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Preventing relapse is the major challenge to effective therapy in cancer. Within

the tumour, stromal (ST) cells play an important role in cancer progression

and the emergence of drug resistance. During cancer treatment, the fitness of

cancer cells can be enhanced by ST cells because their molecular signalling inter-

action delays the drug-induced apoptosis of cancer cells. On the other hand,

competition among cancer and ST cells for space or resources should not be

ignored. We explore the population dynamics of multiple myeloma (MM)

versus bone marrow ST cells by using an experimental microecology that we

call the death galaxy, with a stable drug gradient and connected microhabitats.

Evolutionary game theory is a quantitative way to capture the frequency-depen-

dent nature of interactive populations. Therefore, we use evolutionary game

theory to model the populations in the death galaxy with the gradients of

pay-offs and successfully predict the future densities of MM and ST cells. We dis-

cuss the possible clinical use of such analysis for predicting cancer progression.
1. Introduction
1.1. Players: cancer and stromal cells
The emergence of therapy resistance is inevitable in multiple types of cancer and

significantly affects survival of cancer patients [1]. The tumour microenvironment

can influence therapy efficacy because it is not merely composed of cancer cells,

but also stromal (ST) cells, a key player in cancer growth and progression [2–4].

During initial treatment, ST cells suppress the apoptosis signal of cancer cells and

further prolong the survival of cancer cells [5,6]. As with many cancers, multiple

myeloma (MM), a cancer of plasma cells in the bone marrow, becomes resistant

to therapy by communication between the MM cells and the ST cells [7,8]. The

key signalling pathways in cancer–stroma communications (i.e. interleukin 6

and stromal cell-derived factor 1) have been extensively studied. However, it is

challenging to extrapolate their biomolecular network to the resulting population

dynamics of cancer and ST cells. Therefore, we propose to use evolutionary game

theory to interpret the interactions between cancer and ST cells [9].

1.2. Evolutionary game theory 101
Evolutionary game theory has been used for modelling interacting populations

in various biological networks [10]. In evolutionary game theory, the fitness

depends on the population composition of various strategies or phenotypes.

For a two-player game between well-mixed player a and player b, the

pay-off matrix is given by

a b

a

b

A B
C D

� �
:

(1:1)
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Table 1. Physical parameters of cancer versus bacteria.

size (mm) motility

Escherichia coli 1 10 mm s21 [25]

cancer 10 10 – 100 mm h21 [26]
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When a player a encounters a player a, it receives pay-off A.

A player a versus a player b receives pay-off B, whereas the

other receives pay-off C. A player b versus a player b receives

pay-off D. When we consider the absolute population of each

type of player (a and b), then the population rate equations

can be written as

da

dt
¼ (A pa þ B pb)a (1:2)

and
db

dt
¼ (Cpa þDpb)b, (1:3)

where population fractions pa ¼ a/(a þ b) and pb ¼ b/(a þ b),

and the fitness of each player is fa ¼ Apa þ Bpb and fb ¼ Cpa þ
Dpb. If A . C and B . D, then player a dominates player b.

Likewise, if A , C and B , D, then player b dominates player

a. This is a classic example of frequency-dependent selection.

A coordination game occurs if A . C and B , D, then both a

and b are stable. In a system with more a, it will keep being

dominated by a. If currently there are more b, then there will

be more b. More complex dynamics occur if A , C and B .

D, leading to a coexistence between the two players. In this

case, a population with more a will then be dominated by b,

and a population with more b will then be dominated by a

(‘hawk–dove game’ [11]).

1.3. Evolutionary game theory in cancer
The evolutionary game-theoretical model has been implemented

on the interaction of cancer and other cells in various stages of

cancer progression. Dingli et al. [12] have explored an evolution-

ary game between MM cells, osteoclasts and osteoblasts,

discussing disease progression and outcome of treatment.

Basanta et al. [13] have used an evolutionary game to model

the interaction and transformation of different stages of glioblas-

toma (such as glycolysis and invasive phenotypes) and predicted

the stages of glioblastoma. Flach et al. [14] have studied the role of

fibroblasts in melanoma growth and drug resistance from a

game-theoretical point of view. However, it is very challenging

to assess cancer and non-cancer populations versus time with

high temporal resolution in clinical data. Because of the chal-

lenge of fitting experimental data, the current game-theoretical

approach is limited in tuning parameters and discussing various

scenarios in cancer progression. Even using in vitro co-culture

experiments in tissue culture flasks, there is no information on

complex heterogeneity in the tumour microenvironment.

1.4. Where is the game of tumour?
The tumour microenvironment highly influences the sensitivity

of cancer cells to chemotherapy treatment. In solid tumours,

drug diffuses into the tumour core from the blood vessels. How-

ever, the drug concentration drops significantly within

hundreds of micrometres away from the blood vessels because

of (i) diffusion barriers of closely packed cells, (ii) uptake by

cells near the vessels, (iii) decreased activity of the drug (such

as doxorubicin) owing to hypoxia, and (iv) dissociation of

drug in the acidic tumour core [15,16]. The relapse usually

occurs when cancer cells in the tumour core suffer less dosage

of drug, survive and gradually form tumour again.

On the other hand, various cells such as tumour cells,

macrophages or ST cells form highly interactive microcolo-

nies [17]. Under different conditions, stroma can provide

tumour-suppressing and tumour-promoting environments

and influence cancer development and progression [17].
Combining with non-uniform distribution of drug within a

tumour under treatment, one may ask whether drug distri-

bution affects the role of ST cells on cancer survival or

proliferation. Therefore, we propose to use microfluidic tech-

nology to mimic the tumour microenvironment with a drug

gradient, and probe the dynamics of cancer and ST cells.

Microfluidics have been used to create versatile functions

for studying various microorganisms. Microfluidics can

create microfabricated landscapes, concentration gradients or

dynamic switching of different chemicals [18–21]. Therefore,

it is possible to reconstruct a heterogeneous microenvironment

to assess the interactions such as competition or cooperation

among cells. For example, a race has been held for prostate

cancer cells to climb up microskyscrapers, characterizing the

invasiveness of different cells [18]. The cooperation of cancer

cells has been observed with the cells taking turns to lead the

collective invasion through a glucose gradient across a

collagen matrix [19]. Because invasion through an extracellular

matrix has a metabolic cost, cancer cells tend to migrate

towards a glucose-abundant region with a higher fitness and

reduce the total cost via exchanging leading positions.

Likewise, a drug gradient also provides a fitness gradient for

cancer cells and builds up a population gradient with time. Fol-

lowing a population gradient, local competition for space

and metabolic resources such as glucose or oxygen drives the

cancer cells to migrate towards the drug source, triggering

the emergence of drug resistance [20]. The death galaxy is a

microfluidic ecology with drug gradients and connected micro-

habitats which accelerates the emergence of antibiotic resistance

in bacteria [22]. The connected microhabitats split the popu-

lations into multiple smaller populations and further increase

the fixation rate of advantageous mutations [23,24]. In a death

galaxy-like microenvironment with a chemotherapy gradient

and microhabitats, we expect to capture the complex dynamics

of MM and ST cells under simulated chemotherapy treatment.
2. Results
2.1. Cancer cells in the death galaxy
The death galaxy was originally designed for bacteria

(Escherichia coli) [22,24]. Considering the difference between

cancer and bacteria, such as cell size and motility (table 1),

we redesign a version for cancer cells. The size of cancer cells

is about 10 mm, 10 times greater than E. coli, and the motility

of cancer cells is at least 100 times slower than that of E. coli.
Therefore, the mammalian version is 100 mm in depth, com-

pared with 10 mm deep for the bacterial version. The distance

between neighbouring microhabitats is much shorter for the

mammalian version. The mammalian version is composed of

two 1 mm wide parallel channels, continuously supplying

nutrient at the one side and drug plus nutrient at the other

side. Between the two parallel channels, there is a culture

region with arrays of hexagons (400 mm in diameter) connected
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Figure 1. Microfluidic device configuration and micrographs of cells. (a) Fabrication and packaging process of our microfluidic device. (b) The cell region is composed
of hexagonal arrays of connected microhabitats. Red dotted lines are the microposts separating the cell region from the nutrient- and drug-supplying channels. Drug
gradient is constructed from the top to the bottom. (c) Image of cells after applying 6 days of doxorubicin gradient (0 – 2 mM 2 mm21). Red, multiple myeloma
cells (8226/RFP); green, bone marrow stromal cells (HS-5/GFP).
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Figure 2. Phase portrait of total MM and ST population density (number of
cells 4 mm22) in the entire cell region versus time. MM and ST are co-
cultured under a doxorubicin gradient from 0 to 200 nM across 2 mm. The
green dotted line shows the average over five ST-rich replicates, with a
square as the initial point. The red dot-dashed line indicates the average
over three MM-rich replicates, with a circle showing the initial point. The
counter-clockwise quivers indicate the fitness determined by slopes of
semi-log growth curves in the entire cell region in the doxorubicin gradient
neglecting the various drug concentrations.
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to neighbouring hexagons via 40 mm channels (figure 1b),

allowing cells to migrate through hexagons. The culture

region and two supplying channels are separated by microslits

(2.5 mm wide; figure 1b), so that cells are confined in the culture

region, whereas nutrients and drug are able to diffuse in and

form a linear drug gradient across the culture region.

The device structure is drawn in L-EDIT, and the chro-

mium mask is written by a laser writer (Heidelberg DWL66).

We use a mask aligner (Karl Suss MA6) to expose a silicon

wafer coated with a 4 mm thick photoresist (AZ4330). After

development (MIF300), we use a reactive ion etcher (Samco

800) to etch 100 mm deep channels and culture region (figure

1a). We sandblast through holes in the silicon for liquid input

and output (figure 1a). Then, we remove the photoresist using

acetone and then oxygen plasma. The lid of the microfluidic

device is made from a 1 mm thick glass slide with a 10 mm

thick PDMS coating (baked at 608C for 2 h; figure 1a). To pack-

age the device, we put the lid on top of the silicon device, use a

manifold to clamp the device and introduce liquids in and out of

the device (figure 1a). We coat the bottom of the silicon device

with fibronectin for cell adhesion prior to loading the cells.

In the following experiments, we work with MM and bone

marrow ST cells, because bone marrow cancer is incurable and

the biomolecular signalling network between MM and ST is

already known [7,27]. The MM cells (8226) are labelled with

red fluorescent protein (RFP) and ST cells (HS-5) are labelled

with green fluorescent protein (GFP). We co-culture them in

the microfluidic device with a linear gradient of doxorubicin,

a chemotherapeutic agent that intercalates DNA and produces

oxidative stress [28], for two weeks. A representative image is

shown in figure 1c, in which MM and ST cells form three-dimen-

sional clusters near the nutrient-rich side within 6 days.

2.2. Evolutionary game theory can predict population
structure

We co-culture MM and ST cells with various initial ratios and

plot total populations in the death galaxy versus time in a

phase portrait (figure 2). In summary, we observed
(1) ST cells are less sensitive to drug than MM cells;

(2) the MM cells do not survive for 5 days without ST cells in

the same treatment; and

(3) the initial ratio of MM versus ST affects the fate of MM

cells: MM cells thrive if initially there were more MM

than ST, but are outcompeted by ST cells if initially

there were more ST than MM.
The phase portrait in figure 2 shows populations of MM

versus ST versus time of multiple co-culture experiments in

the entire drug gradient. The MM-rich dot-dashed line

(three experiments) appears red, whereas the ST-rich dotted

line (five experiments) is green in figure 2. We found that a
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Figure 3. Model prediction of the ST-rich population distribution within the doxorubicin gradient. (a) ST population distribution versus time (from light green to
dark green). Initial condition: uniform distribution of 900 cells 4 mm22. (b) MM population distribution versus time (from light red to dark red). Initial condition:
uniform distribution of 350 cells 4 mm22. (c) Total MM (red) and ST (green) population versus time.
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small population of ST cells desensitizes MM to drug, consist-

ent with the previous discovery of stroma-mediated drug

resistance [8]. Since we observe that the fitness of each cell

depends on population fractions, evolutionary game theory

is suitable for modelling this co-culture system.

We first treat the system as a well-mixed population and

look for parameters of a spatial-independent evolutionary

game model. Therefore, the absolute populations MM or ST

can be described by the ordinary differential equations

dMM

dt
¼ (A pMM þ B pST)MM (2:1)

and

dST

dt
¼ (CpMM þDpST)ST, (2:2)

where population fractions pMM ¼MM/(MM þ ST) and

pST ¼ ST/(MM þ ST). If an MM cell encounters an MM cell,

then it receives pay-off A; an MM cell versus an ST cell

receives pay-off B. An ST cell versus an MM cell receives

pay-off C; an ST cell versus an ST cell receives pay-off D.

From figure 2, we can see that the system favours ST and,

if initially MM is much greater than ST, there exists an anti-

clockwise motion towards the ST axis. Therefore, physical

intuition tells us that A , C and B , D. By fitting the

growth curves of each cell type with various initial popu-

lation fractions, we can find the pay-offs A, B, C and D
(details shown in [29,30]). The quivers in figure 2 indicate

the fitness as a function of population fractions and pay-off

matrix trained from our experiments ( fMM ¼ ApMM þ BpST

and fST ¼ CpMM þ DpST).
2.3. Effect of drug gradient on fitness of multiple
myeloma and stroma

Because doxorubicin causes DNA damage and inhibits cell

proliferation [28], it affects the fitness of all cell types. A

spatially resolved game-theoretical model of the system can

be achieved by assuming the pay-off as a function of drug con-

centration. In the mammalian death galaxy with a linear drug

gradient, we can simplify the system and assume the pay-off is

a one-dimensional function of space (x-direction, along the

drug gradient in the cell region). We also assume the pay-off

is fixed with time. Here, we use finite difference time domain

analysis to solve rate equations (2.1) and (2.2). We tune the

pay-offs A(x), B(x), C(x) and D(x), linear functions along the

x-axis, until they fit both experimental data (ST-rich and

MM-rich). Note that the spatial means of the pay-offs are the

same as what we used to draw the quivers in figure 2.

Figure 3 shows the ST-rich condition, in which the

initial condition is set as a uniform distribution of

900 ST cells 4 mm22 versus 350 MM cells 4 mm22, as the start-

ing point of the green dotted line in figure 2. The model

prediction of the ST-rich population distribution within the

drug gradient is shown in figure 3. The model agrees with

our unpublished observations (A Wu, D Liao, G Lambert,

Q Zhang, TD Tlsty, RA Gatenby, JC Sturm, RH Austin 2013)

that, under ST-rich conditions, ST cells form a population gra-

dient in response to the drug gradient, i.e. fewer cells in the

regions with greater concentration of drug (figure 3a). MM

cells drop monotonically with time if the initial population is

much lower than that of the ST cells (figure 3b). Note that the

population distribution after 3 days becomes nonlinear even

if the pay-off functions are linear.

Figure 3 and figure 4 share the same linear pay-off functions,

the only difference is the initial populations of MM and ST. For
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Figure 4. Model prediction of the MM-rich population distribution within the doxorubicin gradient. (a) ST population distribution versus time (from light green to
dark green). Initial condition: uniform distribution of 200 cells 4 mm22. (b) MM population distribution versus time (from light red to dark red). Initial condition:
uniform distribution of 1000 cells 4 mm22. (c) Total MM (red) and ST (green) population versus time.
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the MM-rich condition, the model predictions of population dis-

tribution within the drug gradient are shown in figure 4, with an

initial condition of uniform distribution of 200 ST cells 4 mm22

versus 1000 MM cells 4 mm22, the starting point of the red

arrow in figure 2. The model is consistent with our experiments

that, under MM-rich conditions, the number of MM cells

increases up to day 4 and then slowly decreases with time

(figure 4b). Interestingly, one may find the MM population gra-

dient is against the drug gradient (figure 4b). It seems that there

exists competition in the region with the lower concentration of

drug between MM and ST, different from our expectation that

ST cells should promote cancer survival and proliferation.

Therefore, ST may be cooperative or competitive depending

on its population relative to the MM population and drug

concentrations.
3. Conclusion
From a thermodynamics point of view, cell motility and drug

resistance both require energy consumption. One common

mechanism of drug resistance is the upregulation of the mem-

brane drug efflux protein (P-glycoprotein 1, for example),

which binds to ATP and pumps the drug molecules outside

the cell membrane [31]. Under drug treatment, the environ-

ment capacity may become smaller than without drug

because each cell requires more energy to be resistant or to

escape [32]. Therefore, it is possible that cells were competing

for nutrients in a crowded region with a lower concentration

of drug.

Conventionally, one can compare the dose–response of

various drugs for different types of cells in a single culture.

If cancer and ST cells are independent, then applying drug

to the co-culture of cancer and ST cells is a natural selection
and should favour the more resistant one. However, it is

more complex, because cancer cells become less sensitive to

most anti-cancer drugs if they are co-cultured with ST cells

[8]. The merit of evolutionary game theory is that it provides

a way to model frequency-dependent selection of interactive

populations—cancer and ST cells. Furthermore, if the drug

concentration varies, then the pay-offs should also vary,

because both players can change their strategy if they

cannot bear the stress. Thus, we here simply assume the

pay-offs to be a linear gradient when a linear drug gradient

is applied. We found that, in regions with higher drug con-

centrations, ST cells grow more slowly while the most

resistant cancer cells survive; this is related to the previous

discovery that the most aggressive cancer cells are the least

limited by environmental constraints [33].

In this paper, we introduce a simple spatial game model

to describe the population dynamics of MM and ST cells

in a tumour-mimicking microecology with a drug gradient.

This model considers the combination of competition and

cooperation among the cells as a function of drug concentration

and population structure. Although we have not considered

the migration of cells in the current model, we successfully pre-

dict the future densities of MM and ST cells in such a

microecology. The next question is, can we apply this analytical

tool to predict cancer progression in patients? If there are

enough time-lapse data from medical imaging (such as

magnetic resonance imaging, computed tomography and posi-

tron emission tomography) of cancer patients, it is possible

to assess the dynamics of cancer and ST cells. Then, the

game-theoretical model presented here would be helpful

to fit the data and predict cancer progression. We hope

this work can inspire more experimental validation, and even-

tually lead to a clinical impact on potential interventions for

cancer treatment.
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4. Methods
The RFP-labelled myeloma cell line (RPMI-8226/RFP) and

GFP-labelled bone marrow stromal cell line (HS-5/GFP) are

courtesy of the Robert H. Gatenby Laboratory from the H. Lee

Moffitt Cancer Center. The cells were cultured in RPMI 1640

medium with 10% fetal bovine serum. MM and stroma cells

were mixed with 33% Matrigel and dropped on the culture

chamber coated by fibronectin (6 mg mm22), then sealed by a

PDMS-coated glass slide. The device was placed in a standard
incubator under 5% CO2 at 378C overnight before the doxorubi-

cin gradient was turned on. A Nikon upright microscope and

Qimaging charge-coupled device camera were used to obtain

images of bright field, green and red fluorescent channels.
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