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ABSTRACT

Motivation: Fast and accurate genotype imputation is necessary for

facilitating gene-mapping studies, especially with the ever increasing

numbers of both common and rare variants generated by high-

throughput-sequencing experiments. However, most of the existing

imputation approaches suffer from either inaccurate results or heavy

computational demand.

Results: In this article, aiming to perform fast and accurate genotype-

imputation analysis, we propose a novel, fast and yet accurate method

to impute diploid genotypes. Specifically, we extend a hidden Markov

model that is widely used to describe haplotype structures. But we

model hidden states onto single reference haplotypes rather than onto

pairs of haplotypes. Consequently the computational complexity is

linear to size of reference haplotypes. We further develop an algorithm

‘merge-and-recover (MAR)’ to speed up the calculation. Working on

compact representation of segmental reference haplotypes, the MAR

algorithm always calculates an exact form of transition probabilities

regardless of partition of segments. Both simulation studies and real-

data analyses demonstrated that our proposed method was compar-

able to most of the existing popular methods in terms of imputation

accuracy, but was much more efficient in terms of computation. The

MAR algorithm can further speed up the calculation by several folds

without loss of accuracy. The proposed method will be useful in large-

scale imputation studies with a large number of reference subjects.

Availability: The implemented multi-threading software FISH is freely

available for academic use at https://sites.google.com/site/lzhangho-

mepage/FISH.
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1 INTRODUCTION

Genotype imputation refers to a process in which missing geno-

types at un-typed markers in a test sample are statistically

inferred by knowledge of genotypes observed at the same mar-

kers in a reference sample (Li et al., 2009; Marchini and Howie,

2010). The principle underlying genotype imputation is that

modern human genomes share segments of haplotypes with

each other, as reflected by linkage disequilibrium (LD) patterns

(Reich et al., 2001). Imputed genotypes have been widely used to

fill sporadic missing genotypes, to integrate multiple studies with

different genotyping platforms into meta-analysis, and to fine-

map causal, but un-typed, disease loci. Genotype imputation has

significant potential to greatly enhance our capacity to integrate

and extend the scope of current existing datasets at no additional

expense. Consequently, it has become a standard toolkit in large-

scale genetic-association studies, and this has facilitated the dis-

covery of a remarkable number of genetic loci responsible for a

variety of complex traits and diseases (Li et al., 2009; Marchini

and Howie, 2010).
A variety of statistical methods, including MACH (Li et al.,

2010), IMPUTE (versions 1 and 2) (Howie et al., 2009; Marchini

et al., 2007), BEAGLE (Browning and Browning, 2007) and

others (Chi et al., 2013; Liu et al., 2013; Pasaniuc et al., 2012;

Purcell et al., 2007; Scheet and Stephens, 2006), have been de-

veloped and used widely for genotype imputation. These meth-

ods provide excellent accuracy for imputing common variants

(minor allele frequency (MAF)45%) derived from genome-

wide association studies (Duan et al., 2013a, b; Pei et al.,

2008). However, as next-generation sequencing technology is get-

ting mature and more widely applied, an increasing number of

less common (1%5MAF55%) and rare variants (MAF51%)

have been uncovered. It has been hypothesized that these less

common and rare genetic variants represent another potential

mechanism by which variations in the human genome influence

complex diseases. Consequently, it has become increasingly im-

portant to be able to impute fast and accurately this increasing

number of these variants in existing genome-wide association

studies in order to facilitate gene-mapping studies and to study

a variety of genomic structures.

The accuracy of genotype imputation is influenced greatly by

the size of reference panel (Pei et al., 2008); larger reference sam-

ples increase imputation accuracy. When imputing common vari-

ants, reference panels of small to moderate size (e.g. 200) may be

sufficient to attain an acceptable level of imputation accuracy.

When imputing less common or rare variants, however, the ac-

curacy of imputation will be considerably lower than that for

common variants with reference panels of small to moderate

size. Consequently, it is critical to use an expanded reference*To whom correspondence should be addressed.
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panel when imputing less common or rare variants in order to

attain an acceptable level of accuracy. Fortunately, a continuously

increasing resource of reference datasets based on next generation

sequencing, e.g. 1000 genomes project (Abecasis et al., 2012), is

becoming publicly available. Eventually, these well-validated

datasets will provide a comprehensive set of reference samples

that can support accurate genotype imputation of an extensive

range of genetic variants, from common to rare ones.
One practical limitation of existing imputation methods is that

they can be computationally intensive when operating with large

reference samples. For example, bothMACH and IMPUTEhave

quadratic computational complexity to the number of reference

haplotypes used in the hidden Markov model (HMM), a level of

complexity which actually prohibits them frommaking full use of

all available reference haplotypes. In practice, both MACH and

IMPUTE (version 2) compensate for this limitation by selecting

only a subset of reference haplotypes to use for imputation.

Obviously, this approach may cause a potential loss of accuracy

under certain conditions, and this loss of accuracy may become

particularly severe when imputing less common and particularly

rare variants. Alternatively, they both have a haploid model im-

plementation with linear complexity, which is achieved by imput-

ing on pre-phased haplotypes rather than diplotypes (Howie et al.,

2012).Nonetheless, phasing diplotypes into haplotypes introduces

additional computation demanding as well as phasing uncertainty

(Howie et al., 2012). In the context of a growing number of large

sequencing datasets, it is becoming critically important to develop

computationally efficient imputation methods that can use large

reference datasets in order to retain imputation accuracy, particu-

larly for rare variants, at a reasonably high level. Though a variety

of alternative solutions have been proposed (Chi et al., 2013;

Howie et al., 2012; Pasaniuc et al., 2012), they fall short regard

to either accuracy or extensive computational demand.

Both MACH and IMPUTE are based on Li and Stephen’s

haploid HMM (Li and Stephens, 2003). Their heavy computa-

tional demand in imputing diplotypes is attributable to modeling

hidden states on pairs of reference haplotypes rather than on

single haplotypes. In the present article, we propose an alternative

and efficient model to impute diplotypes with linear complexity.

Basically, we extend the same HMM, but we model hidden states

on single haplotypes so that the computational complexity is

‘linear’ to the size of reference haplotypes. We take into account

unphased genotypes throughmarginalization and decomposition.

In addition, we develop an efficient computing algorithm to fur-

ther speed up the execution of the proposed method. Through

simulation as well as real data analyses, we show convincingly

that the proposed method is much faster than existing methods,

and yet is comparable in terms of imputation accuracy. A typical

genome-wide imputation analysis for thousands of individuals,

using the largest reference panel derived from the 1000 genomes

project and routine computing devices can be accomplished

within only a few hours with the method we developed.

2 METHODS

2.1 Definitions

Let HR¼ {h1, . . . , hR} be a set of R haplotype vectors in the reference

sample, each of which is fully genotyped at L markers, hr¼ {hr1, . . . , hrL},

where hrl 2 {0, 1}, r¼ 1, . . . , R, l¼ 1, . . . , L. Let GT¼ {g1, . . . , gT} be a set

of T diplotype vectors in the test sample, each of which is partially

genotyped at the same L markers, gt¼ {gt1, . . . , gtL}, t¼ 1, . . . ,T. Let

h
pð Þ
t ¼ {h pð Þ

t1 , . . . , h pð Þ
tL } and h

mð Þ
t ¼ {h mð Þ

t1
, . . . , h mð Þ

tL } be the vectors of paternal

and maternal haplotypes of the subject so that gtl¼ h
pð Þ
tl þ h

mð Þ
tl , where h

pð Þ
tl

and h
mð Þ
tl 2 {0, 1, missing} and gtl 2 {0, 1, 2, missing}. When gtl is het-

erozygous, h
ðpÞ
tl and h

mð Þ
tl may be ambiguous between alleles 0 and 1.

Given the above sample structure, our mission is to infer missing geno-

types in each element of GT with information of HR. We infer every

element in turn and focus on a single element in the following. For sim-

plicity, we omit the subject subscript and denote the diplotype and haplo-

type vectors as g¼ {g1, . . . , gL}, h
(p)
¼ {h

pð Þ
1 , . . . , h

pð Þ
L } and h(m)

¼ {h
mð Þ
1 , . . . ,

h
mð Þ
L }. We will first review the haploid imputation model based on the Li

and Stephen’s HMM, and will then extend the model to impute diploid

genotypes.

2.2 Haploid model

When the phases of h(p) and h
(m) are a priori known, the two haplotype

vectors are independent and could be imputed separately. Here we work

on a single haplotype for illustration and denote it as h¼ {h1, . . . , hL}.

The HMM assumes that h emerges from an imperfect mosaic of haplo-

types in HR, i.e. emitted from a sequence of hidden states that transit

along haplotypes in HR (Li and Stephens, 2003). Let s¼ {s1, . . . , sL} be a

vector of hidden states emitting h, where sl¼ 1, . . . , R indexes which ref-

erence haplotype is the hidden state at the l-th marker. We aim to sample

s from its posterior distribution given the observed h and HR, which is

defined as,

P sjh,HRð Þ / P s, hjHRð Þ ¼ P s1ð Þ
YL

l¼2
P sljsl�1ð Þ

YL

l¼1
P hljslð Þ: ð1Þ

In the above formula, the initial probability P(s1) has the following form

P s1 ¼ ið Þ ¼
1

R
: ð2Þ

The transition probability P(sljsl– 1) has the following form

P sl ¼ ijsl�1 ¼ jð Þ ¼
1� �l�1ð Þ þ

�l�1
R , if i ¼ j

�l�1
R , otherwise

;

(
ð3Þ

where �l–1 is a locus specific parameter modeling genetic recombination

events.

At last, the emission probability P(hljsl) has the following form

P hljsl ¼ ið Þ ¼
1� el, if hl ¼ hil
el, otherwise

;

�
ð4Þ

where el is a locus specific parameter modeling mutation events.

Similar extensions of the above model have been implemented in

IMPUTE (version 2) and presumably in the haploid implementation of

the MACH algorithm MINIMAC (Howie et al., 2012).

2.3 Diploid model

When the phases of h(p) and h
(m) are a priori unknown, imputation could

not be performed on them directly. Some of the existing methods, includ-

ing MACH and IMPUTE, avoid this uncertainty by taking pairs of ref-

erence haplotypes as hidden states, i.e., modeling on R2 hidden states.

Obviously, this strategy introduces additional computational complexity

and may become prohibit in settings of large reference panels. Here we

propose a new method that models on the R haploid hidden states even

for the diploid genotype vector g so that the computational complexity

remains linear to R. Similarly, let s(p)¼ {s
pð Þ
1 , . . . , s

pð Þ
L } and s(m)

¼{s
mð Þ
1 , . . . ,

s
mð Þ
L } be two vectors of hidden states emitting h(p) and h(m), respectively.

We aim to sample the sequences of s
(p) and s

(m) from their posterior

distribution given g and HR, that is, P(s
(p), s(m)

jg, HR).
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The joint posterior distribution of s(p) and s(m) given g and HR is

defined as

P sðpÞ, s mð Þjg,HR

� �
/ P s pð Þ, s mð Þ, gjHR

� �
¼ P s pð Þ

1 , s mð Þ
1

� �YL

l¼2
P s pð Þ

l , s mð Þ
l js

pð Þ
l�1, s

mð Þ
l�1

� �YL

l¼1
P gljs

pð Þ
l , s mð Þ

l

� �
:
ð5Þ

Under the assumption of random mating, the prior distributions of

two parental haplotypes are independent, and so are the two hidden

states. Therefore,

P s
pð Þ
1 , s

mð Þ
1

� �
¼ P s

pð Þ
1

� �
p s

mð Þ
1

� �
, ð6Þ

and,

P s
pð Þ
l , s

mð Þ
l js

pð Þ
l�1, s

mð Þ
l�1

� �
¼ P s

pð Þ
l js

pð Þ
l�1

� �
P s

mð Þ
l js

mð Þ
l�1

� �
: ð7Þ

The non-missing genotype gl is the sum of two parental alleles

gl¼ h
pð Þ
l þ h

mð Þ
l . Conditioning on h

pð Þ
l and h

mð Þ
l , each of the two states

s
pð Þ
l and s

mð Þ
l is independent with the other and with the other parental

allele. Therefore,

P gljs
pð Þ
l , s

mð Þ
l

� �
¼

P h
pð Þ

l
¼

gl
2 js

pð Þ

lð ÞP h
mð Þ

l
¼

gl
2 js

mð Þ

lð Þ, if gl¼0 or 2P1

g0¼0
P h pð Þ

l
¼g0 js

pð Þ

lð ÞP h mð Þ

l
¼gl�g0 js

mð Þ

lð Þ
� �

, otherwise
:

(
ð8Þ

Terms in probabilities (6)–(8) have the same forms as those in equa-

tions (2)–(4), respectively.

Sampling from the above HMM is performed with standard for-

ward–backward algorithm (Rabiner, 1989). We adopt a forward-calcu-

lation-backward-selection approach. In the forward pass, the joint prior

probabilities P(s pð Þ
l , s mð Þ

l jg1, . . . , gl –1) and posterior probabilities P(s pð Þ
l ,

s
mð Þ
l jg1, . . . , gl) at each non-missing marker are of interest. To achieve a

linear computational complexity, we decompose them into functions of

marginal prior and posterior distributions of s
pð Þ
l and s

mð Þ
l . Under the

random mating assumption and large reference sample size, the follow-

ing equation approximately holds (see Supplementary Material S1 for

details)

P s
pð Þ
l , s

mð Þ
l jg1, . . . , gl�1

� �
¼ P s

pð Þ
l jg1, . . . , gl�1

� �
P s

mð Þ
l jg1, . . . , gl�1

� �
,

ð9Þ

where,

P s
pð Þ
l ¼ ijg1, :::, gl�1

� �
¼
XR
r¼1

P s
pð Þ
l ¼ ijs

pð Þ
l�1 ¼ r

� �
P s

pð Þ
l�1 ¼ rjg1, :::, gl�1

� �
:

ð10Þ

P(s
mð Þ
l jg1, . . . , gl– 1) is calculated in the same way, and is equals to

P(s
mð Þ
l jg1, . . . , gl–1) due to the symmetry.

Rather than calculating the posterior distribution P(s
pð Þ
l , s

mð Þ
l jg1, . . . , gl)

directly, we calculate the marginal posterior distributions P(s pð Þ
l jg1, . . . , gl)

and P(s
mð Þ
l jg1, . . . , gl). Let P0 ¼

P
r, hrl¼0

Pðs
ðpÞ
l ¼ r g1, . . . , gl�1

		 Þ and

P1 ¼
P

r, hrl
PðsðmÞl ¼ r g1, . . . , gl�1

		 Þ, then (see Supplementary Material

S2 for details)

P s
pð Þ
l jg1, . . . , gl

� �
/ P s

pð Þ
l jg1, . . . , gl�1

� �
P0 � P gljs

pð Þ
l , 0

� �
þ P1 � P gljs

pð Þ
l , 1

� �n o
:

ð11Þ

In the backward pass, a pair of hidden states at each non-missing

marker is sampled according to either of the following two probabilities:

(i) P(s pð Þ
L
, s

mð Þ
L jg1, . . . , gL) or (ii) P(s

pð Þ
l , s

mð Þ
l jg1, . . . , gl, s

pð Þ

lþ1
, s

mð Þ
lþ1). The first

probability is decomposed into two forms that can be sampled sequen-

tially. For example (Supplementary Material S3),

P s pð Þ
L , s mð Þ

L jg1, :::, gL

� �
¼ P s pð Þ

L jg1, :::, gL

� �
� P s mð Þ

L js
pð Þ
L , g1, :::, gL

� �
: ð12Þ

The second probability has the form

P s
pð Þ
l ¼ i1, s

mð Þ
l ¼ j1jg1, :::, gl, s

pð Þ
lþ1 ¼ i0, s

mð Þ
lþ1 ¼ j0

� �
/ P s pð Þ

l ¼ i1, s
mð Þ
l ¼ j1jg1, :::, gl�1

� �
� P s

pð Þ
lþ1 ¼ i0, s

mð Þ
lþ1 ¼ j0js

pð Þ
l ¼ i1, s

mð Þ
l ¼ j1

� �
P gljs

pð Þ
l ¼ i1, s

mð Þ
l ¼ j1

� �
ð13Þ

To sample, all individual probabilities are summarized into four pos-

sible events: (i) neither parental haplotype recombines Pnn; (ii) only pa-

ternal haplotype recombines Prn; (iii) only maternal haplotype

recombines Pnr; and (iv) both parental haplotypes recombine Prr. An

event is sampled first and then a new pair of hidden states is updated/

sampled accordingly (Supplementary Material S4).

Model parameters including recombination parameters � and muta-

tion parameters e could be set in accordance with (Li and Stephens,

2003), or fitted by the data (Li et al., 2010).

2.4 Compact representation of reference haplotypes

Both of the above haploid and diploid models have a linear computa-

tional complexity to reference haplotype size. Since different reference

haplotypes may have the same type, they could be merged together and

represented in a more compact manner (Delaneau et al., 2012) so that the

size of states used in the HMM could be reduced further. Here we adopt

the compact representation proposed by Delaneau et al. (2012). Briefly, a

chromosome is partitioned into multiple non-overlapping segments.

Within each segment, haplotypes with the same type are merged together,

which we call a block. In partitioning segments, a sliding window starts at

the first marker. The window size increases step-wise until the number of

blocks within the window exceeds the preset size. A segment is then

determined by the window’s boundaries. The window starts at the next

marker, and the same process repeats until arriving at the last marker.

HMM are primarily performed on merged blocks rather than on original

individual haplotypes. However, the unit of transition is still individual

haplotypes. At block-wise level, two types of transition are involved:

within-segmental and between-segmental. Let B¼ {h1, . . . , hc} and B0

be two particular blocks within a same segment. In the Supplementary

Material S5, we prove that the within-segmental transition probability

has the form

P sl 2 B sl�1 2 B0
		� �

¼
1� �l�1ð Þ þ c�l�1

R , if B ¼ B0,
c�l�1
R , otherwise

�
ð14Þ

which is essentially the equation used in the Delaneau et al. (2012).

For between-segmental transition, Delaneau et al. (2012) used the

same transition formula, which is equivalent to assigning equal probabil-

ities to all the c individual haplotypes when leaving the segment.

Nonetheless, individual haplotypes may have different probabilities

when entering the segment, so their probabilities will not necessarily be

equal when leaving the segment. Consequently, this formula could only

provide an approximation for between-segmental transitions, and the

performance may vary for different partitionings of segments.

To overcome this limitation, we here develop a different and improved

algorithm to always obtain an exact form of transition probabilities re-

gardless of how segments are partitioned. In the Supplementary Material

S6, we show that block transition probability is composed of two com-

ponents: one contributed by each haplotype equally and the other con-

tributed by each haplotype proportionally to its probability when

entering the segment. We therefore develop a corresponding merge-

and-recover (MAR) algorithm. Specifically, we merge individual haplo-

types into blocks and use Equation (14) to calculate within-segmental

transition probabilities; but we record the two probability compo-

nents separately. We recover individual haplotypes’ probabilities by

the two components at the end of the segment. We then calculate
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between-segmental transition probabilities at individual haplotype level

with Equation (3). At the beginning of the next segment, individual

haplotypes are again merged into blocks, and initial block probabilities

are summarized according to individual haplotype probabilities (Fig. 1).

Our algorithm keeps transition probabilities exact regardless of how seg-

ments are partitioned so that the accuracy will not be affected.

2.5 Implementation

Both of the haploid and diploid models have been implemented in a user-

friendly java package: fast imputation via segmental HMM (FISH). It

has a variety of useful features, including support of multiple input/

output data formats and support of multi-threading. The software is

publicly available.

2.6 Simulation study

To evaluate the performance of the proposed method, we conducted a

series of simulation studies. We randomly selected one genomic region of

one mega base (MB) length on the human genome, and simulated popu-

lation sequencing data with the software cosi (Schaffner et al., 2005).

Specifically, we used the ‘best-fit’ model of the software and generated

a pool of 10 000 population haplotypes. Two haplotypes were randomly

selected from the pool to generate genotype of a simulated subject. Two

samples, reference sample and test sample, were simulated each with 1000

subjects. SNPs failed to pass the Hardy–Weinberg equilibrium (HWE)

test (P50.05) were removed from both samples. In the test sample, SNPs

with MAF55% were removed, and were further removed randomly to

retain the final number to�300 so that the marker density is scalable to 1

million per genome, a reasonable density for commercial genotyping

arrays.

2.7 Real dataset

The real dataset that we analyzed was from the 1000 genomes project

phase 1 release (as of June 2012). We focused on 379 subjects of

European ancestry and analyzed the entire chromosome 22. We adopted

the leave-one-out strategy and imputed each subject by the reference

panel formed by remaining 378 subjects. We filtered out rare variants

(MAF51%) because of the limited sample size. SNPs failed to pass the

HWE test (P50.05) were also removed. To model a typical GWAS

sample, SNPs that existed in the Affymetrix SNP6.0 genotyping array

were kept in the to-be-imputed subject.

2.8 Comparison with other methods

We included three most popular methods for comparison: MACH,

IMPUTE2 and BEAGLE. They are widely used in the community and

usually outperform other methods under a variety of settings. For a fair

comparison, all methods including FISH run on 100 iterations. Most of

the other parameter settings were set to the default of the software. We

keep in mind that these settings may not represent their best performance.

Commands were listed as following:

MACH

mach1 -d test.dat -p test.ped -snps ref.snp –haps ref.hap –states states

–burnin 10 –rounds 100 –dosage –geno –quality

IMPUTE2

impute2 -g test.geno -m rec.txt -int 0 100000000 -allow_large_regions -h

ref.hap -l ref.map -k states -burnin 10 -iter 100

BEAGLE

java -jar beagle.jar unphased¼test.geno out¼‘‘out’’ niterations¼100

phased¼ref.hap markers¼ref.map

2.9 Comparison criteria

We evaluated the performance of various methods by imputation accur-

acy and running time. Two imputation accuracy measures were used: the

first one was r2, which was defined as the correlation coefficient between

true genotype and imputed allele dosage; the second one was genotype

discordance rate (GDR), which was defined as the proportion of geno-

types whose type is incorrectly inferred (Marchini et al., 2007). Running

time was measured on a unified computing configuration of Intel Xeon

2.4GHz CPU E5620.

3 RESULTS

In this section, we investigated the performance of the proposed

method, namely FISH, as well as compared it with several exist-

ing popular methods, through simulated and real datasets.

3.1 Simulated dataset

Basic characteristics of the simulated dataset are presented in
Table 1 (left). We first compared the imputation accuracy r2

between diploid and haploid models. For the haploid model, in

order to study the effect of phasing uncertainty on imputation

accuracy, we simulated phased haplotypes with different levels of
haplotyping switch error rate, which was defined as the propor-

tion of heterozygote positions whose phase is incorrectly inferred

relative to the previous heterozygote position (Lin et al., 2002;

Stephens and Scheet, 2005).
While the accuracy of the diploid model was not affected by

switch error, the accuracy of the haploid model was dependent

upon switch error in that imputation accuracy dropped consist-
ently as switch error rate increased (Fig. 2). The diploid model

was more accurate than the haploid model under most condi-

tions tested. When switch error rate was below 0.2%, the diploid

model was slightly inferior to the haploid model, and under these
conditions, haplotypes were nearly perfectly inferred. Thus, when

using the haploid model, the accuracy of pre-phase haplotypes is

critical.

Fig. 1. Illustration of the MAR algorithm. Two haplotypes are presented

for simplicity. They are of same type and are merged into one block b.

Initially the two haplotypes have the probability p1 and p2. Initial block

probability is the sum of the two haplotype probabilities p1þ p2. Within-

segmental HMMs are performed on the block. Block probability is

partitioned into two components p3 and 2p4. The contribution of each

haplotype in p3 is proportional to its initial probability, and the contri-

bution in p4 is equal. At the end of the segment, the two haplotype

probabilities are recovered with p3 and p4. Between-segmental HMM is

then performed on individual haplotypes
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As stated earlier, the MAR algorithm that we developed cal-

culated an exact form of transition probability matrix regardless

of the structure of compact representation of haplotypes.

Therefore, compact representation did not affect imputation ac-

curacy; what was being affected was running time. Here, we

studied the reduction in running time from compact versus

uncompact representation when all reference haplotypes were

used for imputation. Both representations used the total

number of R reference haplotypes. The uncompact representa-

tion therefore had an constant state size R and running time; it

served as a benchmark. The running time for both models is

displayed in Figure 3. For both diploid and haploid models,

running time under compact representation decreased initially

then increased, as the number of states increased. The gain in

computational efficiency was highly correlated with compact

ratio (see Section 4 for details). Shortest running times for

both diploid and haploid models were approximately equal,

and were observed in the range between �50 and 300 states.

Compared to uncompact representation, compact representation

could decrease running time by �3-fold under its best perform-

ance. Running time also elevated moderately as state size fell

below 50, and MAR event occurred frequently under these con-

ditions. Consequently, for most practical applications, we recom-

mended an intermediate value of 50–100 states in order to

optimize computational efficiency.

The imputation accuracies of various methods are presented in

Table 2. As a benchmark, we also imputed with the haploid

model on the simulated haplotypes of the test sample so that

haplotypes were perfectly phased, and we considered this ana-

lysis an ‘Ideal’ model as we expected it to give the highest accur-

acy. BEAGLE and FISH used all the R reference haplotypes, so

they were not influenced by state size. The performance of

MACH got better as state size increased. Interestingly, the per-

formance of IMPUTE2 was less sensitive to state size. Its accur-

acy was only observed to get better slightly when state size

increased from 50 to 100. For common variants (MAF45%),

all methods had very high accuracies that was close to the ‘Ideal’

model of imputation on perfectly phased haplotypes, though the

performance of MACH was inferior slightly at very low state

sizes. For less common variants (1%5MAF� 5%), FISH

again had an accuracy close to the ‘Ideal’ model regardless of

state size, while MACH achieved a high accuracy at state sizes

4400. We observed a slight loss of accuracy for BEAGLE com-

pared to the other methods; with the exception of MACH at low

state sizes (5400). For rare variants (MAF� 1%), FISH again

had an accuracy that was close to the ‘Ideal’ model. Among the

other methods, the performance of MACH was highly depend-

ent on state size in that a size of4800 states was required to

retain a comparable accuracy. Again, BEAGLE was slightly

Table 1. Characteristics of the simulated and real datasets

Simulated Real

Reference sample Test sample Reference sample Test sample

Length (MB) 1.0 1.0 35.2 35.2

Numbe r of subjects (N) 1000 1000 379 379

Number of SNPs 6894 282 109 721 9406

MAF45% 2392 282 75 995 8396

MAF41% 1045 – 33 726 1010

MAF51% 3457 – – –

Fig. 3. Running time of compact representation of reference haplotypes

on the simulated dataset. Both compact and un-compact used the total

number of R¼ 2000 reference haplotypes. Uncompact representation

severs as a benchmark. The x-axis was only for compact representation.

Difference partitionings of segments produced different on average num-

bers of blocks within segment, which were the states used in the HMM

Fig. 2. Diploid versus haploid imputation accuracies on the simulated

dataset. A total of 1000 reference subjects and 1000 test subjects were

simulated. Haplotypes in the reference samples were assumed known. For

the diploid model, imputations were performed on diploid genotypes. For

the haploid model, imputations were performed on haploid genotype. We

simulated haplotypes in the test sample with various levels of switch error
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inferior to almost all of the other methods with the exception

being its superiority to MACH with state sizes below �200. The

accuracy of IMPUTE2 achieved to a level close to the ideal one

at a size of as small as 50 states for all the three MAF intervals.

Figure 4 plotted running time of various methods on the simu-

lated dataset. BEAGLE had a constant running time of �91.9 h

based on its default settings. The relationship between state size

and running time was quadratic for both MACH and

IMPUTE2, while IMPUTE2 took slightly more time than

MACH. Imputation on 1000 states took �74.8 and �66.7h

for IMPUTE2 and MACH, respectively. Most impressively,

FISH took considerably less time than any of the other methods.

Even when modeling the full set of 2000 reference haplotypes,

FISH took only �1 min at its best performance. This gain in

running time could be as high as hundreds to thousands fold

compared to the other methods.

3.2 Real dataset

In order to compare the various imputation methods with a real

dataset, we analyzed the entirety of chromosome 22 of the 379
sequenced European subjects from the 1000 genomes project
phase 1 release (as of June 04, 2012). Basic characteristics of

the data are listed in Table 1 (right). Because of the relatively
limited sample size, we did not include rare variants

(MAF51%) into the analysis. Adopting a leave-one-out strat-
egy, we imputed each subject in turn and summarized results
together. Haplotypes of all subjects were a priori inferred and

were assumed known. As a benchmark, we also imputed each
subject with the haploid model on the inferred haplotypes as if
the subject was perfectly phased. We again called this analysis the

‘Ideal’ model. The results are summarized in Table 3. As ex-
pected, the ‘Ideal’ model analysis gave the highest r2 (88.2%

and 66.3%) and lowest GDR (4.0% and 1.8%) for common
and less common variants, respectively. The performance of
both FISH and BEAGLE was not affected by state size. Their

r2 were 87.0 and 64.6 and 86.9% and 59.8%, respectively, under
the two MAF categories, while the GDR were 4.5 and 2.0 and
4.5% and 2.1%. The accuracy of MACH increased with

increased state size, while the GDR decreased. At 200 states,
its accuracy (87.1% for r2 and 4.4% for GDR) for common

variants was slightly higher than both FISH and BEAGLE; how-
ever those (62.9 and 2.0%) for less common variants was inter-
mediate between FISH and BEAGLE. Increasing state size

beyond 200 may increase its accuracy further. The performance
of IMPUTE2 was influenced slightly by state size, with almost

no differences observed with common variants and minor differ-
ences with less common variants. IMPUTE2 also produced the
highest r2 (87.6 and 65.2% at 200 states) and lowest GDR (4.3

and 1.9%) among all the methods, though the differences be-
tween IMPUTE2 and FISH are relatively minor.
To estimate running time, we imputed the 379 subjects to-

gether by the reference sample formed by the same subjects.

Table 2. Imputation accuracies on the simulated dataset

MAF States r2 (%) GDR (%)

Ideal FISH IMPUTE2 MACH BEAGLE Ideal FISH IMPUTE2 MACH BEAGLE

(0.00,0.01] 50 78.71 75.46 75.89 14.18 46.16 0.14 0.15 0.15 0.53 0.29

100 78.71 75.46 76.15 27.49 46.16 0.14 0.15 0.15 0.52 0.29

200 78.71 75.46 76.37 41.74 46.16 0.14 0.15 0.15 0.46 0.29

400 78.71 75.46 76.65 55.96 46.16 0.14 0.15 0.15 0.39 0.29

800 78.71 75.46 76.80 67.64 46.16 0.14 0.15 0.15 0.27 0.29

(0.01,0.05] 50 92.67 89.68 91.02 61.90 85.26 0.41 0.55 0.47 3.17 0.76

100 92.67 89.68 91.23 72.72 85.26 0.41 0.55 0.46 1.81 0.76

200 92.67 89.68 91.38 79.56 85.26 0.41 0.55 0.45 1.28 0.76

400 92.67 89.68 91.42 84.58 85.26 0.41 0.55 0.45 0.92 0.76

800 92.67 89.68 91.46 88.60 85.26 0.41 0.55 0.44 0.62 0.76

(0.05–0.50] 50 97.22 96.46 96.98 87.84 95.65 0.86 1.22 1.01 4.22 1.41

100 97.22 96.46 97.07 90.93 95.65 0.86 1.22 0.99 3.14 1.41

200 97.22 96.46 97.12 93.02 95.65 0.86 1.22 0.98 2.38 1.41

400 97.22 96.46 97.16 94.72 95.65 0.86 1.22 0.96 1.80 1.41

800 97.22 96.46 97.18 96.10 95.65 0.86 1.22 0.95 1.27 1.41

Fig. 4. Running time of various methods on the simulated dataset
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To avoid over-fitting, we disturbed the two haplotypes of each

reference subject randomly with a switch error rate of 5%. As

listed in Table 3, FISH took 0.3h, while BEAGLE took 73.2h;

Again, MACH and IMPUTE2 had a quadratic computational

complexity with state size. At 50 states, they took 3.0 and 18.2h,

respectively, while at 200 states, they took 27.3 and 51.7 h, re-

spectively. Clearly, FISH was most computationally efficient

among all the methods investigated. Notably, its implementation

had a multi-threading feature so that the computation could be

further sped up on a routine computing cluster node with mul-

tiple CPUs.

4 DISCUSSION

In this article, we have proposed a new method for perform-

ing diploid genotype imputation based on the HMM. We have

also developed an algorithm MAR for efficient execution of the

proposed method. Our method is comparable to most of the

existing popular methods in terms of imputation accuracy and

GDR, and is much preferable in terms of computational

efficiency.
We model hidden states on single reference haplotypes rather

than on pairs of haplotypes. Consequently, the computational

complexity reduces from quadratic to linear to the number of

reference haplotypes. To achieve the linear complexity, we define

the Equation (9), which assumes the independence of

P(s
pð Þ
l�1jg1, . . . , gl–1) and P(s

mð Þ
l�1jg1, . . . , gl–1). Under the random

mating assumption, this independence equation holds as long

as the total reference haploytypes serve as the entire population

from which the test subject is sampled. In practice, it will hold

approximately under large reference sample size, a condition for

which our method was proposed. The computational improve-

ment is qualitatively and quantitatively dramatic. We take into

account haploid genotype uncertainty at each marker by

weighted sum of both possible configurations. Our simulation

studies, as well as real data analyses, showed no significant loss

of accuracy compared to conventional methods modeled on

pairs of reference haplotypes.
In the context of high-throughput sequencing datasets, an

urgent priority for genotype imputation is to improve

computational efficiency. Several alternative solutions have

been proposed, one of which is to pre-phase genotypes in the

test sample into haplotypes, then to impute on the inferred

haplotypes (Howie et al., 2012). This reduces the computational

complexity so that it is linear to the number of reference haplo-

types. However, haplotype phasing itself is a computation-de-

manding process in large-scale settings. Moreover, the success

of imputation on phased haplotypes relies largely on the avail-

ability and accuracy of statistical inference of haplotypes and

may lose accuracy in certain conditions (Howie et al., 2012),

though recent developments on haplotype phasing may ease

this limitation (Delaneau et al., 2012, 2013; Rao et al., 2013;

Williams et al., 2012). Compared to the pre-phasing approach,

our proposed method does not require haplotypes to be known.

It has another potential to impute on data types that could not

be pre-phased, though we did not consider that situation in the

current study. Another recent development includes imputing via

matrix operation (Chi et al., 2013). However this method may

cause some potential loss of accuracy, though it may lead to

increased speed of computation.
Equation (14) provides an approximation of between-segmen-

tal transition probability calculation. When operating on long

segments in which recombination events dominate probability

calculations, such approximations may provide reasonable ac-

curacy because individual haplotypes within a block receive the

same probabilities regarding recombination. When operating on

short segments in which initial haplotype probability dominates

probability calculations, however, the loss of accuracy may

become severe. An ideal requirement would be that the way to

split segments will influence only computational efficiency, but

not the imputation accuracy. The developed MAR algorithm

meets this requirement, which allows us to optimize the minimal

computation without concerns on accuracy. The improvement of

computation by compact representation depends on how refer-

ence haplotypes could be merged, and essentially, on MAF and

LD patterns. Suppose that the total L markers are partitioned

into Ls segments, and there are on average ns blocks within seg-

ments. The computational complexity without compact repre-

sentation is c1¼L�R (for a single individual), and that with

compact representation is c2¼ ns� (L –Lsþ 1)þ (Ls – 1)�R. A

Table 3. Performance of various methods on the real dataset

Method States r2(%) GDR (%) Running time (h)

MAF� 5% MAF55% MAF� 5% MAF55%

Ideal 50 88.2 66.3 4.0 1.8 0.3

FISH 50 87.0 64.6 4.5 2.0 0.3

BEAGLE 86.9 59.8 4.5s 2.1 73.2

MACH 50 84.4 52.8 5.3 2.8 3.0

100 85.9 58.7 4.8 2.3 8.4

200 87.1 62.9 4.4 2.0 27.3

IMPUTE2 50 87.5 64.2 4.2 1.9 18.2

100 87.6 64.9 4.3 1.9 25.2

200 87.6 65.2 4.3 1.9 51.7
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measure of compact ratio is therefore estimated by c1/c2. Our
simulation studies showed that the improvement in computation
was highly correlated with this ratio.
In summary, we have proposed a new statistical model and

method for fast and accurate genotype imputation. Our method
is suitable for large-scale dataset analyses. The implemented soft-
ware FISH is publicly available for academic use.
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