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ABSTRACT

Motivation: Metastasis prediction is a well-known problem in breast

cancer research. As breast cancer is a complex and heterogeneous

disease with many molecular subtypes, predictive models trained for

one cohort often perform poorly on other cohorts, and a combined

model may be suboptimal for individual patients. Furthermore, at-

tempting to develop subtype-specific models is hindered by the am-

biguity and stereotypical definitions of subtypes.

Results: Here, we propose a personalized approach by relaxing the

definition of breast cancer subtypes. We assume that each patient

belongs to a distinct subtype, defined implicitly by a set of patients

with similar molecular characteristics, and construct a different

predictive model for each patient, using as training data, only the

patients defining the subtype. To increase robustness, we also

develop a committee-based prediction method by pooling together

multiple personalized models. Using both intra- and inter-dataset

validations, we show that our approach can significantly improve the

prediction accuracy of breast cancer metastasis compared with

several popular approaches, especially on those hard-to-learn

cases. Furthermore, we find that breast cancer patients belonging to

different canonical subtypes tend to have different predictive models

and gene signatures, suggesting that metastasis in different canonical

subtypes are likely governed by different molecular mechanisms.

Availability and implementation: Source code implemented in

MATLAB and Java available at www.cs.utsa.edu/*jruan/PCC/.

Contact: jianhua.ruan@utsa.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Recently, large-scale profiling techniques such as microarray and

next-generation sequencing have enabled systematic screening of
genomic, epigenomic and transcriptomic changes associated with

cancer. These data have been used for disease prognosis and
outcome prediction with an accuracy comparable or superior

to conventional histological grading-based methods (Chang
et al., 2004; Sorlie et al., 2001; Sotiriou et al., 2006; van de

Vijver et al., 2002; Wang et al., 2005). However, it is well

known that cancer is a heterogeneity disease and that cancers

occurring at the same tissue or organ can have multiple subtypes

with distinct molecular signatures and likely have different

prognosis and treatment responses (Bianchini et al., 2010;

Heiser et al., 2011; Prat et al., 2010; Sorlie et al., 2001; Sotiriou

et al., 2006). Therefore, the overall performance of such prog-

nostic models is still poor.
An intuitive solution to address the aforementioned problem is

to design prognostic models separately for each cancer subtype.

This simple solution poses two problems. Firstly, the number of

available training samples becomes smaller, especially for

relatively rare subtypes, which unavoidably reduces the reliability

and stability of the classification models. Secondly and more

importantly, this solution depends on well establishment of pre-

defined cancer subtypes and unambiguous assignment of each

patient to some subtype. However, the definition of subtypes

may be ambiguous and evolve with time. For example, in a

series of studies, Perou and colleagues analyzed gene expression

profiles of primary breast tumors and defined the subtypes of

breast cancer, termed luminal A, luminal B, normal breast-like,

basal, ErbB2 and more recently, claudia-low, which have differ-

ent survival rates and responses to hormone treatment (Hennessy

et al., 2009; Sorlie et al., 2001, 2003). Studies on other datasets

have confirmed some of the subtypes such as the basal-like and

ErbB2, but the definitions of the other subtypes are not always

consistent and are sensitive to the set of genes used and the set of

samples analyzed (Kapp et al., 2006; Mackay et al., 2011). It was

suggested that the ‘molecular subtypes’ of cancer may be a con-

tinuum (Lusa et al., 2007). Hence, attempting to identify distinct

subtypes may not be always appropriate.

In this article, we propose a generalization of the subtype-

based classification idea. Instead of relying on explicit definition

of subtypes, we simply treat each patient as if he/she belongs to a

different subtype and then construct multiple, personalized,

predictive models for each patient. These models are evaluated

for their performance in predicting the outcomes of the specific

patient, and only the good models are retained. When a new

patient comes, a set of patients of similar molecular characteris-

tics are chosen, so are their predictive models. The final decision

is made by considering the predictions from all the selected

models.
Applying our method to three publicly available microarray

datasets of breast cancer for prediction of metastasis, we found

that our proposed personalized classification method has much

better prediction accuracy than standard methods that either do*To whom correspondence should be addressed.
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not use cancer subtype information or use only the predefined

cancer subtypes. Importantly, we found that our proposed

method significantly improves cross-dataset prediction accuracy,

which is critical in clinical practice to predict disease outcomes.

Furthermore, our results show that different breast cancer

subtypes require different metastatic classification models,

suggesting that the metastasis process in these different subtypes

are governed by different molecular mechanisms.

2 MATERIALS AND METHODS

2.1 Breast cancer datasets

In this study, we used three breast cancer microarray datasets

(see Supplementary Table S1 for cohort information). The first dataset,

downloaded from the Netherland Cancer Institute (NKI) website

(http://bioinformatics.nki.nl/index.php), (van de Vijver et al., 2002), con-

tains 295 primary breast carcinoma patients, where all patients were553

years old and had stage I or II breast cancer. Among them, 151 had

lymph node–negative disease and the rest had lymph node–positive dis-

ease. In this dataset, 78 patients had metastasis within 5 years of follow-

up visit. Therefore, we considered these 78 patients as metastatic patients

and the remaining ones as non-metastatic patients. The microarray plat-

form used for this dataset was Agilent Hu25K. To make the NKI dataset

compatible with the other two datasets, we used Entrez gene ID to map

different gene entries among the three datasets. In the NKI dataset, gene

expression values represent the log ratios between the signal intensities in

each patient relative to the average signal intensities of all patients. Table

1 shows the number of patients in each subtype defined in Chang et al.

(2005) and Sorlie et al. (2003), with the total number of metastatic and

non-metastatic patients in each subtype. It is important to note that this

subtype information was never used in our model; rather, it was used only

for evaluation purposes. We only considered the top 1500 genes that had

the highest variances in NKI dataset among samples; however, increasing

the number of genes did not change the results significantly.

The second dataset, referred to as Wang dataset, contains 286 lymph

node–negative breast cancer patients who had not received any adjuvant

systemic treatment (Wang et al., 2005). Among them, 106 patients had

distant metastasis within 5 years of follow-up checkup and were

considered as metastatic patients in our analysis, whereas the rest were

considered as non-metastatic patients. The microarray platform used was

Affymetrix HG-U133a. This dataset was obtained from Gene Expression

Omnibus with the accession number GSE2034 (Edgar et al., 2002).

To make the dataset compatible with the NKI dataset, the signal inten-

sities in the Wang dataset were converted to log ratios, where the ratio

was calculated between the signal intensity of a gene in a particular

patient to the average intensity of that gene in all patients.

Then z-score transformation was performed for each patient for both

datasets, so that the mean log ratio for each patient was 0 and the

standard deviation was 1.

The last dataset was downloaded from the University of North

Carolina (UNC) Microarray Database, and contains 337 samples, but

we only used 116 patient samples that had at least 5-year follow-up clin-

ical data (Prat et al., 2010). Similar to the previous two datasets, we

considered 5-year follow-up disease status to distinguish between meta-

static and non-metastatic patients and obtained 75 metastatic and 41 non-

metastatic patients. The microarray platform used for this dataset was

Agilent oligo microarray and was downloaded from Gene Expression

Omnibus with the accession number GSE18229 (Edgar et al., 2002).

Similar to the NKI and Wang datasets, a z-score transformation was

performed to each patient in the dataset. The Wang and UNC datasets

were used to evaluate models learned from the NKI dataset.

2.2 Personalized committee classification algorithm

Figure 1 shows an overview of our approach. For each patient (PTrain) in

the training dataset (NKI), we constructed a set of classifiers, known as

base classifiers, using only patients whose gene expression profiles were

similar to that of PTrain as training samples. We call PTrain a representing

patient for these base classifiers. To select training samples, we created a

patient–patient network based on co-expression, and used a well-known

graph algorithm to identify patients that are topologically close to the

representing patient in the network. Each base classifier was then

evaluated for its prediction accuracy on its representing patient and

was discarded if the prediction was incorrect. This procedure was

repeated for all patients in the training dataset, resulting in a rich pool

of classifiers that could be used for predictions in the test dataset. New

patients were classified by a subset of these base classifiers chosen based

on the similarity between the target patient and the representing patients

of the base classifiers, and predictions from individual base classifiers

were combined to form the final decision. We call the whole classification

model as personalized committee classifier or PC-classifier for short.

Details of our method are described below.

2.2.1 Training sample selection We believe that patients with similar

genetic characteristics may share common molecular mechanisms in dis-

ease development and progression, and can provide more accurate

models to predict disease outcomes of other similar patients, rather

than using all patients. Therefore, we only selected the most similar

patients to a target patient to construct its base classifier. To retrieve

the most relevant patients to construct the classifiers, we constructed a

patient–patient network, where each patient is connected to its nearest

three patients based on Euclidean distance between patients’ gene expres-

sion profiles (Supplementary Fig. S1). Patient–patient co-expression net-

works have been shown capable of preserving the topological relationship

among patients and capturing cancer subtype information well (Ruan

et al., 2010). Given the network, we used a well-known graph algorithm,

random walk with restart, to calculate the similarity between every pair of

patients, measured by the probability for a random walker starting from

one node to reach another node in the network (Tong et al., 2006).

Formally, let A be the adjacency matrix of the patient–patient net-

work, where Aij ¼ 1 if there is an edge between patient i and j, and let

P be the row normalized adjacency matrix, i.e. Pij ¼
1P
i
Aij
. Assume that a

random walker starts from node v with a uniform probability to visit each

of its neighboring nodes, and with a fixed probability c to revisit the

starting node v at any time point during the walk. The random walk

with restart algorithm can be applied to all patients simultaneously,

with a matrix form F ¼ ð1� cÞFPþ cI, where I is an identity matrix.

On convergence, the element Fij of the square matrix F represents the

probability for a patient i randomly walking on the network to reach

patient j, given sufficient amount of time (Tong et al., 2006). A higher

probability means topologically higher similarity between the two

patients.

After calculating the similarity scores between all patients, we used a

set of user-defined cutoffs (�¼ 0.001, 0.0005, 0.0002, 0.0001 and 0.00005

in this study) to select five sets of neighbors for each patient

Table 1. Subtype information for NKI dataset

Subtype Number of patients Metastatic Non-metastatic

Normal 31 3 28

Basal 46 16 30

Luminal A 88 15 73

Luminal B 81 24 57

ErbB2 49 20 29
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(see Supplementary Materials for rationale and supporting data on

parameter selection). A smaller cutoff will result in more neighbors

being selected (see Supplementary Figs S2 and S3 for example and

Supplementary Table S2 for statistics). Note that even with the same

cutoff, each patient may end up with different number of neighbors,

depending on the topology of the network (Supplementary Fig. S4).

Also, the only information used in this step is gene expression profiles,

without considering the predefined cancer subtypes and the metastatic

status.

2.2.2 Base classifier construction As mentioned above, our method

established a pool of base classifiers, each of which was trained from a

subset of similar patients from the training dataset and personalized for a

specific patient. To improve robustness of the models, for each patient,

we identified several sets of similar patients using different cutoffs in the

training sample selection step and constructed one base classifier from

each set of training samples. For example, with �¼ 0.001, we built 295

such classifiers, where each classifier was built using a different number of

patients depending on the number of training samples a patient had in the

training sample selection step (Supplementary Fig. S4). Therefore, we

built (295� 5 ¼) 1475 such classifiers with five cutoffs. Next, we removed

those base classifiers that failed to predict the metastatic status of the

representing patient. Finally, to make better use of all data points, we

retrained each of the remaining correct base classifiers using both, the

representing patient and the previously selected training samples. This

gives us a pool of validated base classifiers for future classification of

new patients.

For example, as illustrated in Figure 1, for patient P1, we collected five

sets of training samples that can be reached from P1 with certain prob-

abilities. These samples were used to construct five base classifiers for P1.

As the classifier resulted from �2-selected samples had incorrect classifi-

cation result for P1, it was removed from further consideration. We then

retrained the four remaining classifiers after adding P1 to the original

training data and stored the new classifiers for future uses. We repeated

this procedure for every patient in the training dataset. In this work, we

used NKI dataset as training dataset and established 991 base classifiers.

Support vector machine (SVM) was used as the underlying base clas-

sifier. We used the SMO implementation of SVM in WEKA (version

3.6.3; Hall et al., 2009) and used its linear kernel with all default param-

eter settings. Classification output was fitted using a logistic regression

model, which is included in the WEKA implementation, to predict the

probability of metastasis (Hall et al., 2009).

2.2.3 Committee-based classification To use the pool of base clas-

sifiers to classify new patients, we developed a committee classification

approach. As illustrated in Figure 1, to classify a new patient (PTest), we

ranked all the available base classifiers based on the similarity between

PTest and the representing patients used to construct these base classifiers.

Ties were broken according to the decision probability to make a correct

prediction for the representing patient. Then we used the top-ranked N

models to classify PTest and used the average decision probability to

predict its metastatic status. Note that using weighted average does not

change the results significantly.

2.3 Performance evaluation and comparison with com-

peting methods

To measure the intra-data classification performance for PC-classifiers,

we used the leave-one-out evaluation technique. Briefly, we took out one

patient (Ptest) from the NKI dataset and constructed a PC-classifier with

the remaining patients as training samples, and used the classifier to

predict the probability for Ptest to develop metastasis. This step was re-

peated for all patients in the NKI dataset, and the predictions for all

patients were pooled to measure the performance. It is worth mentioning

that in this evaluation, Ptest was never used in any step for constructing

the PC-classifier. For comparison, standard SVM classifiers and subtype-

based SVM classifiers were also constructed. For standard classifiers, we

constructed a SVM classifier for each Ptest patient using the remaining K

�1 patients as training data, where K is the total number of patients in

NKI dataset. For subtype-based classifiers, we constructed an SVM clas-

sifier for Ptest by using only the patients of the same subtype as Ptest as

training samples. In other words, if Ptest is a basal type patient, then for

(a)

(b)

Fig. 1. Overview of our approach. (a) Steps to construct PC-classifier for patient P1 are shown. The classifiers for the remaining patients are constructed

similarly. (b) An external patient PTest is classified based on top ranked five base classifiers. Note that PTest is never included in the construction of any

classifiers in (a)
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subtype-based classifier, we constructed an SVM classifier with the other

basal type patients except Ptest.

To evaluate the performance of PC-classifier in cross-data scenario, we

constructed base classifiers using the whole NKI dataset, and later used

them to classify patients in the Wang and UNC datasets based on the

committee classification approach. To compare, we also constructed a

single standard SVM classifier using the entire NKI dataset and tested its

performance on the Wang and UNC datasets. The subtype-based classi-

fiers were not tested here as subtype information for the Wang cohort,

and some patients in the UNC cohort are not available.

Several ensemble classifiers were also constructed and evaluated both

for intra-data and inter-data classification. We tested four popular en-

semble classifiers:Bagging, Dagging, AdaBoost and Random Forest

(Beriman, 1996; Freund and Robert, 1996; Ting and Witten, 1997).

Both Bagging and Dagging work by randomly selecting a subset of sam-

ples to construct base classifiers. The difference between the two is that

Bagging allows sampling with replacement, whereas Dagging only per-

mits sampling without replacement, and as a result, the latter creates a

number of disjoint partitions from the data. AdaBoost builds multiple

base classifiers by iteratively giving priority to previously misclassified

samples. Random Forest constructs a multitude of decision trees and

outputs the class label predicted by these trees. To have a fair comparison

with our method, we used SVM as the underline base classifier for these

ensemble classifiers except for random forest, which uses decision tree as

underlying base classifier by design. For Dagging, we used 10 partitions

to ensure having enough number of training samples in each base classi-

fier. For AdaBoost, we used 500 classifiers, as the performance seems to

be independent of the number of classifiers after some initial burn-in

period. For all other ensemble classifiers, we varied the number of base

classifiers from 1 to 900 and compared the performance of the algorithms

as the number of base classifiers increased. Similarly, as for the standard

SVM classifier, leave-one-out cross-validation was used for the NKI

dataset, whereas Wang and UNC datasets were tested using models

developed from the NKI dataset.

Classification performance was measured using several commonly

used evaluation methods including positive predictive value, negative

predictive value, kappa statistic and area under receiver operating charac-

teristic (ROC) curve (area under curve, AUC). Let N be the total number

of patients, and TP, TN, FP and FN be the numbers of true-positive

(metastatic patient), true-negative (non-metastatic patient), false-positive

and false-negative predictions, respectively, made by a classifier at a cer-

tain threshold of the decision probability. Positive predictive value (PPV)

is defined as PPV ¼ TP=ðTPþ FPÞ, and negative predictive value (NPV)

defined asNPV ¼ TN=ðTNþ FNÞ. To enable a straightforward compari-

son among all methods, the decision probability was set differently for

each classifier so that the positive predictive rate (TPþFPN ) is approximately

the percentage of metastatic patients in the three datasets combined

(37%). The kappa statistic (Landis and Koch, 1977) is a ‘corrected’ ver-

sion of accuracy, defined as � ¼ ðA� CÞ=ð1� CÞ, where A ¼ TPþTN
N is the

overall accuracy, and C is the expected accuracy that a classifier can

achieve by chance and can be calculated by

C ¼ ðTPþFPÞðTPþFNÞþðTNþFNÞðTNþFPÞ
N2 . Finally, the ROC curve plots the

true-positive rate ( TP
TPþFN) versus false-positive rate ( TN

TNþFP) at various

threshold settings of the decision probability and shows the trade-off

between sensitivity and specificity. The AUC is a widely used statistic

for model comparison. A perfect model will have an AUC of 1 and

random guessing will score an AUC around 0.5. For each classifier, we

repeated the experiment 100 times and measured the mean AUC and

standard error of the mean.

2.4 Biological significance analysis

To reveal the biological significance of PC-classifiers, we clustered the

base classifiers based on the similarity of their normalized SVM coeffi-

cients. For this analysis we used the correct base classifiers with

�¼ 0.0005. The SVM coefficients for each base classifier were normalized

to z-scores. For clustering, we used the hierarchical clustering algorithm

implemented in the MATLAB 8.0 Bioinformatics Toolbox (The

MathWorks, Inc.). For literature mining, we searched the PubMed ab-

stracts with the gene name together with the term ‘metastasis’ or ‘meta-

static’ and reported the number of published articles retrieved.

3 RESULTS AND DISCUSSION

3.1 Performance of PC-classifier on NKI dataset

We first compared PC-classifier with standard SVM classifier

and subtype-based SVM classifier for their performance on the
NKI dataset using the leave-one-out evaluation technique

(see Section 2). Figure 2a shows the AUC scores for these clas-
sifiers. As shown, PC-classifier with as few as two base classifiers
in the committee had similar performance as the standard or

subtype-based classifiers, and significantly outperformed them
when at least five base classifiers were present in the committee.

The best performance of our method was achieved with 150–600
base classifiers. Compared with the standard SVM classifier, the
PC-classifier achieved an 11.4% performance improvement

(AUC 0.78 versus 0.70). Using other evaluation methods includ-
ing kappa static, PPV, NPV and ROC curves, we found similar

trends that confirmed the superior performance of PC-classifier
(Supplementary Table S3 and Supplementary Fig. S5).
Next, we investigated how these classifiers performed for

patients falling in each of the five predefined breast cancer sub-
types (Sorlie et al., 2003). To this end, we calculated the AUC
scores by considering the patients in each predefined subtype

separately. Figure 2b shows the classification performance for
the five subtypes. It can be seen that PC-classifier significantly

outperformed the other methods for all subtypes, but especially
for basal and normal breast-like subtypes, two of the most dif-

ficult subtypes to be predicted by the standard classifier. On the
other hand, although the subtype-based classifier performed
slightly better than the standard classifier for luminal B and

ErbB2 subtypes, its performance on normal breast-like and
basal subtypes was much worse. The subtype-based classifier

performed poorly for the normal-like subtype probably because
of the small number of training samples for this subtype
(Table 1) and the intrinsic difficulty in defining the subtype

(Supplementary Fig. S1). Intriguingly, basal subtype is the
most coherent subtype among all studies (Hennessy et al.,

2009; Kapp et al., 2006; Mackay et al., 2011; Sorlie et al.,
2001, 2003) (as also suggested by the patient–patient network
shown in Supplementary Fig. S1). Consequently, the patients

selected to construct the base classifiers for patients in the
basal subtype were mostly of basal subtype as well

(Supplementary Figs S2 and S4). Therefore, the dramatic
performance difference between the subtype-based classifier
and the PC-classifier for the basal subtype indicates that the

basal subtype is also heterogeneous, as our model only used a
subset of all basal patients to construct each base classifier but

had better accuracy than the subtype-based classifier that used all
basal patients. Overall, by dynamically controlling the number of
training samples for each patient, regardless of its subtype

designation, and combining decisions from multiple base
classifiers learned on similar patients, our method is able to

improve performance significantly for all subtypes.
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It is worth noting that PC-classifier may improve breast

cancer treatment by restraining unnecessary adjuvant system-

atic therapies. According to previous studies, 70–80% lymph

node–negative breast cancer patients may undergo adjuvant

chemotherapy, which is in fact unnecessary and these patients

may potentially suffer from lethal side effects (van’t Veer

et al., 2002). For example, the Luminal subtype is known to

be the least lethal, and yet, many patients still go through

advanced treatments while they would not have developed

distant metastasis. Therefore, to minimize the degree of

secondary damage to Luminal subtype patients, an ideal

classifier should have a low false-positive rate. Further analy-

sis revealed that for Luminal subtype (including both Luminal

A and Luminal B), at a fixed 75% sensitivity level, our method

achieved a false-positive rate of 31.5%, as compared with

43.1% for the standard SVM classifier (41 versus 56 incor-

rectly classified patients, respectively). Therefore, 15 (11.6%)

additional Luminal patients are correctly classified into non-

metastatic group by our method and may not be going

through unnecessary adjuvant chemotherapy.

3.2 Validation of PC-classifier using two additional

datasets

A more challenging and yet realistic task in cancer outcome

prediction is to use the models developed in one cohort to classify

patients in other cohorts. Because of the differences in patient

characteristics, sample collection protocols, microarray platforms

and data preprocessing steps, microarray gene expression data

obtained from different studies for the same disease are often

not directly comparable. For example, the three datasets used in

this study consist of patients of different age groups, pretreat-

ments, lymph node status and metastatic potentials

(Supplementary Table S1). When conducting cross-dataset valid-

ations, the existing studies in breast cancer metastasis prediction

usually avoid these issues by reusing only the features rather than

the classificationmodels across datasets (Chuang et al., 2007; Jahid

and Ruan, 2012; Su et al., 2010).More specifically, with two data-

sets, A and B, the existing methods attempt to find informative

genes from dataset A in a supervised way (i.e. considering the

disease outcomes), and then build a new model using dataset B

filtered to have only the list of genes selected from A. Cross-data

classification accuracy was then measured using 10-fold cross-val-

idation or leave-one-outwithin dataset B. This is in contrast to our

study, where the model constructed from dataset A was directly

used to classify the patients in dataset B. Our evaluation proced-

ure is more realistic, as it reflects how well a model is expected to

perform in a clinical setting where every new patient needs to be

classified by the same existing model.
Here we report the performance of the PC-classifier developed

on the NKI dataset and tested on Wang and UNC datasets.

Figure 3a shows the results for Wang dataset. It can be seen

that the cross-data AUC score for standard SVM classifier is

0.60 for this dataset. In contrast, PC-classifier with as few as

(a) (b)

Fig. 2. Performance of different classifiers on NKI dataset. (a) AUC scores for the whole dataset. (b) AUC scores for each subtype separately

(a) (b)

Fig. 3. Performance of PC-classifier and standard classifier on (a) Wang and (b) UNC datasets
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two base classifiers performed similarly as standard SVM classi-

fier and significantly outperformed standard SVM classifier with

five or more base classifiers in the committee. PC-classifier had

the highest accuracy with �100 classifiers in the committee and

outperformed the standard SVM classifier significantly with

14.28% performance improvement. Figure 3b shows the AUC

scores for PC-classifier and standard SVM classifier for UNC

dataset. The standard SVM classifier had an AUC score of 0.67,

while the PC-classifier with 20 base classifiers had similar accur-

acy. The highest classification accuracy was achieved with �400

base classifiers, which outperformed the standard SVM classifier

by 17.3%. Also, from Kappa static and ROC curves, we can

validate again that the performance improvement by PC-classi-

fier in both datasets is genuine (Supplementary Figs S6 and S7

and Supplementary Tables S4 and S5).
It is interesting to note that the number of base classifiers

needed to achieve the best accuracy is much larger in the UNC

dataset than in the other two datasets. This is likely because of

the fact that the ratio of metastatic patients in the UNC

dataset is much higher than that in the NKI and Wang datasets

(64.6, 26.4 and 37.1%, respectively) and that the pretreatments

received by patients in the UNC cohorts are much more hetero-

geneous than those in the other two data sets (Supplementary

Table S1). In fact, one of the advantages that PC-classifier

has over the standard methods that use the whole dataset to

construct a single model is its relative insensitivity to overall

sample characteristics. In PC-classifier, as only the most relevant

patients in the training cohort will be used to classify a target

patient, the difference in sample characteristics between the

training and test cohorts does not necessarily cause as much

degradation of performance as in other methods, as long as

the training dataset itself contains a sufficient number of samples

that are similar to the target patients.

3.3 Performance comparison with other ensemble

classification approaches

We also compared the performance of PC-classifier with four

popular ensemble classification approaches: Bagging, Dagging,

AdaBoost and Random Forest (see Section 2). Similar as in the

above results, leave-one-out cross-validation was used for the

NKI dataset, whereas Wang and UNC datasets were tested

using models developed from the NKI dataset. Figure 4 shows

the AUC scores of PC-classifier, Bagging, Random Forest with

different numbers of base classifiers. From the figure it can be

seen that for all the datasets, PC-classifier significantly outper-

formed Bagging and Random Forest. For Wang dataset, with

only520 base classifiers, PC-classifier had 9% performance im-

provement compared with Bagging and Random Forest. For

NKI and UNC dataset, the performance of PC-classifier was

(a)

(c)

(b)

Fig. 4. Performance of PC-classifier and different ensemble classifiers on (a) NKI (b) Wang and (c) UNC datasets. Error bars represent one standard

error of the mean
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similar to Bagging and Random Forest with5100 base classifiers

but improved significantly when the number of base classifier

increased from 100 to 400. We also report the kappa, PPV and

NPV for these classifiers (Supplementary Tables S3, S4 and S5)

and find that PC-classifier shows the most promising results

compared with other ensemble classifiers. The performance of

two other competing ensemble classifiers, Dagging and

AdaBoost, are much worse than Bagging and Random Forest

as well as PC-classifier (Supplementary Table S6). Bagging and

Random Forest performed comparatively better than standard

SVM because some of the base classifiers by chance may have

subtype-specific samples. Interestingly, despite the large number

of classifiers created, AdaBoost actually had even worse

performance than the standard SVM classifier. As AdaBoost

gives additional weights to previously misclassified samples in

each new iteration (see Section 2), the results suggest that the

additional focus by AdaBoost on the hard-to-classify examples

actually had an adverse effect to the overall model performance.

In contrast, in our algorithm, because these patients are probably

the ones without enough representations in the training cohort,

they have had a lower probability to be selected as training

samples for other patients; in addition, the base classifiers con-

structed for them may also have had a higher probability to be

deleted from the pool due to incorrect classifications.

Consequently, these patients were relatively discounted in our
model, which resulted in the improved performance of our

algorithm on the overall population.

3.4 Biological significance of PC-classifiers

To reveal the biological significance of PC-classifiers and inves-

tigate the relationship among the base classifiers for different
patients, we clustered the base classifiers based on the similarity

of their normalized SVM coefficients. Because we used linear

kernel SVM, each classifier is defined by a vector of coefficients,
or weights, for the selected features (genes). A higher weight

means that the expression level of that gene is positively corre-
lated with metastatic potentials. Figure 5 shows the hierarchical

clustering result of the validated base classifiers constructed at

� ¼ 0:005. Also shown in the figure are the subtype designation
of each patient given by Chanrion et al. (2007) and Sorlie et al.

(2003) and the 5-year metastatic status of each patient.
Remarkably, five major clusters can be easily identified from

the patient dendrogram. Cluster 1 contains almost exclusively

and all of the basal subtype patients. Cluster 3 contains only
ErbB2 and luminal B patients, whereas cluster 4 contains

mostly luminal A and luminal B patients. Cluster 5 contains

Fig. 5. Hierarchical clustering of PC-classifier models from NKI dataset. (a) Dendrogram and heatmap of the base classifiers, where each column

corresponds to a patient and each row to a gene. Each pixel in the heatmap corresponds to SVM coefficient value of the gene in the base classifier model

for a particular representing patient. Low values are in green, and high values are in red. (b) Metastasis status of the corresponding patients. (c) Cancer

subtype for each patient defined by van de Vijver et al. (2002)
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mostly normal breast-like and luminal A patients. Cluster 2 is the

largest and most complex, with members from all five subtypes,

despite a relative overrepresentation of normal breast-like and

luminal A patients. The partial overlap between the clusters and

the subtype designations suggests that the molecular profiles in

the luminal/ErbB2 breast cancer is a continuum rather than dis-

crete distribution, as demonstrated in several recent studies (Lusa

et al., 2007; Mackay et al., 2011).

Most of the metastatic patients are distributed in clusters 1, 3

and 4. The overrepresentation of metastatic patients in cluster 1

and 3 is mainly because of basal and ErbB2 patients, respect-

ively, and is expected. Interestingly, while cluster 2 and cluster 4

both have mostly luminal A/B patients, cluster 4 has the highest

ratio of metastatic patients, whereas only a small number of

patients in cluster 2 are metastatic.

Our results suggest that different breast cancer subtypes need

different metastatic classification models. For patients in cluster 1

(basal subtype), metastasis is driven by group B genes while sup-
pressed by group C genes. The pattern is almost the opposite for
cluster 3/4 patients (luminal A, B and ErbB2 subtypes), where

group A genes promote metastasis. The main difference between
cluster 2 and cluster 4 patients, both of which contain mainly
luminal subtypes but cluster 4 is much more aggressive, is that

group A genes promote metastasis in cluster 4 but not in cluster
2. These results suggest that the metastasis processes in different
subtypes are likely governed by different molecular mechanisms,

especially between the patients in cluster 1 and the other four
clusters. We therefore performed a functional enrichment ana-
lysis for the three groups of genes that seem to make up the

difference between the clusters (Supplementary Table S7).
Interestingly, while all three groups of genes are enriched in de-

fense response and response to wounding, group B genes are
more specifically enriched in cell proliferation (P52.6E-07) and
migration (P57.8E-06), whereas group C genes are more specif-

ically enriched in response to estrogen stimulus (P52.8E-10), cell
proliferation (P54.4E-07), anti-apoptosis (P55.1E-04) and cell
adhesion (P53.6E-04).

To further investigate the significance of PC-classifiers, we ana-
lyzed the top-ranked genes in different clusters. We identified top
30 ranked genes (disregarding their signs) in cluster 1, 3 and 4

based on their average SVM weights and searched their associ-
ation with disease recurrence using literature mining (see Section
2). Table 2 lists genes that are top ranked in the standard or PC-

classifiers and with at least three PubMed hits. (A complete list of
all genes used by the classifiers and their ranks in different models
are included in Supplementary Table S8.) As shown in Table 2,

many of the top-ranked genes are already known to be metasta-
sis-related. For example, MMP9, PDGFRA and CCL21 are well

known to be involved in breast cancer recurrence. Remarkably,
our results identified many genes with subtype-specific roles in
metastasis development, which are difficult to be discovered with

the standard classifiers. For example, ID1, HEY1 and MST1R
have high ranks in cluster 1 (basal) models but low ranks in the
other clusters and standard SVM models. ID1 is a well-known

mediator of breast cancer lung metastasis for basal subtype pa-
tients (Gupta et al., 2007). HEY1 is a target gene for Notch sig-
naling inhibitor for basal group (Debeb et al., 2012).

Overexpression of MST1R is a strong indicator of metastasis in
breast cancer patients (Welm et al., 2007). Similarly, NDRG1 is
top ranked in cluster 3 and 4 but not so in cluster 1 models and is

known to be related to luminal subtype (Nagai et al., 2011); TFF1
is top ranked only in cluster 3 and is known to be associated and
responsible for luminal stability (Yamachika et al., 2002).We also

identified some genes that show subtype specificity with high
ranks in standard SVM classifiers, including PDGFRA, which

is a drug target for basal-like tumor (Koboldt et al., 2012), and
BMPR1B, which is known to be associated with ER-positive
breast cancer subtype (Bianchini et al., 2010). Our results con-

firmed the specificity for BMPR1B as a target for ER-positive
breast cancer and suggested that PDGFRA can also be an effect-
ive target for LuminalB/ErbB2 patients.

4 CONCLUSION

In this article, we proposed a personalized committee classifica-

tion approach for disease outcome prediction that was based on

Table 2. Comparison of top ranked genes in different classifiers

Gene

name

PubMed

hits

Rank in classifiersa

Standard

SVM

Basal LumB/

ErbB2

LumA/

LumB

ID1 38 878 19 770 686

ATP1B1 5 88 22 459 1182

CCL19 33 252 10 704 696

HEY1 4 372 8 368 680

MST1R 3 783 6 741 1456

ANO1 3 490 9 528 652

FABP7 3 358 30 371 380

KLK7 6 990 6 916 144

KLK6 9 645 29 229 759

NDRG1 56 414 1383 22 33

FLT3 48 395 873 199 26

SPP1 26 324 334 47 18

TFF1 24 99 181 30 231

HOXB13 7 89 659 21 1214

ITGA2 5 64 247 12 12

PEG10 5 97 745 28 53

CKB 5 286 16 27 1254

IGFBP2 6 774 25 545 29

PDGFRA 144 43 26 82 1131

GP5 12 23 18 120 311

PBX1 8 28 407 134 21

NUPR1 6 15 348 18 20

ANXA3 4 18 1519 51 3

BMPR1B 2 30 1086 24 6

MMP9 323 7 572 29 4

ADAM8 15 24 160 3 2

CYP1B1 14 26 43 34 170

IGFBP5 11 33 23 11 104

PRAME 9 35 20 4 409

CCL21 58 20 227 519 79

aBasal, LumB/ErbB2 and LumA/LumB represent the models displayed in cluster 1,

3 and 4, respectively, in Figure 5. Bold values indicate ranks less than 50.
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the decisions from multiple base classifiers, where each base
classifier was developed from training patients with similar
molecular characteristics. We applied our method to predict
the metastatic risk of breast cancer patients for three publicly

available breast cancer datasets. For all three datasets, our
method significantly outperformed other methods that either
do not use subtype information (standard SVM classifier) or

only use predefined subtypes (subtype specific SVM classifier).
Our method has superior cross-dataset prediction accuracy,
which shows a clear distinction that our method will perform

well in actual clinical setup. Furthermore, our method has
better prediction performance compared with other popular
ensemble classification approaches. Finally, analysis of the

models showed that the personalized committee classifiers are
consistent with the current knowledge of breast cancer subtypes
and identified difference between the metastatic processes under-
lying different subtypes. Therefore, the classification approach

proposed in this article shows that we can better design classifiers
based on personalized training samples, and those classifiers
could be used for developing better prediction models that can

be used for better disease prognosis and treatment. Although our
method is only used to predict metastasis in breast cancer
patients in this article, we believe it is general and can be applied

to other cancer types and other molecularly heterogeneous
diseases.
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