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ABSTRACT

Summary: Here we present the open-source R/Bioconductor

software package BEAT (BS-Seq Epimutation Analysis Toolkit). It

implements all bioinformatics steps required for the quantitative

high-resolution analysis of DNA methylation patterns from bisulfite

sequencing data, including the detection of regional epimutation

events, i.e. loss or gain of DNA methylation at CG positions relative

to a reference. Using a binomial mixture model, the BEAT package

aggregates methylation counts per genomic position, thereby com-

pensating for low coverage, incomplete conversion and sequencing

errors.

Availability and implementation: BEAT is freely available as part of

Bioconductor at www.bioconductor.org/packages/devel/bioc/html/

BEAT.html. The package is distributed under the GNU Lesser

General Public License 3.0.

Contact: akman@mpipz.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Bisulfite sequencing (BS-Seq) is a sequence-based method to ac-

curately detect DNA methylation at specific loci, which involves

treating DNA with sodium bisulfite (Frommer et al., 1992). The

method is based on bisulfite conversion of unmethylated cyto-

sines into uracil and has become a standard in DNA methylation

profiling. Its advantage is accuracy, as the degree of methylation

at each cytosine can be quantified with great precision (Fraga

and Esteller, 2002). More recently, bisulfite sequencing has been

applied in a genome-wide manner, which requires advanced com-

putational analysis for determining DNA methylation patterns

and changes therein. Thus far, such analysis has been limited to

the comparison of individual CpG sites between samples.

However, because of the bisulfite conversion of cytosines into

uracils, and eventually thymines, sequence complexity is much

reduced, with no account for incomplete conversion and/or

sequencing errors. Bisulfite sequencing also often suffers from

low coverage. Here, we present BS-Seq Epimutation Analysis

Toolkit (BEAT), a novel tool for analyzing bisulfite-converted

DNA sequences. To overcome the aforementioned limitations in

the estimation of methylation rates, BEAT aggregates data from

consecutive cytosines into regions by using a Bayesian binomial-

beta mixture model. The model is derived, described in detail and

evaluated in our Supplementary Material. For each region, it

calculates a posterior methylation probability distribution that

can be used for the comparison of DNA methylation between

samples. Anticipating technological progress in the DNA methy-

lation field, BEAT includes an error model adapted to single-cell

BS-Seq data.

2 USAGE AND APPLICATION

The BEAT package can be used for estimating the true methy-

lation levels of BS-Seq samples and for the calling of epimuta-

tions, which are differences in methylation states of a region in

the genome. Pooling single CG counts into regions can be done

with the function positions_to_regions, which reads a

comma separated file and outputs a data.frame. The latter is

the input to the BEAT model, which can be easily accessed via

the core function generate_results.
We assume that all counts at a single CG position were ob-

tained from pairwise different bisulfite-converted DNA tem-

plates, representing independent observations. Some of the

most important parameters of our model are the false-positive

and false-negative conversion rates. Let the false-positive rate pþ
be the global rate of false methylation counts, which is identical

to the non-conversion rate of non-methylated cytosines.

Conversely, the false-negative rate p� is the global rate of false

non-methylation counts, which is identical to the inappropriate

conversion rate of methylated cytosines. One can find an upper

bound for pþ by considering all methylation counts at non-CG

positions as false-positive results (resulting from non-conversion

of presumably unmethylated cytosines). In the literature, false-

negative rates were not described, therefore we recommend a

conservative estimate of p� ¼ 0:01.
With the resulting estimates of methylation levels and methy-

lation status from the model, which are returned as a data.frame,

the function epimutation_calls can then determine epimutation

differences between two samples and compute rates for demethy-

lating and methylating epimutations. A sample use of BEAT

follows. For a more detailed explanation of the required objects,

we refer to the package vignette. Figure 1 graphically illustrates*To whom correspondence should be addressed.
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the output of BEAT. The R-objects required for this analysis are

included in the BEAT package.

The most important step is the setting of the user-defined

parameters.

# Load sample data
data(BEAT)
# Initialize working path
localpath5- system.file(’extdata’, package

¼’BEAT’)
# Set sample names and prefix of data files
4sampNames5- c(’reference’,’sample’)
# Set reference vs. non-ref status per sample
4is.reference5- c(TRUE, FALSE)
# Set BS-conversion rate per sample
4pplus5- c(0.2, 0.5)
4convrates5- 1 - pplus
# Create parameter object
4params5- makeParams(localpath, sampNames,
convrates, is.reference, pminus ¼ 0.2,
regionSize ¼ 10 000, minCounts ¼ 5)

# Pool CG positions into genomic regions
4positions_to_regions(params)
# Model methylation levels and -status
4generate_results(params)
# Call epimutations
4epiCalls5- epimutation_calls(params)

3 CONCLUSION

The BEAT package delivers methods for the estimation of

methylation levels, methylation status and for calling epimuta-

tion events in a two-sample comparison. To our knowledge, it is

the first tool providing a rigid statistical model for handling BS-

Seq samples. It has an in-built correction for conversion errors

and is therefore tailored to the analysis of BS-Seq samples with

possibly different BS-conversion rates.
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Fig. 1. (a) Methylation estimates and epimutation calls on a DNA seg-

ment. For all regions with sufficient read coverage, the black curves show

the methylation estimates for a single cell sample (top), a reference sample

(bottom) and their difference (middle). Regions with methylating epimu-

tations are marked in red, while regions with demethylating epimutations

are marked in blue. Samples used for our analysis in this article were

obtained from neuronal cells of young mice (data unpublished).

(b) Scatterplot of methylation estimates of a multi-cell reference sample

(x-axis) versus those of a sample (y-axis) for all common regions with

sufficient coverage. Each dot represents a single region that is covered by

both samples. Red dots indicate methylating epimutations in the sample,

while blue dots indicate demethylating epimutations in the sample. Four

dots representing exemplary regions with epimutations at the correspond-

ing boundary value ranges for demethylating and methylating epimuta-

tions have been annotated with their values of methylated (k) and total

(n) counts. Note that there exists no boundary line separating the red and

the blue region because our Bayesian model assigns different methylation

estimates to tuples (k1, n1), (k2, n2) with equal empirical methylation

level k1/n1¼ k2/n2
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