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Trade-offs between different components of a pathogen’s replication and

transmission cycle are thought to be common. A number of studies have

identified trade-offs that emerge across scales, reflecting the tension between

strategies that optimize within-host proliferation and large-scale population

spread. Most of these studies are theoretical in nature, with direct experimental

tests of such cross-scale trade-offs still rare. Here, we report an analysis of avian

influenza A viruses across scales, focusing on the phenotype of temperature-

dependent viral persistence. Taking advantage of a unique dataset that reports

both environmental virus decay rates and strain-specific viral kinetics from

duck challenge experiments, we show that the temperature-dependent

environmental decay rate of a strain does not impact within-host virus load.

Hence, for this phenotype, the scales of within-host infection dynamics and

between-host environmental persistence do not seem to interact: viral fitness

may be optimized on each scale without cross-scale trade-offs. Instead, we con-

firm the existence of a temperature-dependent persistence trade-off on a single

scale, with some strains favouring environmental persistence in water at low

temperatures while others reduce sensitivity to increasing temperatures. We

show that this temperature-dependent trade-off is a robust phenomenon

and does not depend on the details of data analysis. Our findings suggest

that viruses might employ different environmental persistence strategies,

which facilitates the coexistence of diverse strains in ecological niches. We

conclude that a better understanding of the transmission and evolutionary

dynamics of influenza A viruses probably requires empirical information

regarding both within-host dynamics and environmental traits, integrated

within a combined ecological and within-host framework.
1. Introduction
Aquatic birds are the definitive host of influenza A viruses [1,2]. While this fact

has long been known, studies of avian influenza viruses (AIVs) in wild birds

were limited [3] until the emergence of H5N1 and more recently H7N9 viruses

[4,5]. These spill-over events have highlighted the importance of understanding

the ecology and evolution of influenza viruses in their avian hosts as a

pre-requisite to better surveillance and preparedness for pandemic threats [6].

While influenza in humans is thought to involve a relatively short environ-

mental transmission stage (though this is still an area of active investigation

[7–9]), accumulating evidence suggests that transmission of influenza in aquatic

birds involves a potentially long-lasting environmental stage. In aquatic birds,

the main route of transmission is thought to be faecal–oral [2]. While the proximity

of many birds in large flocks can lead to rapid transmission and large-scale out-

breaks, it has recently been appreciated that prolonged persistence of influenza
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virus in the aquatic environment is possible [10–13]. This might

lead to additional, indirect chains of transmission [14–18].

Influenza virus circulation and long-term maintenance in

avian populations is probably determined by a combination

of explosive, essentially direct transmission and episodic con-

tributions from the environmental reservoir [19]. The precise

impact of environmental transmission is thought to be deter-

mined by virus-specific durability under different abiotic

conditions. Specifically, temperature appears to be a particu-

larly important determinant of AIV persistence, as quantified

via laboratory incubations [10,20,21].

The importance of both environmental persistence and

within-host replication for the overall fitness of avian influenza

makes it a prime target to study the existence of potential trade-

offs across scales. Within an infected host, efficient replication

and immune evasion are central. At the population level,

efficient transmission between hosts, potentially with good

environmental persistence as an intermediate stage, is a critical

component of overall pathogen fitness [22–26]. It is plausible,

then, that different constraints act at different parts of this cycle

and that potential conflicts between optimizing fitness for one

component versus another may lead to trade-offs.

In recent years, several mainly theoretical studies (often

going by the name of multi-scale studies) have considered

aspects of pathogen replication and transmission cycles and

have shown that trade-offs can arise under straightforward

assumptions (e.g. [27–29] for recent reviews). While these

studies provide useful insights regarding the general features

of such trade-offs and the circumstances under which they

should be expected, direct experimental tests of multi-scale

trade-offs are less common. One notable exception is a

study on environmental survival and growth in phages,

where a trade-off between the environmental persistence of

coliphages with replication efficiency in the bacterial host

was demonstrated [30].

To our knowledge, while multi-scale trade-offs in influenza

A viruses have been postulated [31], no direct evidence of their

existence has been presented. Here, we combine mathematical

models with a unique dataset of viral load dynamics following

influenza infections in ducks and viral persistence in water to

analyse the temperature-dependent persistence phenotype and

to study whether this phenotype encounters any trade-offs.

We find—perhaps surprisingly—little evidence for a trade-off

of this phenotype between the environmental and the within-

host scales. Instead, confirming findings from a previous study

[31], we find that a temperature-dependent trade-off exists on a

single scale, namely the environmental stage.
2. Material and methods
(a) Experimental data
The data we analysed quantified virus persistence as a function of

temperature from in vitro experiments, together with virus load

estimates from influenza infections in ducks. The seven virus iso-

lates were obtained from an ongoing long-term surveillance of

AIV circulation in wild birds in Minnesota, USA [32,33].

Five viruses were isolated from dabbling ducks between 14

and 16 September 2007 at Roseau River Wildlife Management

Area, Minnesota, USA. For these viruses, we previously provided

evidence that they arose from a limited gene pool, probably result-

ing from genetic reassortment between circulating viruses in the

sampled duck population [34]. Two additional viruses were iso-

lated from surface lake water [20]. These two strains, which
are genetically more different, are marked with an asterisk (*)

throughout the paper.

For all isolates, virus persistence in water as a function of

temperature as well as virus shedding pattern in mallards (Anas
platyrhynchos) were assessed. Virus persistence (i.e. virus infectivity

over time) was measured based on the median tissue culture infec-

tious dose in Madin-Darby canine kidney cells. Virus load was

quantified based on the Matrix gene copy number in cloacal and

oropharyngeal samples estimated by real-time PCR. Note that we

performed all analyses described below for both the cloacal and

the oropharyngeal data. Results and conclusions were the same

for both the cloacal and oropharyngeal data. We therefore present

here only results for the cloacal data owing to its greater importance

as a route of potential environmental transmission. Further details

related to the experimental design and methodology are available

from the previously published studies [20,34].

(b) Temperature-dependent decay equation
We fitted the rate of virus decay c(T ) as a function of temperature

T (in degrees Celsius) using the simple exponential equation

c(T ) ¼ aegT. For each virus strain, we estimated two parameters,

a and g, which represent the rate of virus decay at 08C (a) and

the sensitivity of viral decay to increasing temperature (g).

Assuming a normal distribution for the error structure, for each

strain we minimized the sum of squared residuals (SSR) given

by SSRn ¼
P

T(dT 2 mT)2, where dT and mT are model and data

values at temperature T. We also performed parameter fits

under the assumption that errors are lognormally distributed.

Specifically, we minimized SSRi ¼
P

T(log(dT)2log(mT))2.

(c) Within-host models
We used two different models to fit the virus load data obtained

from infection experiments. The first was a simple mechanistic

model we used previously to fit similar data [31]. This simple

model and variants have been used in several recent analyses of

influenza A virus within-host infection dynamics (e.g. [35,36] for

reviews). The model tracks uninfected cells, U; infected cells, I;
and free infectious virus, V. Cells become infected at rate k, infected

cells produce virus at rate p and die at rate d. Free virus is cleared

at rate d. The equations for uninfected cells, infected cells and

free virus are given by dU/dt ¼ 2kUV, dI/dt ¼ 2kUV2dI
and dV/dt ¼ pI2dV. In addition to this mechanistic model, we

also considered a simple phenomenological model that has been

shown to provide a good fit to virus load curves for influenza infec-

tions [37]. The equation is given by V(t) ¼ 2Vp/(exp[2lg(t2tp)] þ
exp[2ld(t2tp)]). Here, t is the time post infection, V(t) the virus

load at time t, and Vp, tp, lg and ld are the four model parameters

to be estimated. We refer the reader to [38] for a more detailed expla-

nation and rationale for this model. As the focus of our study was

not on model comparison or parameter estimation, the important

consideration was that both the mechanistic model and the phe-

nomenological model provided a good and robust fit to the virus

load data and allowed us to easily compute the area under virus

load curve, which we used to quantify fitness (see §2d). The

within-host models were fit to the data by minimizing the sum of

squared errors for the logarithm of the virus load. Data at the

limit of detection (i.e. left-censored data) were handled as described

previously [39]. The limit of detection for the virus load was

2.07 EID50 (EID50¼median embryo infectious dose). For the

mechanistic model, we set the initial number of uninfected target

cells to 2.5 � 107 as done previously [31,40].

(d) Defining fitness
The fitness of a pathogen is largely determined by its ability to

transmit from host to host. There are several plausible ways

one can map within-host dynamics to some measure of
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Figure 1. Virus decay rate for different influenza strains as function of temperature. Symbols show data, and lines show best fit. Panels (a,b) show fits plotted with
linear and logarithmic y-axes of the exponential decay equation to the data assuming normally distributed errors. Panels (c,d ) shows fits assuming lognormally
distributed errors. Among the seven virus strains, five were isolated from dabbling ducks and two from surface lake water (marked with an asterisk (*)). See Material
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transmission fitness [31,41–48]. Given that our data provides

information on viral load, we focus on this quantity and define

a measure of fitness that provides a mapping between viral

load and the potential for transmission. The first important com-

ponent is to estimate the total amount of virus shed by an

infected host. For our study, the within-host infection data pro-

vide cloacal virus concentration. While no information is

available on the total viral shedding in these experiments, else-

where we have shown that the relationship between virus load

and nasal shedding in human influenza A infections can be

described by a sigmoid function connecting the logarithm of

the virus load to nasal discharge [42], given by the expression

S(t) ¼ V(t)
k1 log 10(V(t))k2

kk2

3 þ log 10(V(t))k2
þ k4:

A similar sigmoid relation is plausible for avian hosts. The par-

ameters ki define the shape of the sigmoidal function. For our

numerical analysis below, we set k1 ¼ 6, k2 ¼ 5, k3 ¼ 2.5 and k4 ¼

1.5, which are values close to those previously determined by fit

of this sigmoid curve to shedding data for humans [42]. To quan-

tify fitness, a second component is important, namely the infection

probability of a contact host for a given amount of virus exposure.

The ability to infect new hosts is probably a better measure of trans-

mission fitness than the amount of shedding alone. A simple

relationship for the probability of infection as a function of patho-

gen dose is given by q(t) ¼ 1 2 e2wS(t), where w is a constant

describing the infectiousness of a specific pathogen [43,49–51].

Such a relationship seems to hold for influenza, as suggested by

a recent dose-response analysis for human influenza [51] and evi-

dence from avian hosts [52]. Using this expression provides a

measure of fitness, given by F ¼
ÐD

0 q(t)dt ¼
ÐD

0 1� e�wS(t)dt,
where D denotes the duration of infectiousness and is defined as

the time from the start of the infection until the end, which we

defined as the time free virus levels drop below a threshold

(assumed to be one virion for our numerical simulations below).

Based on [51], we set w ¼ 1022.
(e) Model implementation
All analyses were carried out in the R programming environ-

ment [53]. The code is available from the corresponding author

upon request.
3. Results
(a) Quantifying temperature-dependent environmental

persistence
The environmental component of our data consists of the rate of

virus decay for varying temperatures. Visual inspection

showed a simple exponential relationship between temperature

and virus decay rate. To quantify this relationship for each

strain, we parametrized virus durability as a function of temp-

erature, c(T ) ¼ aegT (see Material and methods). Figure 1a,b
shows the data and best-fit exponential curves assuming

normally distributed errors. While on a linear scale, the fits

appear in good agreement with the data (panel (a)), plotted

on a logarithmic scale, the fit looks poor for low temperatures

(panel (b)). This is not surprising, as data points with higher

values have higher absolute error and the discrepancy between

model and data for those values influences the best fit more

compared with lower temperature values. We also carried out

a fit assuming lognormally distributed errors. Figure 1c,d
shows the best-fit exponential curves for this scenario. With

this approach, the fits look better when viewed on a log-

scale (panel (d)). However, on a linear scale most of the

high-temperature values are poorly fitted (panel (c)). We are

not aware of a compelling a priori reason why one assumption

with regards to error structure is biologically more justified.

Hence, we carried out the following analyses for both error

assumptions. Table 1 lists estimated values for a and g for

each strain for both fitting approaches.



Table 1. Best-fit values for the decay function parameters under the normal and lognormal error assumptions.

normal errors lognormal errors

strain a g a g

H3N8 4.37 � 1023 1.18 � 1021 4.37 � 1023 1.18 � 1021

H3N8* 5.23 � 1023 1.14 � 1021 5.23 � 1023 1.14 � 1021

H4N6* 4.02 � 1023 1.21 � 1021 4.02 � 1023 1.21 � 1021

H4N8 3.06 � 1023 1.31 � 1021 3.06 � 1023 1.31 � 1021

H6N1 3.15 � 1023 1.32 � 1021 3.15 � 1023 1.32 � 1021

H6N2 4.68 � 1023 1.20 � 1021 4.68 � 1023 1.20 � 1021

H6N8 2.93 � 1023 1.42 � 1021 2.93 � 1023 1.42 � 1021
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(b) Environmental persistence at high temperatures
does not affect within-host fitness

As figure 1 and table 1 show, strains differ in their ability to

persist at low and high temperatures. A strain with relatively

poor persistence at high temperatures could be assumed [31]

to fare poorly during infection within a host, where internal

temperatures can be high (e.g. 408C inside a duck [54,55]).

As we have viral load data following infections in ducks for

each strain, we can directly test the hypothesis that increased

high-temperature decay rate affects virus load and therefore

within-host fitness. We determined total virus load (area

under the curve) by fitting both the mechanistic model and

the phenomenological model to virus load data. Best-fit

curves for the two models for each strain and duck are

shown in figure 2.

Using the best-fit viral load curves, we can compute the

fitness measure described in the Material and methods.

This allows us to test the hypothesis that higher virus

decay at within-host temperatures (cw ¼ c(T ¼ 40) ¼ aeg40)

leads to lower virus fitness. Figure 3 shows this not to be

the case. While a slight negative correlation between reduced
persistence (i.e. higher decay rate) and reduced shedding was

notable, the confidence intervals for the regression line

include a line with zero slope, i.e. no correlation. In addition,

there is substantial variability in fitness for any given strain,

which would also make any conclusion about a correlation

across strains suspicious. We therefore conclude that the

assumption in our previous study [31], namely that faster

virus decay at a high within-host temperature correlates

with lower within-host fitness, does not seem hold—at least

for the dataset and fitness measure we investigate here.
(c) No multi-scale trade-off between direct transmission
fitness and environmental persistence

While §3b showed that the decay rate at within-host tempera-

ture does not affect within-host fitness, it is still plausible that

there are general trade-offs between the virus persistence phe-

notype and other phenotypes that affect within-host fitness.

For instance, viruses that persist well at low temperatures

may pay a fitness cost that impacts another trait (e.g. lower

replication rate at high within-host temperatures). If such a
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phenomenon were to occur, we would expect a trade-off

between within-host fitness and environmental persistence,

i.e. clearance rates at low temperatures. Figure 4 shows that

such a trade-off is not present in our dataset. If anything,

there is a slight positive correlation between increased environ-

mental decay rate and increased within host fitness. However,

again all results include the no-correlation, zero-slope line

within their confidence intervals. Therefore, these results

suggest that there is no evidence in these data for a trade-off

between environmental persistence and within-host fitness.

The two scales do not seem to be linked for this phenotype.
(d) Avian influenza shows a single-scale temperature-
dependent persistence trade-off

We previously reported a trade-off for the temperature-

dependent persistence phenotype on the environmental

scale. Specifically, we found for a panel of 12 different influ-

enza strains a trade-off between low a (good persistence at

low temperature) and low g (insensitivity to high tempera-

ture). As figure 5 shows, analysis of this new dataset

confirms this trade-off. As previously found, there is a negative

linear correlation for both log(a) versus log(g) and the relative

ranks of a and g. The trade-off exists independent of the
assumption about the error structure made when fitting the

data. The combination of results in figure 5 and those pre-

viously reported in [31] suggests strongly that there is

indeed a trade-off for virus decay at different temperatures,

with some strains optimizing persistence at low temperatures,

while others fare relatively better at high temperatures.
4. Discussion
Improving our understanding of the ecology and evolution

of influenza viruses specifically, and pathogens in general,

remains a high priority to ensure animal and human health.

The full replication and transmission cycle of most pathogens

consists of many distinct processes, and it should be expected

that fitness trade-offs between those different aspects exist.

This has been an intense area of investigation in recent years,

mainly with the help of theoretical models. Here, taking advan-

tage of a unique dataset, we analysed the potential of trade-offs

for the persistence phenotype of avian influenza A virus.

Perhaps surprisingly, we found no convincing evidence for a

trade-off between environmental and within-host scales for

this phenotype.

Several potential explanations could account for this find-

ing. One reason for the absence of differences in within-host
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fitness between strains might be the fact that the viruses were

genetically too similar, which is especially true given that the

five strains were isolated from the same location [34]. While

the strains showed differences in decay rates despite their gen-

etic similarity, the within-host viral kinetics were similar

between strains. In fact, variation among hosts for a given

strain was the dominant source of fitness differences. It might

be of interest to obtain within-host shedding data for a broader

and more diverse array of virus strains isolated from different

aquatic bird species. This might provide some indication as to

the host adaptations and restrictions for specific viruses.

A related reason might be that we simply do not have

enough data. It is conceivable that additional data would

narrow the confidence intervals to a level where statistical

significance is achieved. Even then, given that the slope we

found in all best-fit estimates is rather close to zero, such stat-

istical significance might not be of much practical relevance.

Another possible explanation for the lack of a robust corre-

lation is that the trade-off between the persistence phenotype is

not with fitness as defined by our fitness measure, but some

other aspect of within-host infection dynamics. One additional

quantity we investigated was the duration of the infection. We

found no correlation between infection duration and decay

rates, independent of error assumption for the decay rate esti-

mates or the choice of within-host model. Other measures,

such as strength of immune response and disease severity

would be interesting to explore in the future, but data for

those were not available for this study.

Lastly, what we consider the most likely explanation is that

there is simply no cross-scale interaction for the temperature-

dependent persistence phenotype. Natural decay rate is
probably not an important determinant of the within-host

infection process. It seems that mechanisms other than virus

decay rate dominate the within-host dynamics and therefore

dominate any potential effect of a higher within-host virus

decay rate. Other aspects, such as immune evasion ability, repli-

cation speed, ability of virus to bind to and be released from cells

[41], and other features are probably more important drivers of

within-host fitness. In contrast to a previous elegant study

for phages [30], we did not see a trade-off between

persistence and any of these probably important within-host

phenotypes—at least not detectable through our fitness measure.

While no across-scale trade-off was detectable, we

confirmed our previous finding of a constraint at the environ-

mental scale, with some strains favouring persistence in water

at low temperatures while others fare comparatively better at

higher temperatures [31]. This suggests that different tempera-

ture-dependent environmental persistence strategies might

facilitate viral coexistence in distinct ecological niches. Such

trade-offs within a specific phenotype have been shown pre-

viously for different systems and phenotypes (see [56] for

some pertinent work). We are currently unaware of any mech-

anisms that could explain this observed trade-off. Figuring out

this mechanism, and understanding if it applies to human influ-

enza strains and other pathogens seems a worthwhile venue for

future investigation.

To summarize, we found no evidence for a constraint in the

virus persistence phenotype at the within- and between-host

scales. This trait, therefore, may evolve independently across

each level of organization. We did find evidence for a trade-

off on a single—the environmental—scale. We conclude that

to fully understand the transmission and evolutionary
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dynamics of influenza A viruses, it is important to integrate

data and models at both the infection dynamics and the persist-

ence of the virus in the environment, within a combined

ecological and within-host framework.
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