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Abstract: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized primarily

by increased proliferation and resistance to apoptosis in distal pulmonary arteries. Previous literature has

demonstrated that the transcription factors NFAT (nuclear factor of activated T cells) and HIF-1α (hypoxia

inducible factor 1α) are extensively involved in the pathogenesis of this disease and, more recently, has

implicated STAT3 (signal transducer and activator of transcription 3) in their activation. Novel research

shows that miR-204, a microRNA recently found to be notably downregulated through induction of PARP-1

(poly [ADP-ribose] polymerase 1) by excessive DNA damage in PAH, inhibits activation of STAT3. Contem-

porary research also indicates systemic impairment of skeletal muscle microcirculation in PAH and attrib-

utes this to a debilitated vascular endothelial growth factor pathway resulting from reduced miR-126

expression in endothelial cells. In this review, we focus on recent research implicating miR-204 and miR-

126 in vascular remodeling processes, data that allow a better understanding of PAH molecular pathways

and constitute a new hope for future therapy.
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Pulmonary arterial hypertension (PAH) is a severe disor-

der clinically defined by mean pulmonary arterial pres-

sure of at least 25 mmHg at rest.1 PAH patients display

multiple symptoms that are not specific to PAH, includ-

ing dyspnea, dizziness, and exercise intolerance. Mean

age at diagnosis is around 45 years, although onset of

symptoms can occur at any age.2 Epidemiologically, it is

estimated that between 20 and 50 persons per million

suffer from this disease.3 Physiologically, PAH is a vascu-

lar remodeling disease of various degrees that affects the

adventitia, media, and intima of distal pulmonary arter-

ies, leading to decreased lung perfusion and sustained el-

evation of pulmonary vascular resistance.4 In response to

this resistance, patients develop progressive compensa-

tory right ventricular hypertrophy, which rapidly becomes

insufficient and leads to dilatation and failure.5,6 Histo-

logically, PAH is associated with enhanced inflammation,

proliferation, and resistance to apoptosis of pulmonary

artery smooth muscle cells (PASMCs).7

Despite progress in treatment, medication remains

limited and noncurative, and therefore PAH patients typ-

ically have poor prognoses (mortality rate of more than

10% after the first year of therapy)8 and quality of life

remains severely affected. The pathological mechanisms

of PAH establishment need to be better understood and

further studied because of their complexities and thera-

peutic interest. Indeed, knowledge regarding the molecu-

lar actors implicated in these impairments increases with

each publication, revealing a complex process that re-

mains far from being completely understood.

In the past few years, literature has consistently im-

plicated the role of microRNAs (miRNAs) in PAH. Briefly,

miRNAs are single-stranded, evolutionarily conserved,

small, noncoding RNAs that are transcribed but not trans-

lated.9 The miRNA genes produce primary miRNA tran-

scripts that contain at least one ≈70-nucleotide hairpin

loop. These transcripts are transported into the cytoplasm

by exportin 5, where they are cleaved by the endonuclease
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Dicer into an imperfect duplex of 21–23 nucleotides.10

One strand of the duplex is degraded and the other, ma-

ture miRNA binds to Dicer and forms a complex with ar-

gonaute proteins to form an RNA-induced silencing com-

plex. The miRNAs allow posttranscriptional regulation of

gene expression by binding to a target messenger RNA’s

3′-UTR (untranslated region), thereby repressing transla-

tion and/or degrading the messenger RNA.11,12

Recently, miRNAs have been widely implicated in both

healthy and pathological processes of vascular remodel-

ing, such as wound healing,13 development of pulmonary

vessels, and tumor angiogenesis,14 and in the proliferation-

apoptosis imbalance15 of cancer. Interestingly, alteration

of miRNA expression has been widely found and recog-

nized by the scientific community as a critical actor in

PAH establishment. In this review, we focus on the tight

link between certain miRNAs and vascular remodeling in

PAH.

MOLECULAR CONTRIBUTION OF PASMCs

TO PAH PHENOTYPE

Signal transducer and activator of transcription 3 (STAT3)

affects multiple downstream processes that encourage

PAH pathogenesis through promoting excess cellular pro-

liferation and resistance to apoptosis, and indeed it is

found in greater quantity in the PASMCs of PAH patients

than in healthy PASMCs (Fig. 1).16 STAT3 is a broad

transcription factor, targeted by the nonreceptor tyrosine

kinase family member Src,17 which has been shown to

play multiple roles in the pathogenesis of cancer18 and

several cardiovascular diseases.19 STAT family members

are activated through phosphorylation, allowing transloca-

tion to the nucleus for transcription regulation activity,

induced by cytokines (e.g., interleukin-6),20 growth factors

(e.g., platelet-derived growth factor), and agonists (e.g.,

angiotensin II and endothelin-1).21 An example of the

pathogenic potential of STAT3 is survivin, an inhibitor of

apoptosis that has elevated levels in both cancer22 and

PAH23 and was recently found to be a downstream tar-

get of STAT3 through activation of the transcription fac-

tor Krüppel-like factor 5.24 STAT3 also suppresses ex-

pression of bone morphogenetic protein receptor type II

(BMPR2),25,26 a receptor that mediates apoptosis and sup-

presses Src activation27 and in which a mutation causing

dysfunction is a hallmark of heritable PAH.28 Previous

studies have found that STAT3 interacts with the promot-

ers of NFAT (nuclear factor of activated T cells) and the

provirus integration site for Moloney murine leukemia

virus, which in addition to having its own pro-proliferative

and antiapoptotic effects, aids in activation of NFATc2;16

thus, in this manner STAT3 induces directly the expres-

sion of NFAT and indirectly the activation of NFAT.

Several studies have demonstrated that NFATc2 con-

tributes to the proliferation-apoptosis imbalance that char-

acterizes PAH by affecting both sides of the balance.29-31

NFATc2 has been found to increase B-cell lymphoma 2

expression and colocalization to the mitochondria, lead-

ing to mitochondrial hyperpolarization (which prevents

release of proapoptotic mediators) and thus enhancing re-

sistance to apoptosis.29,30,32 In addition, through down-

regulation of K+ channels, especially Kv1.5, NFATc2 (cyto-

plasmic 2) increases intracellular [K+] ([K+]i) by limiting K+

efflux, thereby inhibiting caspase-mediated apoptosis.29,30,33

On the other side of the balance, Kv1.5 downregulation

promotes cell depolarization, causing an influx of Ca2+,

which in turn encourages proliferation and vasoconstric-

tion.34 This increase of intracellular Ca2+ ([Ca2+]i) also has

a positive feedback effect on NFAT itself by activating cal-

cineurin, which dephosphorylates NFAT, allowing trans-

location to the nucleus for transcription regulation.35 This

K+ channel inhibition is not solely dependent on NFAT

but rather is a common theme in many aspects of PAH

pathogenesis.

It has been demonstrated that active STAT3 is required

for hypoxia inducible factor 1α (HIF-1α) expression.36 HIF-

1α is activated by a low–reactive oxygen species (ROS) envi-

ronment and has been shown, alone and in conjunction

with STAT3, to induce high levels of vascular endothelial

growth factor (VEGF) expression, thereby promoting prolif-

eration.37 HIF-1α activation has also been shown to result

in downregulation of Kv1.538 and thus shares downstream

effects with NFAT, including increased [Ca+]i promoting

vasoconstriction and proliferation and [K+]i impeding apo-

ptosis.38 HIF-1α activation directs cell metabolism toward

a glycolysis mechanism through increased expression of

glycolysis initiators such as hexokinase-2 (HXK2)39,40 and

pyruvate dehydrogenase kinase (PDK).41 Recently, HXK2

translocation, promoted by HIF-1α, was shown to cause

mitochondrial membrane hyperpolarization and therefore

resistance to apoptosis.42 PDK is an inhibitor of pyruvate

dehydrogenase and thus inhibits the influx of pyruvate

into the mitochondria. This shifts the cell toward glycoly-

sis by decreasing the action of Krebs’s cycle, which causes

mitochondrial hyperpolarization and reduced production

of ROSs, both of which obstruct release of proapoptotic

mediators from the mitochondrial transition pore, an ef-

flux channel.43 In fact, inhibition of PDK by dichloroac-

etate has been shown to reverse the PAH phenotype in

an accepted animal model.44 Decreased ROS levels also

inhibit Kv1.5 channel function,45 leading to proliferation
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and resistance to apoptosis through mechanisms described

above, and in addition, they further activate HIF-1α, pro-
ducing a positive feedback mechanism on HIF-1α.38

miR-204 PLAYED A KEY ROLE IN THE

PAH-PASMC PHENOTYPE

As described above, activation of Src-STAT3 is a criti-

cal player in aberrant NFAT, BMPR2, and HIF-1α ex-

pression leading to the PAH-PASMC pro-proliferative

and antiapoptotic phenotype. The next step was to deter-

mine how STAT3 was regulated. Interestingly, an increas-

ing number of studies and data have strongly implicated

miRNA in proliferation-apoptosis process regulation. To

determine whether miRNAs are aberrantly expressed in

human PAH-PASMC, TaqMan low-density arrays were

performed. Seven miRNAs were aberrantly expressed; 6 of

these were upregulated (miR-450a, 145, 302b, 27b, 367,

and 138), some strongly implicated in PAH etiology,46,47

whereas only one, miR-204, was downregulated in PAH

patients, as compared to controls.

Courboulin et al.48 showed that miR-204 expression is

mainly confined to PASMCs in the lung. Furthermore,

Figure 1. Molecular contribution of pulmonary artery smooth muscle cells (PASMC) to pulmonary arterial hypertension (PAH)
phenotype (HIF-1α, NFAT, STAT3): cross links between the major molecular actors implicated in establishment of the PAH-PASMC
phenotype. PDGF: platelet-derived growth factor; ET-1: endothelin-1; IL-6: interleukin-6; NFAT: nuclear factor of activated T cells;
STAT3: signal transducer and activator of transcription 3; HIF-1α: hypoxia inducible factor 1α; Pim-1: provirus integration site for
Moloney murine leukemia virus; KLF5: Krüppel-like factor 5; Bad: Bcl-2-associated death promoter; BMPR2: bone morphogenetic
protein receptor type II; Bcl-2: B-cell lymphoma 2; HXK2: hexokinase-2; ROS: reactive oxygen species; PDK: pyruvate dehydrogenase
kinase; [K+]i: intracellular [K+]; [Ca2+]i: intracellular [Ca2+]; PPAR: peroxisome proliferator-activated receptor; PDH: pyruvate dehy-
drogenase. Blue arrows indicate activation and red arrows repression.
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miR-204 expression was decreased in PAH human lung

and correlated with PAH severity. Intriguingly, miR-204

has been found to be downregulated in several types of

tumors, and it has been proposed that downregulation

could contribute to tumor growth.14 Interestingly, miR-

204 has already been shown to be decreased in plexiform

vasculopathy of severe PAH in humans,49 predicted to be

a disease-modifying miRNA in PAH,50 and established

as a critical actor in a hypoxia-induced pulmonary hyper-

tension mouse model.51 Abated miR-204 levels were also

associated with decreased apoptosis, enhanced cell pro-

liferation,52 and membrane depolarization,53,54 the most

common alterations observed in PAH-PASMC. In addi-

tion, it has been shown that this pro-proliferative pheno-

type is associated with activation of the Src-STAT3 and

NFAT pathway (Fig. 2),16 suggesting a putative link be-

tween miR-204 downregulation, NFAT activation, and cell

proliferation. Moreover, Courboulin et al.48 showed that

STAT3 activation (p-STAT3) was increased upon miR-204

downregulation, despite the finding that neither NFAT

nor Src-STAT3 were predicted direct targets of miR-204.

However, Joshi et al.55 documented that miR-204 reg-

ulates SHP2 by directly targeting its 3′-UTR, which, by

activating Src, increases STAT3 activation. Furthermore,

this signaling model has been confirmed by an in vitro

approach: by increasing the miR-204 amount in PAH-

PASMC, Courboulin et al.48 were able to reverse the pro-

proliferative and antiapoptotic phenotype of diseased cells.

As described above, PASMCs of PAH patients are also

characterized by abnormal activation of HIF-1α.38 Inter-

estingly, our laboratory confirmed previous findings in

the literature regarding the implication of Runt-related

transcription factor 2 (RUNX2) in normoxic HIF-1α ac-

tivation.56-58 Indeed, we demonstrated that in vitro up-

regulation of RUNX2 results in HIF-1α activation while

its downregulation results in HIF-1α inhibition in hu-

man PASMCs.59 Interestingly, it was shown that RUNX2

is one of the most conserved predicted targets of miR-

20460 and is regulated by this miRNA in systemic vascu-

lar disease.61 As expected, we documented that in vitro

downregulation of miR-204 in healthy PASMCs results in

RUNX2 and HIF-1α activation, while miR-204 upregula-

tion in PAH-PASMC results in decreased RUNX2 and

HIF-1α activation.56,59 These effects are associated with

decreases in both PASMC proliferation and apoptosis re-

sistance in PAH.

Interestingly, we showed that miR-204 was decreased

in the PASMCs of in vivo monocrotaline (MCT)-induced

and Sugen hypoxia-induced PAH rat models.30,62 Fur-

thermore, we observed that in vivo rescue of miR-204,

Figure 2. Key role played by miR-204 in pulmonary arterial hypertension pulmonary artery smooth muscle cell phenotype:
proposed model of DNA damage leading to miR-204 reduction implicated in STAT3, NFAT, and HIF-1α upregulation. PARP-1:
poly (ADP-ribose) polymerase 1; miR: microRNA; STAT3: signal transducer and activator of transcription 3; RUNX2: Runt-related
transcription factor 2; HIF-1α: hypoxia inducible factor 1α; NFATC2: nuclear factor of activated T cells, cytoplasmic 2. Blue arrows
indicate activation and red arrows repression.
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using mimic-204 nebulization, reversed MCT- and Sugen

hypoxia-induced PAH63 in the same model. Remarkably,

we confirmed our previous in vitro observations. First, an-

imal treatment significantly decreased proliferation and re-

sistance to apoptosis and reduced vascular remodeling in

PASMCs of distal pulmonary arteries. Second, rats treated

with synthetic miR-204 displayed significant decreases in

SHP2, P-STAT3, and NFATc248 activation and addition-

ally displayed inhibition of RUNX2/HIF-1α.56,59 As usual,
animal models that did not fully reproduce the pathologic

modifications of pulmonary vessels found in the various

forms of human PAH limited these findings. The same-

ness of the observations in the Sugen and MCT models

strongly confirmed and validated our results.

DNA DAMAGE AND miR-204

It is widely established that inflammation and oxidative

stress, which are PAH hallmarks, lead to DNA dam-

age.64,65 In the past few years, literature has described

DNA damage in the lungs of PAH patients and the MCT

rat model,66,67 and recently, numerous groups have fo-

cused their attention on this area of research.68,69 We

have shown that DNA damage is increased in distal pul-

monary arteries and in PASMCs of PAH patients.59,70,71

Interestingly, extremeDNA damage in healthy cells is clas-

sically associated with increased apoptosis;72 however, as

described above, PAH cells display strong apoptosis re-

sistance. This apparent paradox could be explained by

increased activity and efficiency of cellular DNA repair

machinery in PAH cells. In accordance with this hypoth-

esis, we showed that protein expression of PARP-1 (poly

[ADP-ribose] polymerase 1), an important actor in single-

strand DNA repair, is increased in PAH-PASMC. PARP-

1 also regulates cell survival, cell death, and gene expres-

sion implicated in neoplasic processes. PARP-1 upreg-

ulation could therefore explain why decreased apoptosis

is observed in PAH-PASMC despite substantial DNA dam-

age.59,70,71

We have also shown that in vitro PARP-1 inhibition

using the chemical inhibitor ABT-888 in PAH-PASMC in-

creases miR-204 expression and thereby decreases NFAT

andHIF-1α activation (Fig. 2). Interestingly, these data sug-

gest that activation of DNA repair mechanisms through

PARP-1 is strongly implicated in the decreased miR-204

expression observed in PAH-PASMC. Furthermore, our

laboratory documented, by in vivo experimentation, that

inhibition of PARP-1 improves PAH prognoses in MCT-

and Sugen hypoxia-induced PAH rat models.59

Expression of miR-204 has been widely recognized has

a key actor in vascular remodeling in PAH distal pulmo-

nary arteries, particularly through PASMC NFAT and

HIF-1α activation. Meloche et al.73 suggest that DNA dam-

age and abnormal activation of PARP-1 are the first play-

ers in STAT3/NFAT/HIF-1α-induced PAH distal pulmo-

nary artery vascular remodeling.

SYSTEMIC ANGIOGENIC IMPAIRMENT IN PAH

Historically, vascular remodeling was documented only in

distal pulmonary arteries of PAH patients, suggesting

that PAH has effects on the lungs and surrounding vascu-

lature exclusively. However, increasing data in the litera-

ture describe peripheral vascular damage in PAH, sug-

gesting a more systemic impairment in this disease.74,75

Potus et al.76 showed a decrease of capillary density in pe-

ripheral skeletal muscles of PAH patients, suggesting a

peripheral angiogenesis defect in PAH. Furthermore, they

identified the molecular pathway implicated and showed

the major role of microRNA in this pathological process.

Indeed, in PAH skeletal muscle they showed a decrease of

miR-126, which is, through its target SPRED-1 (Sprouty-

related, EVH1 domain-containing protein 1), one of the

major regulators of the VEGF/ERK (extracellular-signal-

regulated kinase) pathway (Fig. 3). Furthermore, it was dem-

onstrated that decreased miR-126 expression and capillary

density strongly correlate with the reduced exercise toler-

ance observed in PAH, suggesting association between sys-

temic angiogenic impairment and the major symptom of

PAH patients.

Figure 3. Pulmonary arterial hypertension (PAH) pathology on
systemic angiogenesis. Microcirculation impairment in periph-
eral skeletal muscle and the right ventricle is associated with
miR-126 expression downregulation and SPRED-1 upregula-
tion. VEGF: vascular endothelial growth factor; miR: microRNA;
VEGFR-2: vascular endothelial growth factor receptor 2; P-RAF:
phosphorylated RAF; SPRED-1: Sprouty-related, EVH1 domain–
containing protein 1; P-ERK: phosphorylated extracellular signal-
regulated kinase. Blue arrows indicate activation and red arrows
expression.
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Interestingly, Potus et al.77 also observed a vascular de-

fect in the free wall of the PAH human right ventricle

(RV). In addition, they showed reduced miR-126 expres-

sion and increased target protein SPRED-1 expression in

the PAH decompensated RV. Reciprocally, they discovered

increased microvessel density and miR-126 expression, as

well as decreased SPRED-1 protein expression, in compen-

sated RV. On the basis of these data, they proposed that

specific miR-126 downregulation and SPRED-1 upregula-

tion will decrease angiogenesis,78,79 reducing O2 and nutri-

ent RV supply and leading to transition from compensated

to decompensated RV.

These findings show that similar defects of the VEGF/

ERK pathway may lead to angiogenic deficiency in pe-

ripheral skeletal muscles and the RV free wall of PAH

patients. Potus et al. confirmed, by an in vitro approach on

human RV77 and peripheral skeletal muscle (quadriceps)76

endothelial cells, that angiogenic capacity of PAH cells

is decreased compared to that in healthy endothelial cells.

Furthermore, artificial increase of miR-126 using mimic-

126 restored the angiogenic ability of PAH endothelium to

similar levels of healthy cells in both quadriceps and RV

endothelial cells (Fig. 3). These observations provide new

insight on PAH and strongly indicate that systemic vascu-

lar impairment is implicated in the etiology and establish-

ment of major symptoms of PAH, such as exercise intol-

erance and RV decompensation. Moreover, they suggest

a systemic angiogenic defect signature in PAH through

miR-126/VEGF/ERK pathway impairment, which could

be reversed by miR-126 expression modulation.

THERAPEUTIC PROMISE AND IMPLICATIONS

OF miRNA

Numerous studies have increased our knowledge of the

molecular, cellular, and physiologic bases of PAH in order

to reach a better understanding of PAH etiology. Research

in the past few years has shown that aberrantly expressed

miRNA is implicated in most, if not all, PAH pathological

processes, causing regulation defects.80 This review has fo-

cused on the implications of miRNA in the vascular re-

modeling process. Interestingly, recent data suggest that

alteration of miRNA expression in PAH not only occurs

in the lung but is also implicated in more systemic im-

pairment. Indeed, downregulation of miR-204 in PAH-

PASMC leads to proliferation-apoptosis imbalance, con-

tributing to the vascular remodeling of distal pulmonary

arteries. In addition, it was shown that miR-126 is abated

in the skeletal muscles and RV of PAH patients, leading to

angiogenic impairment. Interestingly, each level of miRNA

expression alteration is associated with different symptoms:

increase of pulmonary artery resistance in the lung, contrib-

uting to exercise intolerance in skeletal muscles and to PAH

in the RV.

As a first therapeutic miRNA strategy is in clinical trial

for various diseases, including cancer81 and hepatitis C in-

fection,82 there is hope for clinical miRNA-based therapies

for other diseases as well. Therefore, in addition to eluci-

dating pathological mechanisms of PAH, research regard-

ing miRNA opens a promising new field of investigation

for clinical treatment of this disease.62,83

Source of Support: Nil.

Conflict of Interest: None declared.

REFERENCES
1. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber

HW, Lindner JR, Mathier MA, et al. ACCF/AHA 2009 ex-
pert consensus document on pulmonary hypertension: a
report of the American College of Cardiology Foundation
Task Force on Expert Consensus Documents and the Amer-
ican Heart Association: developed in collaboration with the
American College of Chest Physicians, American Thoracic
Society, Inc., and the Pulmonary Hypertension Association.
Circulation 2009;119(16):2250–2294. http://www.ncbi.nlm
.nih.gov/pubmed/19332472. Accessed August 5, 2013.

2. Frost AE, Badesch DB, Barst RJ, Benza RL, Elliott CG,
Farber HW, Krichman A, et al. The changing picture of
patients with pulmonary arterial hypertension in the United
States: how REVEAL differs from historic and non-US con-
temporary registries. Chest 2011;139(1):128–137. http://www
.ncbi.nlm.nih.gov/pubmed/20558556. Accessed August 13,
2013.

3. Peacock AJ, Murphy NF, McMurray JJV, Caballero L,
Stewart S. An epidemiological study of pulmonary arterial
hypertension. Eur Respir J 2007;30(1):104–109. http://www
.ncbi.nlm.nih.gov/pubmed/17360728. Accessed August 5,
2013.

4. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F.
Mechanisms of disease: pulmonary arterial hypertension.
Nat Rev Cardiol 2011;8(8):443–455. http://www.ncbi.nlm.nih
.gov/pubmed/21691314. Accessed August 5, 2013.

5. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage
BH, Detre KM, Fishman AP, et al. Survival in patients with
primary pulmonary hypertension: results from a national
prospective registry. Ann Intern Med 1991;115(5):343–349.
http://www.ncbi.nlm.nih.gov/pubmed/1863023. Accessed
October 4, 2012.

6. Rubin LJ. Primary pulmonary hypertension. N Engl J Med
1997;336(2):111–117. http://www.ncbi.nlm.nih.gov/pubmed
/8988890. Accessed August 5, 2013.

7. Humbert M, Morrell NW, Archer SL, Stenmark KR,
MacLean MR, Lang IM, Christman BW, et al. Cellular and
molecular pathobiology of pulmonary arterial hyperten-
sion. J Am Coll Cardiol 2004;43(12 suppl.):13S–24S. http://
dx.doi.org/10.1016/j.jacc.2004.02.029. Accessed August 5,
2013.

180 | Vascular remodeling process in PAH: focus on miR-204 and miR-126 Potus et al.



8. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G,
Gressin V, Yaici A, et al. Pulmonary arterial hypertension
in France: results from a national registry. Am J Respir Crit
Care Med 2006;173(9):1023–1030. http://www.ncbi.nlm.nih
.gov/pubmed/16456139. Accessed August 5, 2013.

9. Aslam MI, Taylor K, Pringle JH, Jameson JS. MicroRNAs
are novel biomarkers of colorectal cancer. Br J Surg 2009;96
(7):702–710. http://www.ncbi.nlm.nih.gov/pubmed/19526617.
Accessed August 5, 2013.
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