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Abstract

Hypertensive cardiac disease remains a major cause of death worldwide because its typically 

complex etiology renders current treatments ineffective. Primary causative factors include 

environmental stressors, genetic predisposition and metabolic morbidities such as obesity and 

diabetes. These factors all trigger a systemic pathological production of agonists of G-protein-

coupled receptors (GPCRs). When produced in excess, GPCR agonists transactivate many 

metalloproteinases, which relay agonist signaling. Here we review evidence supporting a global 

therapeutic concept for treatment of hypertensive cardiac disease with complex or unknown 

etiology by targeting common mediators of multiple GPCRs such as metalloproteinases and their 

downstream effectors.

Introduction

Hypertensive cardiac disease remains a major cause of death worldwide and is characterized 

by the co-occurrence of sustained hypertension, cardiac hypertrophy and cardiac fibrosis [1]. 

Despite advances in the identification of triggers of disease, the treatment of cardiovascular 

disorders remains empirical and ineffective due to the complex and often unknown etiology 

of hypertensive cardiac disease in the general population [2,3].

Among the primary causative factors of hypertensive cardiac disease are life style, stress, 

environmental factors and genetic predisposition as well as metabolic morbidities such as 

diabetes and obesity [1–3].

Here we propose that these factors contribute to the development of hypertensive cardiac 

disease by activating common effector mechanisms, which involve agonists of G-protein-

coupled receptors (GPCRs). GPCRs signal, at least in part, through extracellular matrix 

metalloproteinases (MMPs) and ‘a disintegrin and metalloproteinases’ (ADAMs).
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MMPs and ADAMs, which modulate vascular tone and transcription and translation of 

prohypertrophy and profibrosis genes downstream of multiple GPCRs, are candidate 

therapeutic targets to treat hypertensive cardiac disease with complex or unknown etiology 

(Fig. 1).

We review how MMPs and ADAMs are activated, what substrates they cleave and what 

functions they might serve in models of agonist-induced hypertensive cardiac disease.

Comorbidities of hypertensive cardiac disease

The prevalence of chronic, noncommunicable diseases is increasing dramatically worldwide 

with close to 20 million people dying every year from cardiovascular disease associated with 

hypertension, diabetes, or obesity [1–3]. The association of metabolic disorders such as 

diabetes type I, insulin resistance (diabetes type II) and obesity with hypertension and 

cardiac problems is higher than would be the case by chance. The presence of multiple 

comorbidities makes the treatment of any single morbidity very difficult [1,4].

Over 60% of hypertensive individuals are obese, which has been explained through the 

chronic activation of the sympathetic nervous system by adipocyte-derived hormones such 

as leptin, which promotes energy expenditure but also systemic vasoconstriction and 

pathological cardiovascular remodeling [3].

Obesity predisposes patients to insulin resistance and diabetes type II with about 90% of 

diabetes type II being attributable to excess weight. In the USA, up to 75% of the adult 

patients with diabetes have hypertension and renovascular disease [5,6]. The chronic 

activation of the renin–angiotensin system results in sympathetic activation further impairing 

cardiovascular and renal functions. The co-occurrence of obesity and diabetic complications 

makes treatment of hypertension and the associated damage to target organs such as the 

kidneys and heart very challenging and often ineffective.

Although it remains unclear how diabetes predisposes to hypertension, it is clear that 

diabetes triggers a systemic hormonal response involving multiple agonists. Indeed, anti-

hypertensive drugs targeting signaling by one or more GPCRs such as angiotensin-

converting enzyme (ACE) inhibitors, angiotensin receptor blockers and β-blockers are 

prescribed to treat and prevent cardiovascular complications including microvascular 

complications of retinopathy and progression of nephropathy in diabetic patients.

Similar to diabetes [5] and obesity [7], chronic stress (e.g. due to job strain, social 

environment or emotional distress) [6,8–12] and genetic predisposition [2,13] can cause 

various degrees of hypertension and cardiac disease. The major mechanism of disease by 

chronic stress is sympathetic nervous system activation, which results in high systemic or 

local (on target organs) production of stress hormones (e.g. catecholamines). The 

detrimental cardiovascular effects of high catecholamine levels are well established in 

humans as well as many disease models including rodents. Genetic predisposition plays a 

major role in disease development and, therefore, in the responses to antihypertensive 

treatments [2,5,13,14]. This has been well studied in North America where multiple ethnic 

groups coexist and are at risk of cardiovascular disease associated with metabolic syndrome. 
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For instance, the incidence of hypertension, mortality from hypertensive heart disease, stroke 

and hypertensive renal disease are higher in African Americans. By contrast, Hispanic 

Americans have a lower overall risk for hypertension but are at a greater risk for 

hypertension due to diabetes and dyslipidemia. Although poorly understood, when 

compared to European Americans and other ethnic minorities, African Americans respond 

less favorably to β-blockers and ACE inhibitors whereas Asian American respond to 

calcium antagonists better than to ACE inhibitors and equally well to diuretics and β-

blockers [14]. These facts indicate that identifying and pharmacologically manipulating 

common mediators of disease are very important for effective treatment of disease when the 

exact etiology is complex or unknown, as can be the case for individuals with various 

genetic predispositions.

Metalloproteinases: key and common mediators of multiple GPCRs in 

models of hypertensive cardiac disease

As discussed earlier, hypertensive cardiac disease can have a very complex etiology which 

poses a significant challenge for physicians. Current pharmacologic interventions are 

designed to interfere with specific causative factors (e.g. when pathological levels of 

angiotensin II are suspected, inhibitors of angiotensin II-converting enzyme or angiotensin II 

receptor blockers are prescribed to limit either angiotensin II generation or angiotensin II 

binding to its cellular receptors). However, when the causative agonists are unknown, current 

pharmacological interventions may not be effective if the causative factors are not targeted 

by the drug.

As a result, current treatment of patients with hypertensive cardiac disease remains highly 

empirical and requires the use of multiple drugs. Each drug is prescribed to afford complete 

or at least partial blood pressure reduction; however, often the blood pressure reduction 

target is not met [2,15]. The use of multiple drugs can result in undesired side-effects and 

elevated treatment costs to patients. Therefore, we believe that the identification of common 

effector mechanisms of multiple GPCR agonists could suggest more robust and general 

therapeutic approaches applicable to treat diseases with complex or unknown etiology [16].

Zinc-dependent endopeptidases (i.e. metalloproteinases) from the MMP and ADAM families 

are emerging as common mediators downstream of multiple GPCRs. The following section 

will cover how MMPs and ADAMs are activated, what substrates they cleave and what roles 

they play in models of agonist-induced hypertensive cardiac disease.

GPCR agonist-induced transactivation of growth depends on metalloproteinases

We and others have observed that multiple GPCR agonists transactivate growth factor 

receptors such as the epidermal growth factor receptor (EGFR) to enhance vascular tone and 

promote prohypertrophic and profibrotic processes in the cardiovascular system [16].

Transactivation of the EGFR can explain how and why agonists of vasoactive G-protein-

coupled receptors (GPCRs) promote cancer cell growth and proliferation of cancer cells 

[17]. In arteries, EGFR transactivation is also mediated, at least in part, by 

metalloproteinases, such as MMP-2 and MMP-7, which are overexpressed or activated 
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downstream of GPCRs including adrenoceptors, endothelin-1 and angiotensin II receptors. 

Angiotensin II and catecholamines rapidly activate MMP-7 which next sheds EGFR ligands 

(such as HB-EGF) to trigger intracellular signaling through the EGFR → mitogen-activated 

protein kinase (MAPK) cascade as well as the PI3K → AKT axis. This metalloproteinase-

mediated transactivation mechanism appears to be a common response to multiple agonists 

irrespective of their chemical structure, enzymatic generators or site of production.

Activation of metalloproteinases by GPCR agonists

In response to high levels of GPCR agonists, some metalloproteinases are rapidly activated 

through post-translational mechanisms, which in turn trigger transcription of genes whose 

overexpression promotes cell proliferation, hypertrophy and profibrotic processes. Agonist-

induced metalloproteinase activation can result from either proteolytic or nonproteolytic 

mechanisms.

Proteolytic activation of metalloproteinases

In the classical sense, the activation of metalloproteinases requires separation of the catalytic 

zinc ion from a cysteine residue (PKVCGY) in the metalloproteinase N-terminal prodomain 

[18]. Some metalloproteinases activate other metalloproteinases by cleaving their 

prodomain. This is the case for membrane-type MMPs which act in combination with tissue 

inhibitor of metalloproteinases (TIMP)-2 to activate pro-MMP-2. In addition, MMP-3 can 

directly cleave and activate pro-MMP-1, pro-MMP-7, pro-MMP-8 pro-MMP-9 and pro-

MMP-13. Similarly, MMP-7 activates pro-MMP-1, pro-MMP-2, pro-MMP-8 and pro-

MMP-9, whereas MMP-10 activates pro-MMP-7, pro-MMP-8 and pro-MMP-9.

Nonproteolytic mechanisms

Metalloproteinase activation can result from oxidative stress [19,20], post-translational 

modifications such as phosphorylation [21] and protein–protein interactions [22,23].

Oxidative stress—Agonist-induced Ca2+ signaling is intimately linked to MMP and 

ADAM activation, at least in part, by enabling the assembly of NADPH oxidase complex at 

the plasma membrane where it becomes active. Fully assembled, active NADPH oxidase 

generates superoxide anion which directly activates the catalytic cysteine switch in 

metalloproteinases. This may be a major mechanism of metalloproteinase activation in 

agonist-induced oxidative stress models [24]. For instance, when angiotensin II binds to its 

GPCR (AT1R), it sparks a Ca2+ signal that is followed by a burst in reactive oxygen species 

(ROS) which activates ADAM-17/TACE [25].

Protein kinases—Protein kinase C (PKC) may play a key role in metalloproteinase 

activation. PKC is allosterically activated by diacylglycerol (DAG) which is made by GPCR 

agonist-activated phospholipase C. Both DAG and its phorbol ester analogs trigger 

ADAM-12 activity and subsequent HB-EGF shedding in cardiomyocytes [26,27]. Active 

ADAM-12 is a major mediator of cardiac hypertrophy induced by angiotensin II, 

phenylephrine and pressure overload [28]. Cardiac PKC may modulate intracellular MMP-2 

activity by phosphorylation at multiple sites including Ser and Thr residues. Indeed, 
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mammalian MMP-2 contains 29 potential phosphorylation sites and mass spectrometry 

reveals that at least five of these sites are phosphorylated [21]. The kinase activity of 

extracellular signal-regulated kinase, ERK, leads to phosphorylation of the Thr735 of 

ADAM-17/TACE rendering ADAM-17 able to shed tumor necrosis factor (TNF)-α [29]. 

ADAM-17 activation can thus be pro-inflammatory, prohypertrophic and profibrotic.

Protein–protein interactions—A recently discovered mechanism of MMP and ADAM 

activation independent of proteolytic cleavage, oxidative stress, or kinase activity involves 

metalloproteinase interaction with protein interaction modules in other proteins. Binding of 

Src homology 3 (SH3) domains in PACSIN-3 and eve-1 to proline-rich domains of 

ADAM-12 enhances ADAM-12 proteolytic activity [30,31]. PKC-ε domains C1 and C2 

bind to ADAM-12 enabling ADAM-12 translocation to the cell membrane and subsequent 

activation [32]. Protein–protein nonproteolytic interactions could explain the activation of 

ADAM-9, -12 and -17 in models where proteolytic activation and oxidative stress play a 

little or no role in activating MMPs such as GPCR agonist stimulation at subpressor doses.

Metalloproteinases regulate vasoactive peptides, contractile proteins, 

growth factors and cytokines as well as cell surface receptors

For many years, the cardiovascular effects of GPCR agonists were interpreted as a direct 

consequence of Ca2+ release from intracellular stores and Ca2+ uptake from the extracellular 

milieu. These two events are triggered rapidly following the allosteric binding of Gαq to 

phospholipase C which releases a Ca2+ channel agonist, inositol 1,4,5-trisphosphate (IP3), 

from membrane-anchored phosphoinositols. Induction of Ca2+ signaling by agonists can 

successfully explain how agonists evoke contractile responses in the cardiovascular system. 

However, to explain the maintenance of contraction over prolonged periods of agonist 

stimulation or the mitogenic effects induced by agonists, it is necessary to consider 

additional pathways such as the transactivation of growth factor receptor signaling by 

agonist-activated metalloproteinases.

Originally thought to degrade only components of the extracellular matrix (ECM) during the 

long-term process of tissue remodeling, MMP and ADAM family members also cleave and 

regulate many non-ECM substrates in an acute fashion. Excessive GPCR signaling thus 

translates into pathological metalloproteinase cleavage of ECM and non-ECM substrates. 

This section will focus on two classes of non-ECM substrates of metalloproteinases: ligands 

of receptors and cell surface receptors.

Cleavage of receptor ligands

The cleavage of receptor ligands can explain many acute actions of metalloproteinases and 

those of their pharmacological inhibitors such as modulation of vascular contractile 

responses. For instance, MMP-2 and MMP-9 can acutely enhance vascular tone through the 

cleavage of vasoactive peptides such as adrenomedullin, calcitonin gene-related peptide and 

big endothelin-1 [16,33–35]. Another non-ECM acute action of MMPs and ADAMs is 

shedding of membrane-anchored ligands of receptors such as epidermal growth factor (EGF) 

and platelet-derived growth factor (PDGF) to transactivate intracellular signaling of growth 
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via the MAPK cascade. Thus, metalloproteinases modulate MAPK signaling to help 

maintain agonist-induced vascular tone and signaling of hypertrophic growth [36].

Acute cleavage of non-ECM substrates can affect immunity. MMP-2 cleaves monocyte 

chemoattractant peptide, MCP-3, turning it into a chemokine antagonist [37]. Agonist-

activation of MMP-2 may thus dampen inflammation in hypertensive cardiac disease.

The remodeling of the contractile machinery of the cell is yet another novel action of MMPs. 

Recent work suggests that MMP-2 cleaves myofilament proteins such as titin and myosin 

light chain in models of ischemia–reperfusion in isolated perfused working hearts [24]. 

Unchecked cleavage of contractile components by metalloproteinases may be deleterious for 

cardiac muscle function.

Some metalloproteinases share substrates [38]. For instance, activation of TNF-α as well as 

shedding of HB-EGF can follow activation of either MMP-7 or ADAM-17/TACE. As such, 

these metalloproteinases have redundant roles with regards to inflammation and cardiac 

hypertrophy.

Cell surface receptors as substrates of metalloproteinases

This novel paradigm can help explain some features of the co-occurrence of hypertension 

and other morbidities [39]. MMPs have been found to cleave and inactivate vascular 

endothelial growth factor receptor (VEGFR)-2 to enable endothelial apoptosis and capillary 

rarefaction – a feature of malignant hypertension in humans and rodent models of disease. 

MMP cleavage of β2-adrenoceptor may impair vascular smooth muscle relaxation and 

increase peripheral resistance in spontaneously hypertensive rats. MMP-mediated 

degradation of the insulin receptor in the same model provides a novel explanation for why 

insulin resistance sometimes accompanies hypertensive disorders. Pathologically high levels 

of GPCR agonists in these models may trigger the observed MMP- and ADAM-mediated 

destruction of cell surface receptors.

GPCR signaling through MMPs and ADAMs: a clock for disease 

development?

The working hypothesis that has served as foundation for this review states that hypertensive 

cardiac disease can develop as a common pathological response to high levels of multiple 

GPCR agonists. MMPs and ADAMs are mediators of multiple GPCRs. However, it remains 

unclear whether metalloproteinases are central to cardiovascular regulation all the time or 

only in some stages of disease development.

Ongoing research from our laboratory is directed at answering this question. We have 

identified MMP-2, MMP-7, ADAM-12 and ADAM-17/TACE as mediators of angiotensin 

II-induced hypertensive cardiac disease. We have also found that gene expression of these 

metalloproteinases changes throughout disease development [16,36,40–42]. Moreover, some 

MMPs and ADAMs (such as MMP-7 and ADAM-17) appear to regulate others (such as 

MMP-2 and ADAM-12). In addition to the transient expression of individual MMPs and 

ADAMs, we observe the emergence of a novel specialization of functions: MMP-7 and 
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MMP-2 may regulate vascular tone whereas ADAM-17 and ADAM-12 may signal cardiac 

hypertrophy and fibrosis under transcriptional control of MMP-7 and ADAM-17. This 

functional specialization is determined by temporal differences in expression and 

hierarchical relationships among MMPs and ADAMs [16,36,40–42].

Although we expect some MMPs and ADAMs to contribute to disease through overlapping 

mechanisms, their unique substrates and different time windows of expression will probably 

dominate their unique functions. The emerging functional specialization of 

metalloproteinases suggests new ways to manipulate and normalize specific processes such 

as signaling of vascular contractile responses, hypertrophy and fibrosis.

From a clinical translation point of view, studies are warranted to establish the impact of 

timely inhibition of specific metalloproteinases for effective treatment of hypertension and 

the associated damage of target organs such as the heart. As hypertension often goes 

undetected for years, currently it is unclear how timely inhibition of metalloproteinases can 

be achieved for the treatment of hypertension. In addition to timing, other areas of potential 

intervention include metalloproteinase activation mechanisms (such as oxidative stress), 

metalloproteinase-specific activities or expression, metalloproteinase substrates and the 

mechanisms elicited by these substrates after cleavage.

Conclusions

Metalloproteinases have emerged as key and common mediators of multiple GPCR agonists, 

which makes them candidate therapeutic targets for treatment of hypertensive cardiac 

disease when the etiology is complex or unknown. This type of global therapeutic concept 

would have potential for treatment of hypertensive cardiac disease in metabolic syndrome 

patients and perhaps also for treatment of populations where ethnic diversity might result in 

significant differences in the responses to current antihypertensives.
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Figure 1. 
Hypertensive cardiac disease is a consequence of diverse conditions and morbidities. 

Conditions such as chronic stress, environmental factors, genetic predisposition and 

metabolic morbidities trigger responses systemically and locally (on target cardiovascular 

organs) which lead to excessive signaling by GPCR agonists. This translates into unchecked 

proteolytic activity of metalloproteinases that regulate many substrates including growth 

factors, cytokines and cell surface receptors. Uncontrolled cleavage of these substrates 

contributes to the development of hypertensive cardiac disease.
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