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Abstract

In this paper, we present a novel modification to level set based automatic retinal vasculature

segmentation approaches. The method introduces ridge sample extraction for sampling the

vasculature centerline and phase map based edge detection for accurate region boundary detection.

Segmenting the vasculature in fundus images has been generally challenging for level set methods

employing classical edge-detection methodologies. Furthermore, initialization with seed points

determined by sampling vessel centerlines using ridge identification makes the method completely

automated. The resulting algorithm is able to segment vasculature in fundus imagery accurately

and automatically. Quantitative results supplemented with visual ones support this observation.

The methodology could be applied to the broader class of vessel segmentation problems

encountered in medical image analytics.

Index Terms

Fundus image; retinal vasculature analysis; vessel segmentation; level sets; phase map for edge
detection; principal curves as ridges

1. INTRODUCTION

Level set methods have been widely used for image segmentation [1–7]. These methods

could be considered to generally fall into two groups: edge-based approaches [1,3,7] and

region-based approaches [2,4]. With specific application to retinal vasculature segmentation

from fundus images, the literature is rich in examples employing supervised classification of

pixels [5,6]. There are studies that employ centerline tracing methods [13]. However, the use

of level sets has not been extensively attempted due to challenges presented by the vessel

shapes for level set methodologies in general [7]. Classification approaches require

manually segmented images and for large-scale clinical applicability where imaging

variations will drastically impact feature distributions, generating a comprehensive labeled

image set may not be feasible. For level set based smooth region growing methods, major
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challenges posed by the very thin and elongated structure of retinal vessels are compounded

further by the poor contrast of the regions of interest.

In this paper, we present an improved method for automatic level set based vessel

segmentation specifically employed in the context of retinal vasculature segmentation in

fundus images. Published ophthalmology studies have found that there are often significant

discrepancies in clinical diagnosis among human experts [14]. These segmentation methods

may become the basis for computer-based image analysis algorithms, which have potential

to improve diagnostic accuracy and consistency [15]. The presented method utilizes a robust

phase map to determine edges and ridge-based seed points to initialize the level set function.

Results on healthy and pathological fundus images demonstrate that the presented method

compares favorably to existing level set approaches.

2. THE EDGE-BASED LEVEL SET METHOD

Image segmentation based on level set methods typically consists of two additively

combined energy terms: length and area. Li et al introduced a third energy term that they call

as regularization [3]. These terms are explained next briefly.

Let I: Ω → ℝ be a grayscale image, defined on domain Ω = ℝ in this study. Let C be a

closed subset of Ω bounded by a finite set of smooth curves. The connected regions of Ω\C

are represented by Ωi, such that Ω = ∪i Ωi ∪ C. Also, ||C|| stands for the curve length

(circumference) of the region [2].

A given curve C = ∂Ω1, boundary of a region Ω1 is represented implicitly, which is the zero

level set of a scalar Lipschitz continuous function Φ: Ω → ℝ, namely the level set function

with constant c0 and p ∈ Ω [2–4]

(1)

Level set iterations are adversely affected by numerical errors and other factors causing

irregularities; therefore frequent reinitialization is usually employed using a signed distance

function [3]. Li et al proposed a method using the regularization term

 to solve this difficulty [3,4]. They suggested using E(Φ) = μR(Φ)

+ λLg(Φ) + αAg(Φ) to segment images based on edge information g, where μ, λ, α > 0 are

weighting parameters [3]. External energy terms Lg(·) and Ag(·) are also slightly different

from the classical methods [2,7], since they include an edge strength function into the

related terms [3]. By using the Heaviside function H(x) (equal to 1 if x ≥ 0 and 0 if x < 0) the

length of C and the area of Ω1 can be computed as follows [3]:

(2)
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The length functional Lg(·) regularizes the zero level contour. The area functional Ag(·)

results in accelerating motion of the zero level contour in the level set evolution when the

initial contour is located far away from the object boundary. Li et al utilized E(Φ) = μ ∫Ω R(||

∇Φ||)dp + λ ∫Ω gδε(Φ)||∇Φ||dp + α ∫Ω gHε(−Φ||)dp [3], which shrinks also due to the

functional of Ag(·) returning a positive contribution when the contour is outside the object or

expands with a negative value when the contour is inside. Here Hε and  are finite-

width approximations of the Heaviside function and Dirac-impulse for ε. Gradient descent is

used to minimize the energy:

(3)

In edge-based level set approaches a smooth edge strength function is generally obtained

from the norm of the gradient of the Gaussian-filtered image. One choice is g = (1 + ||∇(Gσ

* I)||2)−1. All these properties culminate in the iterative gradient descent procedure Φ(t+1) =

Φ(t) + τ∂Φ(t)/(t) with Φ(t=0) = Φinitial, where τ is a time adapting coefficient.

3. THE PROPOSED METHOD

The edge strength function g carries key information to locate the initial contour, which

could be set manually or automatically. Although the method described above [3] could

segment objects in Magnetic Resonance Images and other common medical image

modalities with reasonable success, it may fail to segment retinal vessels successfully due to

weak edge strength at places in typical fundus images. Consequently, we employ an

alternative edge strength g based on a phase map of the image Fourier transform. Neither the

phase congruency based method [8], nor the phase map based approaches [7] generate

adequate edge information for segmentation of blood vessels. Therefore we combine these

two methods to improve the phase map.

Edge Map

The proposed method accepts as input a fundus image in RGB color space. A simple mask

that excludes the exterior of the fundus where the color is between [0,40] in all three

channels (i.e. overall very dark) can be employed. A log-Gabor filter is used to generate the

phase map [8]. The image is filtered at different scales by at least 3 uniformly distributed

directions to grab the poor contrast and variable-width blood vessels [7]. The filter output is

complex, where real and imaginary parts consist of line and edge information, respectively.

Filter responses in each scale for all directions must be combined to obtain a rotationally

invariant phase map, but by taking the absolute value of the imaginary parts to prevent them

from eliminating each other [7]. With these in mind, the phase map q is obtained as follows:

(4)
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where D is number of directions, S is number of scales, q̄k,l is the filter response based on

the corrected phase, β is a weighted parameter, and . The following normalization is

also used to regularize the phase map: q̂ = q||q||/(||q||2+γ2), where γ stands for a threshold

used to reduce noise effect [7]. Since edges align with the zero crossings of the real part of

the phase map, we use the function g = Re(q̂) as in [7]. Values of the edge strength function

g used in the method in [3] are in the 0–1 interval. In the proposed method, the sign of the

coefficient α in the level set energy functional can always remain positive in contrast with

the earlier method. Because, the function g obtained from the phase map has negative values

outside and positive values inside of the objects; however, λ is initially set to negative if the

initial contour is placed outside of the object.

Ridge Sampling for Seeds

Another novel component of the proposed method is seed sampling from the centerlines of

vessels through a ridge sampling procedure, which is based on principal curves [10]. Let f(p)

be the ridge function where p indicates the position. Let ∇f(p) and H(p) be the local

gradient and Hessian of the function f at position p, respectively. For a point q on the

principal curve, one of the eigenvectors of H(q) will be parallel to ∇f(q) and the other

eigenvector will be orthogonal with a negative eigenvalue, since q is on the ridge of the

function.

Assume Z⊥(q) is a matrix whose columns span the linear subspace, which contains the

eigenvectors of H(q) that are perpendicular to the gradient ∇f(q). Then following quantity

will be 0 for the points on the principal curve:

(5)

Basically, for a given point p, we climb to the ridge by iteratively moving one step size in

the direction of the orthogonal eigenvector and checking the value of θ(p) at every iteration.

As the ridge function, we used the kernel smoothed version of a binary image, which is

obtained by the preprocessing procedure in [11]. Hence,

(6)

where Γ is the set of white pixel indices and Σi is the variable kernel covariance of the

Gaussian kernel  for a pixel at coordinate p.

4. EXPERIMENTAL RESULTS

The proposed method is tested on both the DRIVE dataset [12] and our dataset. Our dataset

consists of 34 fundus images along with expert delineations for each image. The sample

images from both databases and their manual segmentation are shown in Fig. 4. We choose

the algorithm parameters c0, τ, μ, λ, α, β and γ as 5, 1, 0.2/τ, 0.0005, −3, 1 and 3

respectively. Maximum number of iterations is experimentally selected as 70 by considering
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the average radius of vessels. We use 8 uniformly distributed angle directions and 3 image

re-sampling scales for log-Gabor filter. Two test images from the DRIVE dataset and our

dataset are displayed in Fig. 1 along with the manual segmentation. The results for the first

test image from the DRIVE dataset are seen in Fig. 2. While the method produces promising

results, there are also occasional artifacts, such as the false vessels shown by the red arrow

on the left of Fig. 2e, next to the optical disc. Fig. 3 depicts another example for which both

methods described in earlier work [3,7] failed, especially at regions where there is poor

contrast. However, the proposed method is able to properly track the vessels in these regions

as shown in Fig. 3d. Finally, a sample vessel segmentation result for a pathological fundus

image from our dataset is shown in Fig. 4. Here, the results are shown based on two

different initialization schemes: skeletonization points, and principal curve projection (PCP)

based ridge sampling. The approach using PCP based seed points generates fewer artifacts.

The methods are implemented in MATLAB R2010a. The program is executed on a Laptop

PC with Pentium 2.20 GHz processor and 2GB RAM. The segmentation of a fundus image

with size 565x584 takes approximately 60 seconds with 70 iterations.

Quantitative results are obtained for both datasets where we have manual vessel

segmentation labels performed and verified by human ophthalmology experts. Comparing

the results with manual delineations, we obtain overall statistical quality metrics such as

sensitivity Se, specificity Sp, positive predictive value Ppv, negative predictive value Npv,

and accuracy Acc [5]. These measures are given by

(7)

With TP, TN, FP, FN denoting true and false positives and negatives as indicated by the

combinations of initial letters. Here TP refers to a pixel labeled as vessel by both the

algorithm and the human expert, while TN refers to a pixel that is deemed to be non-vessel

by both. In order to compare the proposed method, the same statistical metrics for an

alternative supervised method [5] on DRIVE and our datasets are also reported in Table 1.

Resulting some Ppv values using our method is comparatively low since the technique also

detects thin vessels that are not delineated by human observers as seen in Fig. 4a,b.

5. CONCLUSION

We presented a phase-based level set method with ridge sampling seed selection for the

problem of segmenting retinal vasculature in fundus images. Extensive experiments with the

proposed algorithms using two datasets indicate that the algorithm performs well and

compares favorably to alternatives already existing in the literature. Developing strategies to

improve inconsistency in clinical diagnosis is an important challenge in ophthalmology, and

the segmentation methods described in this study may provide the basis for development of

computer-based image analysis algorithms. Future work will involve quantitative feature

extraction from segmented retinal vessels, followed by implementation of these image

analysis algorithms for image-based diagnostic assistance.
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Our goal is to extend the study to improve the results especially for pathological regions.

Some regions such as macula, which is in the center of the retinal image, the optic disk,

which is located towards the nose, and drusen, which are tiny yellow or white accumulations

of extracellular material, are able to complicate segmentation process. To overcome this

difficulty, we plan to improve our preprocessing step with a technique that corrects the

intensity nonuniformity in these regions.
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Figure 1.
Sample images and manual segmentations for (a–c) DRIVE dataset test image 12, and (b–d)

an image from our dataset.
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Figure 2.
Segmentation processes of non-pathological retinal fundus image with a size of 565x584

pizels from the DRIVE database is illustrated: (a) the phase map using the original method

[7], (b) the phase map obtained using the proposed method, (c) binary image obtained from

(b) using Otsu thresholding [9], (d) skeletonized version of (c) after eliminating outliers, (e)

segmented image using the proposed method, and (f) the level set function after 70

iterations.
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Figure 3.
Vessel segmentation results for a non-pathological fundus image: (a) Skeleton image that

produces seed points for the proposed algorithm and segmentation results obtained by (b)

distance regularized level set evolution method (DRLSE) [3], (c) phase-based method [7],

and (d) the proposed method after 70 iterations.
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Figure 4.
Segmentation results for a size 640x480 pathological fundus image from our dataset using

(a) skeleton-based seed points, (b) projection-based seed points, after 70 iterations.
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