdc2i can be written in
terms of the covariances of the slow variables,
Biophysical Journal 106(12) 2693–2709
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�
dc2

� ¼ bss

h
wss

css
U

þ bss

��
dc2T

��2nsshdcT dbTiþn2ss
�
db2T

��i
;

(52)

and it can be shown that hdcdbTi is negative whereas hdcdcTi
2
and hdc i are positive. Upon substitution of Eq. 51, we have

�
dc2

�¼ bss

U

�
wsscssþ bss

�
css þ cbss � nssðcbss þ cbNÞ

þ n2ssb
N
T

��
;

(53a)

1 �
2
�

2 N
��
¼

U
ð1�bssÞcssþ bss cssþcbss�nssðcbss þ cbNÞþ nssbT :

(53b)

In this case, the fluctuating RBA simplifies to

s
0
c ¼ css

U
� ð1þ cÞ;

c ¼ wss

ð1þ wssÞ2
� css � cN

kþ cN
:

(54)

This analysis of the fluctuating RBA under the restriction
kc ¼ kb shows that an increase in total buffer bNT increases
the absolute value of the slow covariances (Eq. 51). These
covariances (the terms within square brackets in Eq. 53)
combine to create a net positive impact on hdc2i that is
attenuated to some extent by a decrease in the bss that
scales these terms. The bss/U value outside the curly
brackets in Eq. 53a might be interpreted as an effective
volume that attenuates all of these contributions to
hdc2i, but this is misleading because bsswsscss ¼ (1 �
bss)css is an increasing function of bNT (compare to Eq.
53b). Furthermore, Eq. 54 shows that the variance of the
free [Ca2þ] fluctuations in the presence of buffer bNT >
0 is never less than what would occur in the absence of
buffer (bNT ¼ 0).

All of the expressions in this section have counterparts
when the fluctuating RBA is derived in full generality
(kc s kb, see Appendix B in the Supporting Material).
The derivation of the fluctuating RBAwhen kc¼ kb is shown
in Appendix C in the Supporting Material.
Physiological implications

Ca2þ is an important signaling molecule in many cell types.
Intracellular Ca2þ regulates cellular responses through
Ca2þ-regulated ion channels, Ca2þ-dependent kinases, and
phosphotases, and key processes in excitable cells,
including muscle contraction and neurotransmitter release
(1). Many of these signaling pathways occur in small
spatially restricted volumes (microdomains) and, conse-
quently, fluctuations in [Ca2þ] may be physiologically sig-
nificant. Our results are broadly applicable to subcellular
Ca2þ domains, including dendritic spines, the dyadic cleft,
Biophysical Journal 106(12) 2693–2709
and many other situations where localized Ca2þ elevations
occur in spatially restricted subcellular compartments,
such as the primary cilium, mitochondria-ER junctions,
and endoplasmic reticulum/plasma membrane (ER/PM)
junctional regions (Fig. 1). As a concrete example of an
application of the theory, we found—using physiological
values for dendritic spine shape—that the exogenous Ca2þ

buffer BAPTA does not suppress intrinsic domain [Ca2þ]
fluctuations, and may increase the coefficient of variation
(cv) of domain [Ca2þ] fluctuations by a factor of 2 or
more (Fig. 3 D).

Spatially localized subcellular dynamics can greatly alter
whole-cell or even tissue-level physiological processes. For
example, in the cardiac dyadic subspace, the regenerative
(i.e., positive feedback) nature of Ca2þ-induced Ca2þ-
release creates a subcellular environment where the sponta-
neous opening of only a few Ca2þ channels can lead to
opening of nearly all of the channels in a dyad (essentially
an all-or-none response) (69). Ca2þ release that spontane-
ously initiates within one dyad may activate neighboring
dyads resulting in propagating Ca2þ waves. In pathophysio-
logical conditions this may lead to ectopic heart beats that
are potentially arrhythmogenic. This is one of many exam-
ples where the spatially localized stochastic dynamics of a
few Ca2þ channels may influence the global Ca2þ response
and, for this reason, the regulation of Ca2þ channels by
buffer-modulated [Ca2þ] fluctuations may be physiologi-
cally significant.

In Weinberg and Smith (35), we developed and
analyzed a minimal model of a Ca2þ microdomain that
included a stochastically gating Ca2þ-regulated Ca2þ

channel and accounted for the small number of Ca2þ

ions present in the domain at any given time. This prior
work demonstrated that [Ca2þ] fluctuations due to small
domain volumes could alter the open probability of
Ca2þ channels, typically reducing the open probability
compared with larger volumes. The fluctuating RBA
derived here shows that Ca2þ buffers typically enhance
domain [Ca2þ] fluctuations and, when combined with pre-
vious work, this suggests that buffers may influence the
stochastic dynamics of Ca2þ-regulated Ca2þ channels
(the frequency and duration of channel openings) and
potentially influence the stochastic properties of local
Ca2þ release events (sparks and puffs).

Our analysis of the fluctuating RBA raises the intriguing
question of whether or not domain [Ca2þ] fluctuations are
physiologically significant aspects of local (and perhaps
global) Ca2þ signaling. This topic requires further study,
in part because our mathematical analysis indicates that
Ca2þ chelators and indictor dyes enhance intrinsic domain
[Ca2þ] fluctuations. The physiological relevance of domain
[Ca2þ] fluctuations on the dynamics of signaling complexes
will presumably depend on the timescale of Ca2þ influx, the
geometry of the microdomain, and the kinetics of down-
stream Ca2þ-dependent signaling.
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Limitations of this analysis

We have shown that [Ca2þ] fluctuations in spatially
restricted subcellular compartments cannot be suppressed
by increasing the total concentration of Ca2þ buffer (bNT ).
Of course, this conclusion that Ca2þ buffers typically
enhance domain [Ca2þ] fluctuations pertains only to buffers
whose dynamics are well represented by the bimolecular as-
sociation reaction that was our starting point (Eq. 1). It is
possible that Ca2þ buffers with more complicated and real-
istic Ca2þ-binding kinetics (e.g., cooperative binding) may
suppress free [Ca2þ] fluctuations. This question could be ad-
dressed rigorously using chemical reaction network theory.

Although we consider Ca2þ and buffer transport via
exchange between domain and bulk, this work does not
use continuum modeling (partial differential equations) to
explicitly represent spatial aspects of the buffered diffusion
of intracellular Ca2þ. Spatial correlations in fluctuations are
of interest, but beyond the scope of this study, in part
because the mathematical description of diffusion-mediated
concentration fluctuations is less accessible than the anal-
ysis of stochastic differential equations presented here.

This article has focused on intrinsic Ca2þ and buffer con-
centration fluctuations around nonequilibrium steady states
in the presence of Ca2þ influx (jin > 0) and equilibrium
steady states in the absence of Ca2þ influx (jin ¼ 0). Our
analytical work is relevant and easily applied whenever a
separation of timescales exists between the concentration
fluctuations per se (that arise from finite size effects) and
temporal variations in Ca2þ influx rate. For example, during
the cardiac cycle, triggered release of junctional sarco-
plasmic reticulum (SR) Ca2þ elevates dyadic subspace
[Ca2þ] for durations of ~300 ms, and the low [Ca2þ] of
the diastolic interval persists for ~500 ms. Because domain
[Ca2þ] fluctuations occur on a faster timescale (1–10 ms), it
is straightforward to apply our theory to the cardiac dyad
under the assumption that domain concentrations (expected
values) are in quasistatic equilibrium with the time-varying
influx rate, i.e., css(t) ¼ css(jin(t)) through Eq. 20 and simi-
larly for bss(t) and cbss(t). Even when no such timescale sep-
aration exists, domain [Ca2þ] fluctuations in the context of
time-varying Ca2þ influx can be calculated by numerical
integration of Eq. 27, with Hss(t) and Gss(t) evaluated at
the time-varying expected values of the domain Ca2þ and
buffer concentrations (26). Such quasistatic and nonsta-
tionary calculations agree with numerical simulations of
domain [Ca2þ] fluctuations during triggered release (see
Fig. S6). Perhaps most importantly, such calculations
confirm that buffers increase intrinsic domain [Ca2þ] fluctu-
ations during systole, and buffers do not suppress [Ca2þ]
fluctuations during diastole, just as one would expect
from the nonequilibrium steady-state analysis that has
been our focus.

In other physiological settings, domain [Ca2þ] is elevated
for longer or shorter durations. In pancreatic b-cells, for
example, insulin secretion is regulated by minute-long
duration [Ca2þ] elevations in nuclear (8) and subplasma
membrane (70) Ca2þ microdomains. In pituitary cells, min-
ute-long spontaneous [Ca2þ] oscillations have been
observed in mitochondrial microdomains (71). In such
cases, it is straightforward to apply our nonequilibrium
steady-state analysis (e.g., the fluctuating RBA). This arti-
cle’s conclusions are also directly applicable to the case of
pulsatile Ca2þ influx with characteristic time shorter than
the domain equilibration time (for buffers and escape).
When the timescale for pulsatile influx is comparable to
the domain time constant, quantitative studies will require
simulation of the full system of stochastic ODEs. In numer-
ical simulation of a stochastically gated influx with mean
open time of 1 ms and mean closed time of 9 ms, we find
that buffers do not decrease intrinsic domain [Ca2þ] fluctu-
ations (see Fig. S7), consistent with our analysis of constant
and slowly changing Ca2þ influx.

It would be interesting to understand the impact of
intrinsic fluctuations (due to the finite number of Ca2þ ions
in a domain) on Ca2þ-mediated effectors, including Ca2þ-
activated or inactivated channels, initiation of Ca2þ sparks,
and so on. In complementary projects we have made some
progress in that direction (35). It is important to understand
that even when [Ca2þ] fluctuations are much faster than the
timescale of a downstream Ca2þ-mediated process (e.g.,
opening of a Ca2þ-activated channel), these fluctuations
may (34) or may not (35) average-out over the slower time-
scale. Further studies could address such issues by including
downstream signaling events in model formulations, but this
article’s primary conclusion—that Ca2þ buffers do not sup-
press intrinsic [Ca2þ] fluctuations—is an important first
step in our developing understanding of the physiological
significance of domain [Ca2þ] fluctuations.
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