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Abstract

Objective—To determine if increased placental vascular impedance to flow is associated with

changes in fetal cardiac function using spatiotemporal image correlation (STIC) and Virtual Organ

Computer-aided AnaLysis (VOCAL).

Study Design—A cross-sectional study was performed in fetuses with an umbilical artery

pulsatility index > 95th percentile (ABN). Ventricular volume (end-systole, end-diastole), stroke

volume (SV), cardiac output (CO), adjusted CO, and ejection fraction (EF) were compared to

those of 184 normal fetuses (NL).
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Results—1) 34 fetuses were evaluated at a median gestational age of 28.3 (range 20.6 – 36.9)

weeks; 2) mean ventricular volumes were lower for ABN than NL (end-systole, end-diastole) with

a proportionally greater decrease for left ventricular volume (vs. right); 3) mean left and right SV,

CO, and adjusted CO were lower for ABN (vs. NL); 4) right ventricular volume, SV, CO, and

adjusted CO exceeded the left in ABN fetuses; 5) mean EF was greater for ABN than NL; and 6)

median left EF was greater (vs. right) in ABN fetuses.

Conclusion—Increased placental vascular impedance to flow is associated with changes in fetal

cardiac function.
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Introduction

Abnormal umbilical artery Doppler velocimetry reflects increased impedance to blood flow

in the placenta.1–4 Mathematical modeling of the placental circulation shows that initially,

placental resistance and pulsatility index (PI) increase very slowly with fractional terminal

vessel obliteration.5 However, there is a steep increase of the PI after 60–90% of vessels are

obliterated.5

In human pregnancies, structural heart disease,6–8 small for gestational age with normal

umbilical artery Doppler velocimetry,9–10 intrauterine growth restriction (IUGR),11–15 twin-

to-twin transfusion syndrome,16–18 and intra-amniotic infection19–20 (reported in animal

models also21–22) can result in fetal cardiac dysfunction. The heart is a central organ in the

fetal adaptive mechanisms to placental insufficiency and hypoxia.23 Therefore, it follows

that placental insufficiency with increased placental vascular resistance may lead to fetal

cardiovascular compromise,24 and even fetal metabolic acidosis and death.25 Indeed, severe

IUGR due to placental insufficiency contributes to 30% of total perinatal loss and severe

morbidity.26 Monitoring of fetal cardiac function has been proposed as an adjunct to current

methods to predict adverse outcome and death in IUGR.27 Fetuses with abnormal umbilical

artery Doppler velocimetry have been shown to have similar changes to those observed in

adults with atherosclerosis. This may be important in relating placental vascular disease

(detected by umbilical artery Doppler velocimetry) to the risk for adult cardiovascular

disease.28 Studies report that fetuses with abnormal umbilical artery Doppler velocimetry

have evidence of higher red blood cell count and hemoglobin concentration,29 endothelium

activation,28 platelet activation (which promotes thrombosis),30 platelet consumption,31 an

atherogenic lipoprotein profile,32 and evidence of intravascular inflammation.33

Epidemiologic studies and animal models have also established that low birthweight babies

have an increased risk of cardiovascular disease later in life.34–35 Thus, the condition which

is the focus of our study is the in-utero equivalent to fetal atherosclerosis, and this, along

with fetal cardiac dysfunction may have important consequences in fetal programming of

cardiac disease and the early-onset of disease.23 Examining fetal cardiovascular parameters
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is required to gain an understanding of the hemodynamic changes occurring in the setting of

increased placental vascular impedance to flow.

However, the repeatability and reproducibility of most fetal echocardiographic

measurements determined using two-dimensional (2D) sonography is poor, particularly for

ventricular volume and volume flow estimations.36 This has been attributed to measurement

variation in the atrioventricular and semilunar valves, which can lead to large differences in

the estimated cardiac output.36–37 Errors in measuring velocity-time integral or valve area

will greatly influence volume flow measurements, particularly because the valve area is

related to the square of the radius, thus accentuating any errors.38 Moreover, the use of 2D

measurements to estimate ventricular volume requires assumptions about the three-

dimensional geometry of the heart which may be invalid, leading to inaccuracy in

estimations of cardiac output.36–37

Three-39 and four-dimensional sonography have the potential to minimize the limitations

inherent in 2D estimations of fetal cardiovascular parameters because: 1) geometric

assumptions are not made when assessing ventricular volumes; 2) neither small outflow tract

diameters nor angle-dependent Doppler measurements are required for calculation; and 3)

from a single cardiac dataset obtained using spatiotemporal image correlation (STIC), all

parameters required for calculation (left and right ventricular volumes) are present in the

same volume, reducing the risk inherent in measuring two chambers at different times when

using 2D ultrasound.40 Indeed, three-41–46 and four-dimensional echocardiography47–57

have been used to evaluate cardiovascular parameters in normal fetuses.

Yet, there is insufficient data regarding the fetal cardiovascular response to increased

placental vascular impedance to flow determined using four-dimensional sonography. We

have previously described a repeatable and reproducible technique to quantify ventricular

volume calculations using STIC and Virtual Organ Computer-aided AnaLysis (VOCAL).58

Subsequently, we quantified fetal cardiovascular parameters (ventricular volume, stroke

volume, cardiac output, and ejection fraction) in a group of 184 normal fetuses over a range

of gestational ages.40 Therefore, the objective of this study was to use the same technique to

determine if increased placental vascular impedance to flow is associated with changes in

fetal cardiac function.

Materials and Methods

Study population

A cross-sectional study was conducted to include pregnancies with increased placental

vascular impedance to flow (umbilical artery PI > 95th percentile59) by searching our

database of women enrolled into research protocols that included examination of the fetal

heart by three- and four-dimensional ultrasound. Women were eligible for inclusion if

gestational age was determined by either a first or second trimester sonographic examination

and there was a singleton fetus (> 19 weeks of gestation). Women were excluded in the

presence of fetal hydrops, chromosomal, or congenital abnormalities. A control group,

consisting of 184 normal fetuses whose cardiovascular parameters had been previously

reported,40 was used for comparison.
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IUGR was defined as an abdominal circumference < 5th percentile for gestational age60–61

with an umbilical artery PI > 95th percentile.59 Estimated fetal weight was not used to

determine the presence of IUGR. Fetal Doppler recordings were obtained from the umbilical

artery (free loop of cord), middle cerebral artery, and from the ductus venosus when

possible. Preeclampsia was defined as the presence of systolic blood pressure ≥ 140 mmHg

or diastolic blood pressure ≥ 90 mmHg, and proteinuria of 300 mg/24 hours or ≥ +2

(dipstick) on two occasions six hours apart. All women provided written informed consent

prior to undergoing sonographic examination. Participation was approved by the

Institutional Review Board of the National Institute of Child Health and Human

Development and by the Human Investigation Committee of Wayne State University.

Examination Technique

Ultrasound examinations were performed by eight experienced sonographers using systems

with STIC capability (Voluson 730 Expert, Voluson E8 Expert; GE Medical Systems,

Kretztechnik GmbH, Zipf, Austria) and utilizing a motorized curved array transabdominal

transducer (2–5 or 4–8 MHz). Tissue harmonic imaging was used for each examination, and

Compound Resolution Imaging (CRI) was used at the sonographer’s discretion. A transverse

view of the fetal chest at the level of the four-chamber view was obtained, from which STIC

datasets were acquired. The transducer was oriented such that the fetal spine was located

posteriorly for each acquisition. Acquisition time was 10 seconds with a sweep angle that

was sufficient to encompass the fetal cardiac structures (25 – 35 degrees). Color Doppler

sonography was not utilized during the acquisition process. Adequate cardiac datasets were

accepted for post-processing if acoustic shadowing (signal loss in the sound path secondary

to echogenic structures), dropout (signal loss in the sound path without intervening

structures), and motion artifact were absent. When multiple STIC datasets were available,

the dataset obtained closest to the time of delivery was selected for analysis.

Cardiac datasets were acquired to investigate the following fetal cardiovascular parameters:

1) ventricular volume (mL); 2) stroke volume (mL) (end-diastolic volume – end-systolic

volume); 3) cardiac output (mL/min) (stroke volume×fetal heart rate); and 4) ejection

fraction (%) (stroke volume/end-diastolic volume×100%). Fetal biometry of the biparietal

diameter (BPD), head circumference (HC), abdominal circumference (AC), and femoral

diaphysis length (FL) were obtained using 2D sonography at the time of cardiac dataset

acquisition. Cardiac output was expressed both as a function of estimated fetal weight,62 and

as a function of biometric parameters (HC, AC, FL).

Analysis was performed offline (4D View versions 5.0 – 7.0; GE Healthcare, Milwaukee,

WI) in a standardized manner. In the A plane of the multiplanar display, the fetal heart was

re-oriented such that the left ventricle was located on the left side of the screen with the apex

of the heart directed upwards. Next, the ventricular septum was rotated to 90 degrees in both

the A and C planes. The atrioventricular (AV) valves were located by scrolling from front to

back in the A plane. The image was optimized by selecting Chroma Color 1 (Sepia) with the

addition of speckle reduction (SRI 5). After image brightness and contrast settings were

optimized, end-systolic and end-diastolic phases were identified by scrolling through each
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frame, and locating the image preceding AV valve opening (systole) and following AV

valve closure (diastole).

Ventricular volumes were calculated in a semi-automated fashion utilizing VOCAL.

VOCAL II was selected and the Contour Finder: Trace option was utilized with 15 degrees

of rotation and a sensitivity of 1 (default = 5). The image was enlarged and the reference dot

repositioned into the ventricle of interest. Due to the complex geometry of the ventricles, the

location of the reference dot within the ventricle was selected to meet the software

requirement that the contour only cross the rotation line twice. With these selections, 12

rotational steps were made and a volume was computed. Datasets were accepted for analysis

if the ventricular septum, ventricular walls, and AV valves were visible throughout each

rotational step.

We previously reported the repeatability and reproducibility of ventricular volume

measurements utilizing this technique.58 Volume measurements were repeatable with good

agreement [coefficient of variation (CV) < 10%] and excellent reliability [intraclass

correlation (ICC) > 0.95] for both intraobserver and interobserver measurements.

Additionally, ventricular volumes were reproducible with negligible differences in

agreement (CV < 1%), good reliability (ICC > 0.9), and minimal bias (mean percent

difference −0.4%; 95% limits of agreement, −5.4% to 5.9%) when different STIC datasets

for the same patient were compared.58

Statistical Analysis

Data were first assessed using numerical and graphical techniques, including scatter plots of

each response vs. gestational age, to determine whether they met assumptions of the

statistical tests being used for analysis. All but two scatter plots revealed the presence of

curvilinear relationships and heteroscedasticity; hence, natural logarithmic transformations

(from the Box-Cox family of transformations) of each response and gestational age were

performed to linearize the data and correct for heteroscedasticity.

Analyses of covariance (ANCOVA) based on weighted regression were performed on the

transformed data (Table 2), with the weights computed according to the procedure described

by Altman.63–66 These weights are the best linear unbiased estimates (BLUE). Ejection

fraction for the right and left ventricles were both linear and homoscedastic; therefore,

analysis of covariance of two-factor interaction and main effects multiple regression models

were used iteratively to analyze this untransformed data. Residual analysis was performed

on all models as a diagnostic measure to assess the aptness of the models fit.

For bivariate analysis, the Shapiro-Wilk and Kolmogorov-Smirnov tests were used to test

for normal distribution. Student’s t-test was used to determine the differences of the mean

among groups, and Pearson’s correlation coefficient was utilized to assess correlations. For

nonparametric data, the Mann-Whitney U test and Wilcoxon signed-rank test were used to

determine the difference between parameter medians, and Spearman’s rank correlation

coefficient (rs) was utilized to assess correlations. A P-value <0.05 was considered

statistically significant for all comparisons. Statistical analyses were performed using SPSS
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package version 14 (SPSS Inc., Chicago IL), as well as The SAS System for Windows

version 9.2 (SAS Institute Inc., Cary, NC).

Results

Patient Population

Thirty-four women met the inclusion criteria; clinical and sonographic data are shown in

Table 1. Ventricular volume (end-systole, end-diastole), stroke volume (SV), cardiac output

(CO), adjusted CO, and ejection fraction (EF) were determined and compared to that of 184

normal fetuses (NL) previously reported by our group (each with normal umbilical artery PI

and abdominal circumference measurements).40

Sonographic evaluation was performed at a median gestational age of 28.3 (range: 20.6 –

36.9) weeks. Umbilical artery (UA) waveform analysis demonstrated the presence of end-

diastolic velocity in 74% (n=25), absence in 20% (n=7), and reversed in 6% (n=2). Since

cardiovascular parameters did not statistically differ between these 3 groups, they were

considered as a single group with an UA PI > 95th percentile (ABN). Doppler velocimetry of

the middle cerebral artery and ductus venosus was available for 100% (n=34) and 85%

(n=29) of women, respectively.

The median gestational age at delivery was 31.6 (range: 23.0 – 41.1) weeks, with 20% (n=7)

of cases delivering at term (≥ 37 weeks of gestation). The median interval between

acquisition of STIC datasets and delivery was 10 (range: 1 – 133) days. The median birth

weight was 1000 (range: 282 – 3750) grams. Of the 34 ABN cases, IUGR occurred in 71%

(n=24), preeclampsia in 53% (n=18), and perinatal death in 18% (n=6). Since no significant

differences were found between cardiovascular parameters in those with and without IUGR,

preeclampsia, or perinatal death, they were analyzed as a single group.

Ventricular volumes are lower in the presence of increased placental vascular impedance
to flow

After adjusting for gestational age, mean volumes for the left ventricle (mL) were lower in

end-systole (ABN: 0.12 vs. NL: 0.43; p < 0.0001) and end-diastole (ABN: 0.64 vs. NL:

1.28; p < 0.0001) (Figure 1 and Table 2). Similarly, after adjusting for gestational age, mean

volumes for the right ventricle (mL) were also lower in end-systole (ABN: 0.39 vs. NL:

0.65; p < 0.0001) and end-diastole (ABN: 1.09 vs. NL: 1.57; p < 0.0001) (Figure 1 and

Table 2). Moreover, there was a proportionately greater decrease [(1 – ABN/NL)×100%] in

left ventricular volume as compared to the right, in both end-systole (left: −72% vs. right:

−40%) and end-diastole (left: - 50% vs. right: −30%) (Table 2).

Right ventricular volumes are greater than the left in the presence of increased placental
vascular impedance to flow

Median right ventricular volumes (mL) were significantly greater than the left in end-systole

(ABN Right: 0.28 vs. ABN Left: 0.10; p < 0.001) and end-diastole (ABN Right: 0.75 vs.

ABN Left: 0.53; p < 0.001) (Table 3). When a ratio of right to left ventricular volume was

calculated, right ventricular volumes were greater in end-systole (median Right/Left: 3.2,
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IQR: 1.8 – 5.4) and end-diastole (median Right/Left: 1.5, IQR: 1.1 – 2.6), an effect which

was independent of gestational age (systole: rs = 0.15; p = NS; diastole: rs = 0.15; p = NS).

For the same median ratio of right to left ventricular volume, this was significantly different

between the ABN and NL groups in both end-diastole (ABN: 1.5, IQR: 1.1 – 2.6 vs. NL:

1.2, IQR: 0.9 – 1.7; p < 0.05) and end-systole (ABN: 3.2, IQR: 1.8 – 5.4 vs. NL: 1.6, IQR:

1.1 – 2.4; p < 0.05).

Stroke volume and cardiac output are lower in the presence of increased placental
vascular impedance to flow

Mean stroke volume (adjusted for gestational age) (mL) was lower for the left (ABN: 0.53

vs. NL: 0.86; p < 0.0001) and right ventricle (ABN: 0.71 vs. NL: 0.92; p < 0.0001) (Figure 2

and Table 2). Similarly, mean cardiac output (adjusted for gestational age) (mL/min) was

lower for the left (ABN: 71.9 vs. NL: 119.6; p < 0.0001) and right ventricle (ABN: 96 vs.

NL: 127.5; p < 0.0001) (Figure 2 and Table 2). Median fetal heart rate (bpm) was not

significantly different between the ABN and NL groups (ABN: 141, IQR: 131 – 145 vs. NL:

140, IQR: 134 – 147; p = 0.44).

Cardiac output adjusted for fetal size remains lower in the presence of increased placental
vascular impedance to flow

Fetal cardiac output was adjusted for estimated fetal weight (EFW),62 which was calculated

using biometric parameters (BPD, HC, AC, FL) obtained at the time of cardiac volume

acquisition. Adjustment for EFW (CO/EFW) demonstrated that neither the left nor the right

cardiac output (mL/min/kg) changed significantly as gestation advanced (Left CO/EFW

ABN: rs = 0.13, p = NS; Right CO/EFW ABN: rs = 0.22, p = NS).

For the left ventricle, the median CO adjusted for EFW (mL/min/kg) was significantly lower

in the presence of increased placental vascular impedance to flow (ABN: 67.8, IQR: 44.7 –

84.1 vs. NL: 90, IQR: 56 – 127.5; p < 0.05) (Figure 3). However, for the right ventricle, the

median CO adjusted for EFW (mL/min/kg) was not significantly different between ABN

and NL groups (ABN: 77.4, IQR: 66.1 – 123.8 vs. NL: 99.9, IQR: 72.2 – 126; p = NS)

(Figure 3).

Fetal cardiac output was also adjusted for fetal size, by dividing the CO (mL/min) by the

following biometric parameters: abdominal circumference [AC, cm; CO(AC)], head

circumference [HC, cm; CO(HC)], and femoral diaphysis length [FL, cm; CO(FL)]. In the

presence of increased placental vascular impedance to flow, values adjusted for gestational

age were significantly lower for the mean left CO(AC) (mL/min/cm) (ABN: 3.2 vs. NL: 4.8;

p = 0.0001), CO(HC) (mL/min/cm) (ABN: 2.8 vs. NL: 4.4; p < 0.0001), and CO(FL)

(mL/min/cm) (ABN: 14.2 vs. NL: 21.4; p = 0.0001) (Figure 4 and Table 2). Similarly,

values adjusted for gestational age were significantly lower for the mean right CO(AC)

(mL/min/cm) (ABN: 4.1 vs. NL: 5.1; p < 0.0001), CO(HC) (mL/min/cm) (ABN: 3.7 vs. NL:

4.7; p < 0.0001), and CO(FL) (mL/min/cm) (ABN: 18.4 vs. NL: 22.6; p < 0.0001) (Figure 4

and Table 2).
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Right ventricular stroke volume, cardiac output, and adjusted cardiac output are greater
than the left in the presence of increased placental vascular impedance to flow

Median right ventricular stroke volume (mL) was significantly greater than the left side

(ABN Right: 0.5 vs. ABN Left: 0.43; p < 0.05). Median right cardiac output (mL/min) was

also significantly greater than the left side (ABN Right: 65.9 vs. ABN Left: 61.1; p < 0.05)

(Table 3).

After cardiac output was adjusted for EFW and each of the three biometric parameters, the

median right ventricular cardiac output remained significantly greater than the left side: 1)

EFW (mL/min/kg) (ABN Right: 77.4 vs. ABN Left: 67.8; p < 0.05); 2) abdominal

circumference (mL/min/cm) (ABN Right: 3.11 vs. ABN Left: 3.06 ; p < 0.05); 3) head

circumference (mL/min/cm) (ABN Right: 2.63 vs. ABN Left: 2.69; p < 0.05); and 4)

femoral diaphysis length (mL/min/cm) (ABN Right: 14.0 vs. ABN Left: 13.3; p < 0.05)

(Table 3).

Ejection fraction is higher in the presence of increased placental vascular impedance to
flow, and is greater on the left side

Mean ejection fraction (adjusted for gestational age) (%) was significantly higher for the left

(ABN: 82.4 vs. NL: 70.4; p < 0.0001) and right ventricle (ABN: 66.0 vs. NL: 60.8; p <

0.0001) (Figure 5 and Table 2). Moreover, the median left ejection fraction (%) was

significantly greater than the right side (ABN Left: 83.7 vs. ABN Right: 64.7; p < 0.001)

(Table 3).

Comment

Principal findings of this study

In the presence of increased placental vascular impedance to flow: 1) fetal ventricular

volume (end-systole and end-diastole), stroke volume, and cardiac output are lower when

compared to normal fetuses; 2) right ventricular volume, stroke volume, and cardiac output

exceed those of the left side; 3) ejection fraction is higher when compared to normal fetuses;

and 4) left ejection fraction is greater than that of the right side.

The fetal cardiovascular response to increased placental vascular impedance to flow
determined using two-dimensional ultrasound

The heart is a central organ in the fetal adaptive mechanisms to placental insufficiency and

hypoxia (crispi). Thus, placental insufficiency with increased placental vascular resistance

may lead to fetal cardiovascular compromise,24 and even fetal metabolic acidosis and

death.25 Examining fetal cardiovascular parameters in this setting could provide insight into

the physiologic response to this condition. Fetuses with abnormal umbilical artery Doppler

velocimetry have been shown to have similar changes to those observed in adults with

atherosclerosis.28–33 Therefore, placental vascular disease28 (detected by umbilical artery

Doppler velocimetry) along with fetal cardiac dysfunction may have important

consequences in fetal programming of cardiac disease and the early-onset of disease.23
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Several investigators have used 2D sonography to examine cardiovascular parameters (such

as stroke volume and cardiac output) in fetuses with abnormal UA Doppler

velocimetry.69–74 The results suggests that left ventricular stroke volume and cardiac output

are decreased.72–73 Yet, for the right ventricle, some studies report an increased cardiac

output,727 while others report a decreased cardiac output.71,73 One potential confounder is

fetal size, which increases with gestational age.75 Yet, even when cardiac output is adjusted

by EFW, conflicting results have been reported. In the presence of abnormal UA Doppler

velocimetry, fetal cardiac output adjusted by EFW has been reported to be increased,72

decreased,69 and no different,73 when compared to that of control fetuses.

These discrepancies could be attributed to the limitations associated with using 2D methods

to calculate fetal cardiovascular parameters. Errors in the calculation of stroke volume and

cardiac output may arise from inaccurate measurement of vessel diameters and Doppler

recordings.36 Simpson and Cook determined the repeatability of fetal Doppler

echocardiographic measurements, and reported that intra- and inter-observer errors were

high for vessel dimension, stroke volume, and cardiac output.36 Indeed, for Doppler

measurements of the aorta (vessel diameter and velocity time integral), the coefficient of

variation was > 10% for the calculated stroke volume (16%) and cardiac output (16%).36

These limitations also apply to adults, in which 2D echocardiography lacks accuracy when

compared to the gold standards of magnetic resonance imaging or radionuclide

ventriculography for quantification of ejection fraction and volumes.76

However, assessing fetal cardiac function using four-dimensional sonography (STIC)

appears to overcome many of these pitfalls, since geometric assumptions are not made, and

angle-dependent Doppler measurements are not required. Moreover, the performance of

STIC is feasible, and examination times are reduced since acquisitions generally take no

more than 12.5 seconds to complete, making a change in the fetal status unlikely.77–83

We have previously described a repeatable and reproducible approach to quantify

ventricular volume calculations utilizing STIC,58 and then described cardiovascular

parameters in a normal fetal population.40 There is insufficient data about the fetal

cardiovascular response to increased placental vascular impedance to flow determined using

four-dimensional sonography. Therefore, we employed this technique to study a cohort of

fetuses with abnormal UA Doppler velocimetry.

The right side of the fetal heart is dominant in the setting of increased placental vascular
impedance to flow

Right ventricular volume, stroke volume, and cardiac output were significantly greater than

the left side in the presence of increased placental vascular impedance to flow. When a

median ratio of right to left ventricular volume was calculated, the ratio was greater in end-

diastole for ABN fetuses (1.5) when compared to the ratio (1.2) in normal fetuses, and was

also greater in end-systole for ABN fetuses (3.2) when compared to the ratio (1.6) in normal

fetuses.

Cardiac output was also adjusted by the EFW,62 and the right ventricular cardiac output

remained significantly greater than the left side. However, estimates of fetal weight can
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carry substantial variation,84 which could introduce errors in the calculations. A systematic

review of the literature evaluating sonographic estimation of fetal weight concluded that the

size of random errors remains a major obstacle, with 95% CIs exceeding 14% of birth

weight in all studies.85 Moreover, since a large proportion of our fetuses were affected with

IUGR (71%), this may have confounded the calculation of cardiac output. Therefore, in

order to minimize variability introduced into these calculations, cardiac output was also

expressed as a function of 3 fetal biometric parameters, each of which has a reliability

coefficient that approaches 1,86 and is measured directly without mathematical treatment or

modeling of the observed results. The right ventricular cardiac output remained significantly

greater than the left side after adjusting for HC, AC, and FL. In contrast, we previously

reported in a population of normal fetuses no significant differences in stroke volume,

cardiac output, or adjusted cardiac output (per estimated fetal weight and each of the 3

biometric parameters) between the right and left ventricles.40 It is noteworthy that the

changes in cardiac function were independent of the fetal heart rate, which did not differ

between the ABN and NL groups.

In contrast to the other cardiac parameters, the left ejection fraction was significantly greater

than the right side in the presence of increased placental vascular impedance to flow. Taken

together, these findings provide evidence that increased placental vascular impedance to

flow is associated with changes in fetal cardiac function.

Fetuses respond with increased cardiac inotropy in the setting of increased placental
vascular impedance to flow

In ABN fetuses, left and right ventricular volumes in end-systole and end-diastole were

lower when compared to a normal population. This effect was most pronounced for the left

ventricle, especially in end-systole. Moreover, ejection fraction was significantly higher in

both ventricles when compared to normal fetuses. These observations suggest that fetal

hearts pumping against increased placental vascular impedance to flow may compensate by

increasing ventricular inotropy, the hallmark of which is reduced end-systolic volume and an

increase in ejection fraction.87 In adults, the expected consequence of increased inotropy is

an increase in cardiac output;87 however, the findings reported herein demonstrate lower

stroke volume, cardiac output, and adjusted cardiac output.

Due to the discrepancy in the expected findings, evidence was sought in support of these

observations. This may be found when examining the neurohumoral pathways, including the

adrenergic nervous system, which is activated ex-utero in those with increased inotropy.88

There is empiric evidence in support of sympathetic activation in fetuses with growth

restriction; specifically, norepinephrine concentrations are increased in amniotic fluid,89–90

as well as blood samples obtained from cordocentesis.91–92 Moreover, the pulsatility index

of the UA has a significant correlation with norepinephrine concentrations in fetal blood.93

In growth restricted fetuses, M-mode echocardiography demonstrates significantly

hypertrophied right and left ventricular free walls with greater cardiac size (adjusted for

EFW) when compared to normal fetuses.94 The larger heart may result from an increase in

afterload, which subsequently affects wall thickness.94 Indeed, Gruenwald reported that on
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pathologic examination, heart weights were consistently and moderately elevated in growth

restricted fetuses, when compared to normally grown fetuses.95

Taken together, it is plausible that fetuses increase cardiac inotropy when there is increased

placental vascular impedance to flow. Moreover, the inotropic response appears to be

disproportionate between the left and right ventricles. Specifically, there is a proportionately

greater decrease in end-systolic volume for the left ventricle (−72%) compared to the right

(−40%), along with a greater increase in the left ejection fraction (17%) compared to the

right (10%). It is possible that the left ventricle is more receptive to inotropic stimulation as

an adaptive and protective mechanism to preserve the cerebral circulation. Indeed, animal

and human studies have demonstrated that in the presence of hypoxia, there is a

redistribution of blood flow with preferential perfusion of the brain (“brain-sparing”

effect).96–99

Diastolic dysfunction may be a component of the fetal cardiovascular response to
increased placental vascular impedance to flow

In ABN fetuses, fetal stroke volume and cardiac output were lower for both ventricles when

compared to normal fetuses. The left cardiac output adjusted for EFW was significantly

lower in ABN fetuses when compared to normal fetuses. However, there was no significant

difference in right cardiac output adjusted for EFW between these groups. Moreover,

cardiac output adjusted by AC, HC, and FL for both ventricles was significantly lower in

ABN fetuses when compared to normal fetuses. Collectively, the lower left ventricular

volume in end-systole along with the higher ejection fraction indicates increased inotropy,

while the lower cardiac output suggests that even with increased inotropy, for some fetuses

the left ventricle’s ability to compensate has been surpassed, suggesting that subclinical

cardiac failure may have occurred.

Crispi et al. studied cardiac function longitudinally in growth restricted fetuses with

abnormal UA Doppler velocimetry (pulsatility index > 2 SD).23 Three stages were defined

based upon the status of end-diastolic velocity (stage 1: present; stage 2: absent; stage 3:

reversed). In growth restricted fetuses, cardiac dysfunction (determined by modified

myocardial performance index100 and early-to-late diastolic filling ratios) was identified in

early stages, and increased progressively across stages. Therefore, the evidence suggests that

in growth restricted fetuses with abnormal UA Doppler velocimetry, subclinical cardiac

dysfunction is an early and progressive event across clinical stages of severity.23

In the adult, diastolic dysfunction has been recognized as a major cause of congestive heart

failure. The major determinants of ventricular filling are ventricular relaxation and effective

chamber compliance.101–102 In the normal fetus, cardiac compliance increases with

gestational age, and a reduction in ventricular stiffness has been reported.103 In contrast,

cardiac dysfunction in the growth-restricted fetus is characterized by increased peripheral

resistance and decreased diastolic compliance, in which the heart can be described as being

“stiff”.19 Indeed, Veille et al. reported that in growth-restricted fetuses, ventricles are not

dilated, most likely because the fetal myocardium is inherently stiff.94 Similarly, in our

group of ABN fetuses, cardiac failure may result partially from diastolic dysfunction, since

there were lower end-diastolic volumes in both ventricles. The suboptimal ability of the
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heart to dilate could be due to a pathologic remodeling of the fetal heart, similar to the

process present in adults with chronic hypertension.104 Alternatively, when there is

increased placental vascular impedance to flow, it is possible that diastolic dysfunction

occurs not through a pathologic mechanism, but due to the innate immaturity of the fetus.

Specifically, in the setting of increased inotropy, the fetus may not yet possess the ability to

actively relax the ventricles. Therefore, the expected increase in cardiovascular parameters

does not occur. Evidence for subclinical diastolic dysfunction in growth restricted fetuses

with abnormal UA Doppler velocimetry was reported by Crispi et al.23 In this population,

cord blood levels of B-type natriuretic peptide (BNP) increased in a stage-dependent manner

(based upon the status of umbilical artery end-diastolic velocity) compared with

appropriately grown fetuses. In adults, BNP is considered the “gold standard” biomarker for

heart failure, in which serum levels are elevated in early stages of subclinical diastolic

dysfunction, and increase in proportion to severity.105

Limitations

There are several limitations of the current study. First, there is no invasive data to serve as a

means of comparison to the calculation of fetal cardiovascular parameters. Due to the

cardiovascular changes that occur shortly after delivery, neonatal data is not suitable to serve

as a reference.106 Second, it is noteworthy that STIC produces a single, computer-generated

cardiac cycle, which is an assemblage of between 20 and 30 real cardiac cycles, and a

smoothing or averaging of the ventricular borders could occur, introducing error into the

calculations.77 We have previously demonstrated that using STIC and VOCAL is both

repeatable and reproducible for calculating fetal ventricular volumes.58 Moreover, the

validity of STIC has been addressed using balloon models. Bhat et al. investigated volumes

ranging between 2.5 and 10 mL,107 and Uittenbogaard et al. examined volumes ranging

between 0.30 and 4.95 mL.108 Both groups concluded that STIC was acceptably accurate

over these volume ranges. However, in the current study, there were volume calculations of

less than 0.30 mL. Therefore, it remains unclear whether STIC compilation affects volume

calculation because the absolute error of STIC was not described in volumes less than 0.30

mL. Third, there were no differences in fetal cardiovascular parameters when UA Doppler

was stratified by type of end-diastolic velocity (present, absent, reversed). However, the

number of cases with absent (n=7) or reversed (n=2) end-diastolic velocity was small,

introducing the possibility of a type II error. Fourth, although the acquisition time of a STIC

volume is 12.5 seconds at most, there is a significant learning curve and time commitment

required to orient and analyze the data. Finally, the cross-sectional design of our study did

not permit an evaluation of longitudinal changes in fetal cardiac function in response to

increased placental vascular impedance to flow; thus, the results reported herein should be

interpreted within this context. Future longitudinal studies are required to describe the

natural history of cardiac function in these fetuses, and its relationship to fetal and neonatal

outcome.

Conclusions

The findings of this study suggest that increased placental vascular impedance to flow is

associated with changes in fetal cardiac function. Ventricular volume (especially the left

ventricle in end-systole), stroke volume, and cardiac output are lower when compared to
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those of normal fetuses, and the right ventricle is dominant. Moreover, ejection fraction is

higher when compared to normal fetuses, and the left ejection fraction is greater than the

right. Taken together, the findings of lower left ventricular volume in end-systole and

greater ejection fraction indicate increased inotropy. Yet, the lower cardiac output suggests

that even with increased inotropy, in some fetuses the left ventricle’s ability to compensate

has been surpassed, suggesting that subclinical cardiac failure may have occurred. Diastolic

dysfunction may be a component of the fetal cardiovascular response to increased placental

vascular impedance to flow.
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Figure 1. Ventricular volume in end-systole and end-diastole as a function of gestational age in
the presence of increased placental vascular impedance to flow
Ventricular volume calculations in fetuses with an umbilical artery pulsatility index > 95th

percentile (ABN) were compared to 184 normal fetuses (NL)40 (A: left ventricle in end-

systole; B: right ventricle in end-systole; C: left ventricle in end-diastole; D: right ventricle

in end-diastole). For the left ventricle, mean volumes (adjusted for gestational age) (mL)

were lower in both end-systole (ABN: 0.12 vs. NL: 0.43; p < 0.0001) and end-diastole

(ABN: 0.64 vs. NL: 1.28; p < 0.0001). For the right ventricle, mean volumes (adjusted for

Hamill et al. Page 19

Am J Obstet Gynecol. Author manuscript; available in PMC 2014 June 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



gestational age) (mL) were also lower in both end-systole (ABN: 0.39 vs. NL: 0.65; p <

0.0001) and end-diastole (ABN: 1.09 vs. NL: 1.57; p < 0.0001)
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Figure 2. Stroke volume and cardiac output as a function of gestational age in the presence of
increased placental vascular impedance to flow
Stroke volume (SV) and cardiac output (CO) calculations in fetuses with an umbilical artery

pulsatility index > 95th percentile (ABN) were compared to 184 normal fetuses (NL)40 (A:

left ventricular SV; B: right ventricular SV; C: left ventricular CO; D: right ventricular CO).

Mean SV (adjusted for gestational age) (mL) was lower for both the left ventricle (ABN:

0.53 vs. NL: 0.86; p < 0.0001) and right ventricle (ABN: 0.71 vs. NL: 0.92 ; p < 0.0001).

Similarly, mean cardiac output (adjusted for gestational age) (mL/min) was lower for both
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the left ventricle (ABN: 71.9 vs. NL: 119.6; p < 0.0001) and right ventricle (ABN: 96.0 vs.

NL: 127.5; p < 0.0001)
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Figure 3. Cardiac output adjusted by estimated fetal weight of the left and right ventricles in the
presence of increased placental vascular impedance to flow
Cardiac output adjusted for estimated fetal weight (EFW) in fetuses with an umbilical artery

(UA) pulsatility index > 95th percentile (ABN) were compared to 184 normal fetuses

(NL).40 For the left ventricle, the median CO adjusted for EFW (mL/min/kg) was

significantly lower in the presence of increased placental vascular impedance to flow (ABN:

67.8, IQR: 44.7 – 84.1 vs. NL: 90.0, IQR: 56.0 – 127.5; p < 0.05). However, for the right

ventricle, the median CO adjusted for EFW (mL/min/kg) was not significantly different

between ABN and NL groups (ABN: 77.4, IQR: 66.1 – 123.8 vs. NL: 99.9, IQR: 72.2 –

126.0; p = NS).
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Figure 4. Cardiac output adjusted by fetal biometric parameters as a function of gestational age
in the presence of increased placental vascular impedance to flow
Cardiac output (CO) obtained for left (A, C, E) and right (B, D, F) ventricles, divided by

fetal biometric parameters: abdominal circumference [AC, cm; CO(AC)], head

circumference [HC, cm; CO(HC)], and femoral diaphysis length [FL, cm; CO(FL)] in

fetuses with an umbilical artery pulsatility index > 95th percentile (ABN) were compared to

184 normal fetuses (NL).40 In the presence of increased placental vascular impedance to

flow, values were significantly lower for the mean left CO(AC) (adjusted for gestational

age) (mL/min/cm) (ABN: 3.2 vs. NL: 4.8; p = 0.0001), CO(HC) (adjusted for gestational
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age) (mL/min/cm) (ABN: 2.8 vs. NL: 4.4; p< 0.0001), and CO(FL) (adjusted for gestational

age) (mL/min/cm) (ABN: 14.2 vs. NL: 21.4; p = 0.0001). Similarly, values were

significantly lower for the mean right CO(AC) (adjusted for gestational age) (mL/min/cm)

(ABN: 4.1 vs. NL: 5.1; p < 0.0001), CO(HC) (adjusted for gestational age) (mL/min/cm)

(ABN: 3.7 vs. NL: 4.7; p < 0.0001), and CO(FL) (adjusted for gestational age) (mL/min/cm)

(ABN: 18.4 vs. NL: 22.6; p < 0.0001).

Hamill et al. Page 25

Am J Obstet Gynecol. Author manuscript; available in PMC 2014 June 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. Ejection fraction as a function of gestational age in the presence of increased placental
vascular impedance to flow
Ejection fraction (EF) in fetuses with an umbilical artery pulsatility index > 95th percentile

(ABN) were compared to 184 normal fetuses (NL)40 (A: left ventricular EF; B: right

ventricular EF). Mean ejection fraction (adjusted for gestational age) (%) was significantly

higher for both the left ventricle (ABN: 82.4 vs. NL: 70.4; p < 0.0001) and right ventricle

(ABN: 66.0 vs. NL: 60.8; p < 0.0001).
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Table 1

Clinical and sonographic characteristics of the study population (n = 34)

Parameter Value

Clinical characteristics

  Gestational age at delivery (weeks) 31.6 (23.0 – 41.1)

  Interval between acquisition of STIC datasets and delivery (days) 10 (1 – 133)

  Birth weight (grams) 1000 (282 – 3750)

  Term deliveries (≥ 37 weeks of gestation) 20% (7/34)

  Preeclampsia 53% (18/34)

  Perinatal death 18% (6/34)

Sonographic characteristics

  Gestational age at evaluation (weeks) 28.3 (20.6 – 36.9)

  IUGR present 71% (24/34)

  aSymmetrical IUGR 54% (13/24)

  bAsymmetrical IUGR 46% (11/24)

  HC < 10th percentile 50% (17/34)

  Amniotic fluid index (mm) 67 (17 – 178)

  UA end-diastolic velocity present 74% (25/34)

  UA AEDV 20% (7/34)

  UA REDV 6% (2/34)

  MCA PI 1.7 (0.74 – 2.59)

  cDV PIV 0.65 (0.24 – 3.06)

  cDV (Reversed or absent a-wave) 7% (2/29)

AEDV, absent end-diastolic velocity; DV, ductus venosus; HC, head circumference;67 IUGR, intrauterine growth restriction (defined as

abdominal circumference < 5th percentile for gestational age); MCA, middle cerebral artery; PI, pulsatility index; PIV, pulsatility index for veins;
REDV, reversed end-diastolic velocity; STIC, spatiotemporal image correlation; UA, umbilical artery.

a
HC/AC < 95th percentile for gestational age68

b
HC/AC > 95th percentile for gestational age68

c
DV Doppler velocimetry results available in 29 cases

Data given as median (range) or %.
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Table 2

Comparison of cardiovascular parameters between fetuses with an umbilical artery pulsatility index > 95th

percentile (ABN) and normal controls (NL)

Cardiovascular parametera NL (95% CI)b ABN (95% CI)c Proportion
Changed

Ventricular volume in end-systole (mL)

  Left 0.43 (0.4 – 0.5) 0.12 (0.02 – 0.2) −72%

  Right 0.65 (0.6 – 0.7) 0.39 (0.3 – 0.5) −40%

Ventricular volume in end-diastole (mL)

  Left 1.28 (1.2 – 1.4) 0.64 (0.4 – 0.9) −50%

  Right 1.57 (1.5 – 1.7) 1.09 (0.8 – 1.3) −30%

Stroke volume (mL)

  Left 0.86 (0.79 – 0.93) 0.53 (0.37 – 0.68)e −38%

  Right 0.92 (0.85 – 0.99) 0.71 (0.55 – 0.86)e −23%

Cardiac output (mL/min)

  Left 119.6 (110 – 129) 71.9 (50 – 94)e −40%

  Right 127.5 (118 – 137) 96 (74 – 118)e −25%

Cardiac output divided by HC (mL/min/cm)

  Left 4.4 (4.1 – 4.8) 2.8 (2.0 – 3.6)e −36%

  Right 4.7 (4.4 – 5.0) 3.7 (2.9 – 4.4)e −21%

Cardiac output divided by AC (mL/min/cm)

  Left 4.8 (4.5 – 5.2) 3.2 (2.4 – 4.0)e −33%

  Right 5.1 (4.8 – 5.5) 4.1 (3.3 – 4.9)e −20%

Cardiac output divided by FL (mL/min/cm)

  Left 21.4 (19.8 – 23.0) 14.2 (10.5 – 18.0)e −34%

  Right 22.6 (21.1 – 24.2) 18.4 (14.7 – 22.1)e −19%

Ejection fraction (%)

  Left 70.4 (69 – 72) 82.4 (79 – 86)e 17%

  Right 60.8 (59 – 63) 66 (62 – 70)e 9%

ABN, abnormal; AC, abdominal circumference; CI, confidence interval; FL, femoral diaphysis length; HC, head circumference; NL, normal

a
Mean values adjusted for gestational age

b
Data from Hamill N et al.40

c
NL vs. ABN; p < 0.0001 (main effects ANCOVA)

d
Proportion change calculated as [(1 – ABN/NL) × 100%]

e
ABN right ventricle vs. ABN left ventricle for median stroke volume, cardiac output, cardiac output divided by HC, AC, FL, and ejection fraction;

p < 0.05 for all, except p < 0.001 for ejection fraction (paired test)
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Table 3

Comparison of fetal cardiovascular parameters between the left and right ventricles for fetuses with an

umbilical artery pulsatility index > 95th percentile

Cardiovascular parameter Left Ventricle Right Ventricle P value

Volume in end-systole (mL) 0.10 (0.03 – 0.17) 0.28 (0.16 – 0.55) < 0.001

Volume in end-diastole (mL) 0.53 (0.29 – 0.91) 0.75 (0.5 – 1.52) < 0.001

Stroke volume (mL) 0.43 (0.26 – 0.78) 0.5 (0.31 – 0.92) < 0.05

Cardiac output (mL/min) 61.1 (34.9 – 104.9) 65.9 (45.3 – 127) < 0.05

Cardiac output adjusted by EFW (mL/min/kg) 67.8 (44.7 – 84.1) 77.4 (66.1 – 123.8) < 0.05

Cardiac Output adjusted by AC (mL/min/cm) 3.06 (1.82 – 4.3) 3.11 (2.36 – 5.39) < 0.05

Cardiac Output adjusted by HC (mL/min/cm) 2.69 (1.48 – 3.91) 2.63 (1.94 – 5.06) < 0.05

Cardiac Output adjusted by FL (mL/min/cm) 13.3 (7.5 – 18.7) 14.0 (10.1 – 24.0) < 0.05

Ejection fraction (%) 83.7 (77.4 – 87.9) 64.7 (58.1 – 76) < 0.001

Data given as group-level median (interquartile range); non-parametric comparisons were performed; median right to left ratios presented in the
text were determined using ratios calculated within each fetus to account for the paired nature of these measures, and thus, are not consistent with
the right to left ratios of the group level measures presented in this table.
AC, abdominal circumference; EFW, estimated fetal weight; HC, head circumference; FL, femoral diaphysis length
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