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Abundance trends are the basis for many classifications of threat and recovery

status, but they can be a challenge to interpret because of observation error, sto-

chastic variation in abundance (process noise) and temporal autocorrelation in

that process noise. To measure the frequency of incorrectly detecting a decline

(false-positive or false alarm) and failing to detect a true decline (false-

negative), we simulated stable and declining abundance time series across

several magnitudes of observation error and autocorrelated process noise.

We then empirically estimated the magnitude of observation error and auto-

correlated process noise across a broad range of taxa and mapped these

estimates onto the simulated parameter space. Based on the taxa we examined,

at low classification thresholds (30% decline in abundance) and short obser-

vation windows (10 years), false alarms would be expected to occur, on

average, about 40% of the time assuming density-independent dynamics,

whereas false-negatives would be expected to occur about 60% of the time.

However, false alarms and failures to detect true declines were reduced at

higher classification thresholds (50% or 80% declines), longer observation win-

dows (20, 40, 60 years), and assuming density-dependent dynamics.

The lowest false-positive and false-negative rates are likely to occur for

large-bodied, long-lived animal species.
1. Introduction
Random processes are a ubiquitous feature of population fluctuations. A varia-

ble, stochastic environment may move a population randomly around a true

underlying trend in abundance, creating a time series of abundance that is a com-

bination of both deterministic ecological processes (e.g. declining abundance

owing to changes in habitat) and stochastic fluctuations [1–5]. Such stochastic

variation in abundance, commonly referred to as process noise, can arise when

fluctuations in an organism’s biotic and abiotic environment cause transient

population-wide variations in birth and/or death rates that result in short-term

deviations around a true underlying temporal trend in population abundance.

Process noise can be further exaggerated when it is positively autocorrelated in

time, e.g. when greater-than-average population growth in one year is followed

by greater-than-average growth in the following year. Correlated process noise

can arise from the abiotic environment, species interactions or age-structured

dynamics [2,4–8]. For example, correlated climate variability may lead to posi-

tively correlated environmental variation between years, which in turn can lead

to positively correlated variation in the birth rates, death rates and abundance

of an organism. In theory, this autocorrelation in process noise can thus have

important effects on both the magnitude of stochastic variation in abundance

and the probability of extinction [4–6,9,10].

In addition to real stochastic changes in abundance from year to year, vari-

ation in observed abundance can also arise from imperfect estimation of

abundance [7]. This ‘observation error’ (i.e. the difference between true and

observed abundance) is inherent in almost all estimates of abundance, except

in the rare cases where populations are censused completely (e.g. counts of clo-

sely managed species such as the Californian condor). Observation error can

either arise from systematic errors (e.g. bias that always underestimates or
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Figure 1. Three example hypothetical stable time series of abundance (no true underlying time trend) with a starting abundance of 1000 individuals (horizontal
grey line). The time series in each panel were generated by setting density-dependence (b in equation (2.1)) to 0.65 and the population growth rate (l) to 2.4.
Variability in the true and observed time series is solely a function of lag-1 autocorrelated (f ) process noise (�N(0, sp)) and observation error (�N(0, so)), the
latter only for the observed time series; see lower left corner of each panel for values of these parameters. Closed circles and thin black line are observed abundance,
whereas the red line without symbols is the underlying true stochastic abundance (state). The thick black lines are least-square linear regressions of the relationship
between loge abundance and time for time steps 25 – 34; the corresponding estimated per cent change in raw abundance over the 10 years is shown at the top of
panels (a – c). These panels illustrate that despite a long-term stable trend in abundance, quantifying trends in abundance over short time scales may lead to falsely
classifying the population as decreasing in abundance, especially at high magnitudes of process noise (b,c), and lag-1 autocorrelation in process noise (c).
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overestimates true abundance) or random error owing to the

sampling process. Observation errors can be particularly

large in systems with sporadic or little systematic monitoring.

Estimation and interpretation of the true underlying rate

of change in abundance in the presence of process noise

and observation error can be challenging. Classification

errors can occur where, for example, one either fails to cor-

rectly classify a population as declining when it is declining

(a false-negative), or incorrectly classifies a population as

declining when it is not (a false-positive or false alarm

[1,3,9–11]). Such errors particularly arise if the magnitude

of stochastic variation in abundance is large, time series of
observations are short, or observations are missing—three

conditions that are quite common in ecological systems,

unfortunately [2,4,5,7,8,12,13]. Population ecologists have

devoted much effort to developing quantitative methods to

disentangle observation error and process noise from true

underlying trends in abundance, including state-space

models that jointly estimate observation error along with

process noise in time-series data of abundance [4–6].

Stochastic variability can give rise to true increases or

decreases in abundance over short time scales, despite the

fact that there may be no underlying true long-term trend

in abundance (figure 1). If the assessment spans a series of
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observations coinciding with a transient increase or decrease

in abundance owing to process noise, then it is possible to

misdiagnose those stochastic deviations in abundance as a

true underlying trend. The chance of this occurring is likely

to be greater for shorter durations of observations of abun-

dance (shorter relative to generation length) and stronger

for positive autocorrelations in process noise (figure 1).

Misdiagnosing stochastic deviations in abundance as true

underlying declines in abundance (a false-positive error)

has practical implications, because management actions to

halt or reverse declines in abundance can be expensive, will

divert limited resources away from other activities, and ide-

ally would only be taken when there is a decline that will

continue unless intervention occurs. This assumes that con-

servation actions should be based on the long-term status

of a population and not on transient changes in abundance

owing to stochastic fluctuations. There may be instances

where action is warranted even if in the long run a popu-

lation is stable. For example, small populations have an

increased probability of extinction owing to random cata-

strophic events [9–11]. Failing to detect true underlying

declines in abundance (a false-negative) and therefore not

taking management or conservation action when it is

needed can put species and populations at further risk of

extinction and delay their recovery [12,13].

Which classification errors should we care most about?

Some decision-makers might be most concerned with the poten-

tial social and economic costs of false-positives (implementing

actions when they were not necessary), whereas others might

be most concerned with the biodiversity costs of false-negatives

(failing to act when one should), arguing that there is often little

cost to falsely declaring a species as being at risk of extinction.

However, this is true only when budgets for conservation

actions are unlimited (i.e. never), and when conservation

occurs in isolation of other societal values. Moreover, the conser-

vation imperative is increasingly being challenged by resource

exploitation. Regardless of whether one is more concerned

with false-negatives or false-positives, few would argue against

the need for accurate estimates of extinction risk. Indeed, an ade-

quate understanding of the factors that are most likely to lead to

erroneous conclusions about extinction risk in either direction is

an important prerequisite for making informed conservation

and management decisions.

Despite the ubiquity of conservation metrics based on

trends in abundance, the extent to which stochastic variation

in abundance may lead to classification errors has only been

quantified for a few taxonomic groups [1–5,14,15] or under

high and low empirical estimates of uncorrelated process

noise and observation error [6,16]. To the best of our knowl-

edge, this previous work has not considered the potential

influence of temporal autocorrelation in process noise. In

addition, the conservation focus on false-negatives by many

researchers has created a gap in our understanding about

false-positives. Here, we ask ‘to what extent does autocorre-

lated stochastic variation, which may exist in a broad range

of taxa, lead to false-positives that classify populations as

having increased risk of extinction and to false-negatives

that fail to identify those populations that are at risk?’ Our

goal is to provide general insights into the extent of potential

misclassification of threat status in conservation and resource

management contexts. We do this by estimating empirical

bounds on the magnitude of autocorrelated process noise in

nature (across the global population dynamics database,
GPDD), and the degree to which both autocorrelated pro-

cess noise and observation error are expected to influence

false-positive and false-negative rates.
2. Methods
We first developed simulations to determine the probability of

occurrence of: (i) a false-positive, i.e. falsely classifying a stable

population as being at risk of extinction (i.e. declining more than

a given threshold), and (ii) a false-negative, i.e. a declining popu-

lation as not at risk (i.e. declining less than a given threshold). We

explored how these probabilities are affected by a wide range of

values of: (i) process noise, (ii) magnitude of temporal autocorrela-

tion in that process noise, and (iii) observation error. We then fitted

state-space models using a Bayesian estimation framework to

empirically observed field abundances of numerous taxa to esti-

mate the typical range of parameter values for: (i) process noise,

(ii) autocorrelation in process noise, and (iii) observation error.

Finally, we examined the results of our simulations within the

bounds of those empirical parameter values to understand

the probability of falsely classifying extinction risk in real-world

populations. We describe these steps in detail below.
(a) Simulated time series
We simulated time series of abundance according to a stochastic

Gompertz model of population dynamics [9,10,17], which is

useful in many conservation applications because its parameters

can be estimated directly from time series of abundance esti-

mates, data which are more common than the detailed

demographic information necessary for more complex models

of population dynamics:

loge(Xtþ1) ¼ lþ b(loge(Xt))þ 1t,
loge(Yt) ¼ loge(Xt)þ dt,
1t � f1t�1 þN(0, s2

p)

and dt � N(0, s2
o),

9>>=
>>;

(2:1)

where Xt is the true abundance in year t, l is the population growth

rate per time step, b is the strength of density-dependence (i.e. when

b is equal to 1, the dynamics are density independent, and when b is

less than 1, they are negatively density-dependent), 1 is process

noise that is correlated with the previous year’s process noise

through the lag-1 autocorrelation, f, Yt is observed abundance in

year t and d is observation error. Both process noise and observation

error were assumed to be normally distributed, with a mean of zero

and variance equal to s2
p and s2

o, respectively [2,4,5,18]. The process

model in equation (2.1) is analogous to an autoregressive moving

average model ARMA (1,1), where the autoregressive process

noise (1) is the moving average component and b represents the

first order autoregressive (AR(1)) coefficient [6,19].

To estimate the false-positive rate, we generated a stable time

series with no true underlying time trend by setting b equal to

0.65 and the population growth rate l to 2.4. The resulting time

series consisted of observed abundance Y and true abundance X
in year t, both which varied solely as a result of 1, d and f. We set

b equal to 0.65 because it represents moderate density-dependence

and is the median estimate of the strength of density-dependence

from previous state-space analyses of the GPDD [9,10,20].

We repeated those simulations assuming density-independent

dynamics (b ¼ 1, l ¼ 0). To estimate the false-negative rate, we

repeated the procedure above except with three true underlying

time trends (a total decline of 30%, 50% and 80%) over a range of

observation windows. For these declining time series, we assumed

density-independent dynamics [14] and population growth rates

(l) less than 0 for each of the 12 combinations of total decline and

observation window (see the following section for the l values

corresponding to each rate of decline in loge space).



Table 1. The five variations of the Gompertz population dynamics model in equation (2.1) that were fitted to each of the global population dynamics database
time series using a Bayesian estimation framework. (Parameters that were estimated are denoted by ‘est.’. Remaining parameters were fixed at either zero or one.)

model
process
noise (sp)

observation
error (so)

growth
rate (l)

density-
dependence (b)

autocorrelation
in process noise (f )

1 est. est. 0 1 0

2 est. est. 0 est. 0

3 est. est. est. 1 0

4 est. est. 0 1 est.

5 est. est. est. est. 0
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To explore the joint influence of observation error, process

noise and temporal autocorrelation in process noise (at a one-

time-step lag) on our ability to correctly classify a population

as stable (i.e. defined as where the slope of the relationship

between abundance and time is not significantly different from

zero), we simulated 10 000 time series, 100 time steps long,

each starting with a true abundance of 1000 individuals. These

simulations were run for each of 400 possible combinations

of observation error (s2
o; 0.1, 0.3, 0.5 and 0.7), process noise

(s2
p; range: 0–2 in steps of 0.2) and autocorrelation in that

noise (f; range: 21 to 1 in steps of 0.2) for a total of 4.84 million

time series.

To explore how the same sources of variability in abundance

outlined above influence our ability to correctly classify a popula-

tion as declining (i.e. reject the null hypothesis that a population is

not declining enough to be considered vulnerable, threatened or

endangered when in fact it is at least as much), we simulated

time series with three underlying time trends (a total decline of

30%, 50% and 80%) over 10, 20, 40 and 60 time steps across the

same 400 possible combinations of observation error, process

noise and autocorrelation in process noise that we considered for

the above analysis of false-positives.
(b) Classifying population trends
(i) The probability that stable noisy populations are

misdiagnosed as declining (false-positives)
For each simulated time series, we randomly selected a 10, 20, 40 or

60 year observation window (i.e. duration of time series over

which a time trend is estimated). We fitted an ordinary least-

squares linear regression to the resulting time series of observed

loge abundance to estimate the rate of change (i.e. slope) in abun-

dance over the observation window. For each combination of

observation error, process noise, lag-1 autocorrelation and obser-

vation window, we calculated the proportion of the 10 000

simulations in which the population might be misclassified as at

risk of extinction according to the International Union for Conser-

vation of Nature (IUCN) red list decline criterion A2 [1,3,21].

Specifically, for three situations, we calculated the proportion of

simulations where the slope was significantly (at a ¼ 0.1) less

than: (i) 20.035, 20.018, 20.009 and 20.006 loge abundance per

time step, which correspond to a decline in abundance of at least

30% over 10, 20, 40 and 60 years, respectively, and an IUCN classi-

fication of vulnerable (high risk of extinction); (ii) 20.069, 20.035,

20.017 and 20.012, which correspond to a decline in abundance

of at least 50% over 10, 20, 40 and 60 years, respectively, and an

IUCN classification of endangered (very high risk of extinction);

and (iii) 20.161, 20.081, 20.040 and 20.027, which correspond

to a decline in abundance of at least 80% over 10, 20, 40 and

60 years, respectively, and an IUCN classification of critically

endangered (extremely high risk of extinction).
(ii) The probability that declining noisy populations are
misdiagnosed as stable (false-negatives)

For each of the 10 000 iterations under each scenario of true

declining abundance (i.e. a total decline of 30%, 50% or 80%),

we calculated the estimated rate of decline as described above

for false-positives. We then quantified the false-negative rate as

the proportion of simulations where we failed to reject the null

hypothesis (i.e. not declining enough to be considered vulner-

able, threatened or endangered), when in fact the null

hypothesis was false.

(c) Empirical estimates of correlated process noise and
observation error

To generate empirically plausible estimates of observation error,

process noise and the degree of autocorrelation in process

noise, we analysed 627 abundance time series from the GPDD

[2,4,5,7,8,22]. The GPDD is one of the most comprehensive collec-

tions of abundance time series in the world and consists of nearly

5000 time series. We filtered these data series to remove plant

populations, non-annual sampling intervals, time series shorter

than 15 years (median: 26 years; range: 15–156), and harvest-

based estimates of abundance that assume harvest is an index

of abundance, resulting in 627 unique time series across four

classes, 19 orders and 362 species (see the electronic supplementary

material for full list of time-series IDs from the GPDD).

We fitted five variations of the model defined in equation

(2.1) to each of the GPDD time series in a Bayesian estimation fra-

mework (table 1). By fitting these models within a Bayesian

framework, as opposed to maximum-likelihood, we avoided

the problem of boundary estimates of process noise and obser-

vation error from time series in the GPDD that result in failure

of the models to converge [4–6,16,23], because even weakly

informative priors can keep models from failing to converge.

We did not fit a model that simultaneously estimated all par-

ameters, because preliminary analyses indicated that such a

model routinely failed to converge. This result was not surpris-

ing, given that for many time series, especially declining ones,

it is very difficult to simultaneously estimate the population

growth rate (l) and density-dependence (b). We therefore took

a multi-model inference approach to generate estimates of auto-

correlated process noise and observation error that accounted for

model uncertainty by weighting parameter estimates from each

model by the data support for the model in which the par-

ameters occurred. We quantified that data support for each of

the five models using the deviance information criterion (DIC)

and then calculating normalized DIC model weights based on

DIC differences from the top model, i.e. the model with the

lowest DIC [9–11,24]. We then generated averaged parameter

estimates, which were weighted averages across models, by mul-

tiplying the median posterior probabilities of each parameter (or
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fixed value) by the normalized DIC weight of the model in which

the parameter occurred and then summing these weighted par-

ameter estimates across the five models for each time series

[12,13,25,26].

We assigned uninformative gamma (1023, 1023) prior prob-

ability distributions to s2
p and s2

o, an uninformative normal (0, 1)

prior to l, and uniform priors to b (0, 2) and f (21, 1). Posterior

probability distributions were generated for the parameters

estimated in each model using a Markov chain Monte Carlo pro-

cedure in the JAGS package in R [1,3,14,15,27]. We ran three

chains for 100 000 iterations, and thinned every five iterations

with a burn-in of 5000 iterations. Convergence was assessed by

examining the potential scale reduction factor (R̂); convergence

was assumed to have occurred if R̂ was less than 1.1 [16,28].
(d) Mapping empirical estimates of correlated process
noise and observation error onto simulated
parameter space

The empirical estimates of observation error, process noise and the

degree of autocorrelation in process noise from each time series of
real-world populations were then mapped onto the parameter

space generated in the simulations. Time series with estimated

observation error in four categories (i.e. between 0–0.2, 0.2–0.4,

0.4–0.6 and more than 0.6) were mapped onto the simulated par-

ameter space in which the observation error was fixed at either

0.1, 0.3, 0.5 or 0.7. The results visualize, for a broad range of typical

taxa, the extent to which variation owing to observation error, pro-

cess noise and autocorrelation in process noise may lead to the false

classification of: (i) a stable time series as being at elevated risk of

extinction, or (ii) a declining time series as not being at risk of extinc-

tion. Those false classification rates were also estimated across a

range of duration of time series and thresholds for extinction risk.
3. Results
(a) Classifying population trends from simulated

time series
Noisy time series and observation error led to substantial

classification errors of both false-positives (false alarms) and

false-negatives. The proportion of simulations where a
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population was falsely classified as at risk of extinction (when it

was actually stable, i.e. false-positive error) was positively

related to the magnitude of process noise and positive lag-1 auto-

correlation in that process noise (figure 2a,b). The false

classification rate was much lower in density-dependent

(figure 2a) than density-independent populations (figure 2b).

These lower false-positive rates arise because simulated

population dynamics without density-dependence result in

abundance that follows a random walk, whereas the dynamics

of populations with density-dependence will tend to have dam-

pened positive and negative deviations in abundance from the

carrying capacity of the population (i.e. the long-term stable

abundance). In contrast to false-positives, when observation

windows were short, false-negative rates for a truly decreasing

population increased as the lag-1 autocorrelation in that process

noise became more negative (figure 2c and the electronic sup-

plementary material, figure S1—10 years). However, when

datasets were lengthy, false-negative rates increased with

increasing process noise and larger positive lag-1 autocorrelation

(electronic supplementary material, figure S1—60 years).

Large-magnitude process noise that was strongly positi-

vely autocorrelated (but not negatively autocorrelated) led to

the highest probabilities of false-positives, regardless of the

threshold for classifying a population as being at risk of extinc-

tion and whether the population had density-dependent or

density-independent dynamics (figure 2a,b). That general

result also held for all observation windows and magnitu-

des of observation error (electronic supplementary material,

figure S2). This pattern arises because positively autocorrelated

process noise results in larger departures from an underlying

trend than the dampening, regulating effect of negatively corre-

lated noise. With positive autocorrelation, each stochastic

deviation in abundance is more likely to be in the same direction

as the deviation in the previous time step.

(b) Empirical estimates of correlated process noise
and observation error

Real-world animal population abundance time series are

characterized by greater observation error than process

noise (figure 3). The distributions of estimates of both par-

ameters were characterized by long tails, indicative of a few

time series with large estimates, whereas the majority of par-

ameter estimates fell near the medians of 0.18 and 0.41

standard deviation units for process noise and observation

error, respectively (figure 3). In contrast to the support for

process noise and observation error, there was less evidence

for widespread autocorrelation in process noise; half the

time series had multi-model averaged estimates of lag-1 auto-

correlation in process noise equal to zero (357 of 627 time

series; figure 3).

(c) Mapping empirical estimates of correlated process
noise and observation error onto the simulated
parameter space

Most of the animal abundance time series were characteri-

zed by combinations of observation error and process

noise (some of which was autocorrelated) that corresponded

to a false-positive rate of approximately 0.1–0.2, and no

greater than 0.3 (i.e. no circle within the yellow or red

zones of figure 4a) assuming moderate density-dependence
(b ¼ 0.65), short time series of observations (10 years) and

the classification threshold of a 30% decline (figure 4a).

False-positives were reduced when trends were measured

over longer time series, and when higher thresholds were

used for classifying a stable population as at increased risk

of extinction (figure 5a). As a result, at higher thresholds

for classification of increased risk of extinction (IUCN A1 of

50% versus IUCN A2–4 of 30%), fewer time series were charac-

terized by the kind of variation that would be expected to lead to

false-positives for the classification of extinction risk (figure 5a
and the electronic supplementary material, figure S2).

Density-dependent populations are less likely to suffer false-

positive classifications than those with density-independent
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dynamics, given the autocorrelated process noise and obser-

vation error characterized in the GPDD time series (compare

figure 5a with figure 5c).

When considering false-negatives, the empirical time series

were characterized by combinations of observation error and

process noise that resulted in a false-negative rate of approxi-

mately 0.5–0.6, assuming 40 years or shorter time series of

observations and the least biologically conservative classifi-

cation threshold of a 30% decline (figure 5b). Similar to false-

positives rates, false-negatives were reduced when trends

were measured over longer time series, and when higher

thresholds were used for classifying a population as at

increased risk of extinction (figure 5b). Interestingly, false-

negative rates declined more quickly with increasing

classification thresholds for short observation windows than

longer observation windows (e.g. 10 versus 60 years in figure 5b).

The effect of duration of datasets on the false-positive

rate depended on whether the population dynamics included

density-dependence. Over the range of time series lengths

we considered, longer time series of data available for

decision-making reduced the chance of false-negatives in

density-independent simulations (electronic supplementary

material, figure S1) and false-positives in density-dependent

simulations (electronic supplementary material, figure S2).

The influence of time-series length was much more pro-

nounced for false-negatives with density independence than

false-positives with density-dependence (compare electronic

supplementary material, figures S1 and S2). In contrast to

simulations with density-dependence, the false-positive rate

increased with the length of the time series over which the

decline is estimated in density-independent simulations (elec-

tronic supplementary material, figure S3). This result arises

because population dynamics in the density-independent

simulations are a random walk, and so the longer the time

series, the more opportunity there is for population abundance

to randomly wander from the long-term mean. Increasing

observation error also very slightly increased the probability

of falsely classifying a stable population as at risk of extinction

(electronic supplementary material, figure S2) and failing to

detect a true decline (electronic supplementary material,
figure S1) across all combinations of process noise, autocorrela-

tion in process noise, length of time series and threshold for

classifying a population as being at risk of extinction.
4. Discussion
Three key findings emerge from our simulations and analyses

of false classifications of extinction risk in animal populations.

First, stable real-world populations might be misclassified as

declining and at risk more often than is typically assumed,

that is, with a probability more than 0.1. Using higher decline

thresholds can reduce the chance of such false alarms, but

this comes at the potential cost of a greater chance of false-

negatives occurring, (i.e. not identifying populations that are

truly declining) and thus delaying needed conservation

or management action. Second, the magnitude of density-

dependence is critical; all other things being equal, false

alarms are less likely to occur in strongly density-dependent

populations compared with weakly regulated populations.

Third, at least for the 627 animal populations that we considered,

lag-1 temporal correlation in process noise is less prevalent than

no autocorrelation. This fact implies that dynamics of most of

these populations are not generally driven by substantial

external forcing that is lag-1 autocorrelated.

Our work has implications for ranking conservation

activities in an era of increasing financial austerity. In the

face of reduced budgets [17,29], and increasing pressure for

the judicious use of dwindling resources to conserve the

world’s biodiversity [30], our findings highlight that conser-

vation actions based on trends in abundance alone may,

under some circumstances (i.e. classification thresholds of

30% and populations with weak density-dependence), inap-

propriately direct limited funds to populations that are not

truly at risk of extinction.

We recognize that trends in abundance are only part of

the threat classification process, which can also include con-

sideration of geographical range and extent of habitat loss

and fragmentation as well as quantitative analyses of extinc-

tion risk (e.g. population viability analyses; [21]). In addition,
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we also recognize that falsely classifying a stable population

as at risk of extinction may be acceptable under some circum-

stances. For example, we often do not know during a decline

in abundance if that change is owing to short-term stochastic

fluctuations or a longer-term trend. As a result, taking action

when a population is experiencing a dramatic decline in

abundance (even if it is driven by short-term stochastic varia-

bility in abundance) may be worthwhile if it nudges a

population toward its equilibrium abundance more quickly

than if intervention were not taken, or reduces the vulner-

ability of the population to stochastic events that may lead

to extinction.

The cost of falsely classifying a population as at risk of

extinction will be context-dependent, will depend on whether

the detection of a decline triggers management action (and

what type) and is likely to vary by taxa. For example, actions

aimed at reversing declines and reducing exploitation oppor-

tunities may result in substantial socio-economic costs for

those taxa that are harvested commercially. On the other

hand, for species that are not commercially exploited, the

socio-economic cost of a false alarm may be relatively low.

However, false-positives are only part of management

decisions that need to balance both the costs of falsely declar-

ing a population in need of conservation action and the costs

of falsely declaring a population as healthy (i.e. when, in fact,

it could benefit from some form of intervention) [31,32]. Our

results highlight that conservation actions based on trends in

abundance alone may also fail to correctly identify popu-

lations at risk of extinction more often than 50% of the time

when based upon short time periods of observation and

the least biologically conservative classification threshold of

a 30% decline.

Our findings suggest that false alarms may be lowest for the

species we are most likely to be concerned about. Conservation

and resource management tend to focus on large-bodied

species, which generally have low population growth rates

and strong density-dependence [33–35]. Although there are

exceptions, density-dependence tends to be strongest in large-

bodied species, such as mammals, sharks and teleost fishes

[36–38]. Thus, because our simulations suggest that false

alarms will be lowest in density-dependent populations, the

chance of falsely classifying a species or population as at risk

of extinction is likely to be lowest in large-bodied species,

which also tend to be most targeted for exploitation. We caution,

though, that for populations which are heavily influenced by

environmental conditions and are largely not regulated by den-

sity-dependence, such as small pelagic clupeid fishes, there may

be a higher probability of a false classification of threat status (i.e.

false-positives and -negatives).

Direct comparison of our results with those from previous

studies is difficult, because previous work has used various

thresholds and criteria for defining population status. None-

theless, our finding that the false classification of extinction

risk is greater than expected based on chance alone for many

populations is generally consistent with previous estimates of

the probability of false-positives based on empirical estimates

of observation error and process noise from the GPDD [16]

and with simulations using age-structured populations of Aus-

tralian fishes [14]. Previous empirical analyses of exploited

populations revealed a zero probability of false classification

when species are fished aggressively (i.e. near the limit refer-

ence point Blim, as was typical in Europe until recently; [3]).

However, false classifications are present, albeit at low levels,
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when species are more biologically conservatively managed

around the target reference point of BMSY (as mandated in

the USA and increasingly in Europe; [39]). Nonetheless, both

these findings illustrate that current IUCN-like threat classifica-

tions based on estimated declines in abundance are consistent

with, and complimentary to, risk assessments based on tradi-

tional fisheries reference points, even though the two are

based on very different premises. This is not surprising,

because exploited populations tend to exhibit strong density-

dependence (which is the defining attribute of a high-yielding

fishery, for instance) and are well-monitored with long time

series—two key attributes that minimize the chance of false

classification of extinction risk.

As is inevitable when analysing a large dataset and assum-

ing simple population dynamics, there are three main caveats

to our analyses and interpretations. First, we modelled

correlated process noise as an AR(1) in which correlation

decreases exponentially with increasing time lag. Although

this is a common way to characterize correlated process

noise, process noise may show a slower decline in correlation

with increasing time lag than assumed by an AR(1) process

[6,9,40]. Although it is likely that some time series in the

GPDD are better described by such ‘pink’ noise, it is difficult

to estimate pink noise from the relatively short time series

available. Not considering correlation at longer time lags

should, however, result in lower estimates of false-positive

and false-negative rates, because pink noise has been shown

to have a similar but stronger influence on the probability of

extinction as lag-1 autocorrelated process noise [9].

Second, we fitted scalar (or diffusion approximation)

models to simulated and empirical data to estimate changes

in abundance through time. Scalar models assume there is no

underlying age-structure, which may overestimate variability

in population size [41]. In our case, we do not have sufficient

information to tailor each specific model to include age struc-

ture, so our estimates of process noise should be considered

precautionary (i.e. biased high for age-structured populations).

Third, while our empirical estimates of stochastic variation in
abundance are derived from 600-plus time series spanning

300 species, they are still not a random sample of species

[42]. The use of these time series may bias our estimates of sto-

chastic variation in unknown directions, but is most likely to

result in the inclusion of populations characterized by low

stochastic variation in abundance because they are the popu-

lations that will have persisted long enough to be studied

and incorporated into the GPDD. These caveats and limitations

identify room for future analyses to extend the ideas and ana-

lyses detailed in this paper. For instance, future analyses could

include different types of correlation in process noise at longer

time lags, age-structured dynamics with varying degrees

of density-dependence and population growth, as well as

additional time series of abundance.

In conclusion, our analyses suggest that given the magni-

tude of correlated process noise and observation error typical

of many living organisms, it is possible that stable animal

populations will be falsely classified as being at high risk of

extinction and declining populations may be falsely classified

as being not at risk. However, this is least likely to be true for

those populations we might be most concerned about, such

as exploited mammals and fishes. Both taxa, especially the

larger individuals and species favoured by hunters and fish

harvesters, tend to exhibit strong density-dependent survival,

which our analyses indicate tends to dampen stochastic varia-

bility in abundance, thereby enhancing our ability to detect

meaningful trends that require prioritization and action.
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