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Summary

This review article addresses the controversy as to whether the adult heart possesses an intrinsic

growth reserve. If myocyte renewal takes place in healthy and diseased organs, the reconstitution

of the damaged tissue lost upon pathological insults might be achieved by enhancing a natural

occurring process. Evidence in support of the old and new view of cardiac biology is critically

discussed in an attempt to understand whether the heart is a static or dynamic organ. According to

the traditional concept, the heart exerts its function until death of the organism with the same or

lesser number of cells that are present at birth. This paradigm was challenged by documentation of

the cell cycle activation and nuclear and cellular division in a subset of myocytes. These

observations raised the important question of the origin of replicating myocytes. Several theories

have been proposed and are presented in this review article. Newly formed myocytes may derive

from a pre-existing pool of cells that has maintained the ability to divide. Alternatively, myocytes

may be generated by activation and commitment of resident cardiac stem cells or by migration of

progenitor cells from distant organs. In all cases, parenchymal cell turnover throughout lifespan

results in a heterogeneous population consisting of young, adult, and senescent myocytes. With

time, accumulation of old myocytes has detrimental effects on cardiac performance and may cause

the development of an aging myopathy.
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The recognition that the adult heart possesses a stem cell compartment that can regenerate

myocytes and coronary vessels has changed the perennial view of the heart as a post-mitotic

organ and has formed the basis of a new paradigm in which multipotent cardiac stem cells

(CSCs) are implicated in the physiological turnover of myocytes and vascular endothelial

cells (ECs) and smooth muscle cells (SMCs) organised in coronary vessels [1,2].

Understanding the mechanisms of cardiac homeostasis would offer the extraordinary

opportunity to potentiate this natural occurring process and promote myocardial
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regeneration following injury. However, the field of regenerative cardiology is in its infancy

and great caution has to be exercised in the implementation of any cell type in humans.

Additionally, in humans, multiple variables may negatively interfere with the therapeutic

efficacy of the harvested cells. Ischaemic and non-ischaemic pathologic states, co-

morbidities, duration and severity of the cardiac disease may have profound implications on

the availability and functional competence of CSCs. Also, the age and gender of patients

have to be regarded as important determinants of CSC growth and lineage commitment.

Cell-based cardiac repair

Different cell types have been proposed experimentally for the reconstitution of the

damaged heart: skeletal myoblasts [3,4], fibroblasts [5], SMCs [6], foetal myocytes [7,8],

embryonic stem (ES) cells [9], bone marrow-derived cells (BMCs) [10–14], and induced

pluripotent stem (iPS) cells [15]. Fibroblasts, SMCs, and foetal myocytes form a passive

graft, which, by decreasing the stiffness of the scarred portion of the wall, has a transient

positive effect on ventricular remodelling and function. Totipotent ES cells appear to engraft

into the myocardium but die rapidly because of the lack of vessel formation and immune

rejection [16]. Additionally, ES cells give rise to teratomas and teratocarcinomas [17].

Similarly, the recently identified iPS cells have a tumorigenic potential [18]. These cell

types have never been employed clinically.

The first attempt to replace infarcted myocardium with a patch of skeletal muscle was

performed in the 1930’s. Fifty years later, large sheets of skeletal muscle tissue were

positioned on the epicardial surface of the ischaemic area and stimulated to contract with a

pacemaker. This surgical procedure, known as dynamic cardiomyoplasty, has prompted

investigators to utilise individual myogenic cells. The new approach has been called cellular

cardiomyoplasty and consists of the direct injection of isolated skeletal myoblasts into the

ischaemic area [3,4]. The autologous origin of the cells to be implanted constitutes an

obvious advantage of this form of cardiac repair. Moreover, skeletal myoblasts are more

resistant to ischaemia than cardiomyocytes, enhancing their possibility of survival in the

necrotic myocardium. For these reasons, experimental skeletal myoblast implantation has

been translated to the clinical arena, and infarcted patients have been subjected to this kind

of treatment [19,20].

However, the lack of integration of skeletal myoblasts within the myocardium represents a

reason of concern for the therapeutic implementation of skeletal myoblasts. Analysis of the

graft-host myocardium interface has failed to document any evidence of mechanical or

electrical coupling between skeletal and cardiac muscle [21]. Connexin 43 and N-cadherin

are consistently absent in injected skeletal muscle cells and a layer of dense scar tissue often

separates the cardiomyocytes from the skeletal muscle further opposing the incorporation

process. As documented in animals [21,22], the absence of synchronous contraction may be

one of the factors responsible for the arrhythmic manifestations observed in patients treated

with skeletal myoblasts [19,20].

Moreover, skeletal myoblast implantation is preceded by an in vitro step of amplification.

This necessity represents a limitation for the clinical application of this procedure. Adult

HOSODA et al. Page 2

J Thromb Haemost. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



human myoblasts divide only 20–25 times in vitro, before becoming senescent [23]. This

issue is particularly relevant since it has been documented that the success of skeletal

myoblast implantation is directly correlated with the number of donor cells [24]. The need of

a large quantity of cells to be implanted is dictated by massive and rapid cell death that

occurs over a week after administration. During in vitro expansion and following the

introduction in the heart, myoblasts withdraw from the cell cycle and form myotubes. The

state of terminal differentiation rapidly acquired by skeletal myoblasts opposes any possible

proliferation of the implanted cells. Damaged cells within the graft cannot be replaced

impairing the mechanical and elastic properties of the graft and, ultimately, its effects on

cardiac function. An important argument that speaks against the utilisation of skeletal

myoblasts in cardiac repair is that the injured portion of the ventricular wall is replaced by a

tissue that is far from being similar to the myocardium. Regenerative medicine should target

the restoration of tissue with the same functional and structural properties of the damaged

organ. However, transdifferentiation of skeletal myoblast in cardiac myocytes has never

been observed [16]. These numerous problems have resulted in an early termination of the

enrolment of patients in clinical trials [19,20].

BMCs may translocate to the heart, form temporary niches and participate in the

homeostasis of the healthy organ or the regeneration of the injured tissue [25]. The

contribution of this cell class to cardiomyogenesis and coronary vasculogenesis is currently

unknown and remains an important unanswered question. The involvement of BMCs in

cardiac chimerism has been proposed [26]. Interestingly, a comparison has been made

between the degree of chimerism in cardiac allografts and in hearts of patients who received

allogeneic bone marrow transplantation [27]. In the latter case, only 2–5% chimeric

myocytes were detected, while 14–16% of chimeric myocytes and endothelial cells were

found in transplanted hearts. These observations suggest the intracardiac origin of the

recipient cells in the donor heart and the extracardiac origin of chimeric cells in the resident

heart following bone marrow transplantation. In the first case, host cells may have migrated

from the residual atrial stumps to the donor heart [28] and, in the second, donor cells may

have reached the myocardium because of the high level of blood chimerism [27]. Thus

blood-borne cardiac cells may be detected exclusively when the peripheral blood contains a

large number of haematopoietic stem cells (HSCs). Experimental results support this

contention [10,29].

Whether BMCs drive the regenerative response of the damaged heart remains an unresolved

issue. The striking discrepancy between the incidence of heart failure and bone marrow

failure and the lack of co-morbidity of these disease stated in the same patient indicates that

HSCs do not typically migrate from the bone marrow and repopulate the decompensated

heart. If the bone marrow continuously replenishes the heart with new functionally

competent HSCs, the decline in myocyte number with cardiac diseases would not occur, and

the poorly contracting myocytes would be constantly replaced by a bone marrow-derived

progeny.

Shortly after the experimental evidence that HSCs induce myocardial regeneration after

infarction [10], unfractionated mononuclear BMCs and CD34-positive cells have been

administered to patients affected by acute and chronic myocardial infarction, dilated
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cardiomyopathy, and refractory angina [30–34]. Although the individual outcomes have

been inconsistent and variability exists among trials, meta-analyses of pooled data indicate

that BMC therapy results in a 3–4% increase in ejection fraction [35]. Allogeneic and

autologous mesenchymal stromal cells (MSCs) have also been employed in small clinical

trials with encouraging results [36–38]. Although the benefits may seem modest, these

initial data have favoured the conduct of larger randomised trials designed to critically

evaluate the long-term effects of BMC therapy on a broader patient population. The

mechanisms involved in the positive impact of BMC therapy on human beings remains to be

identified. Measurements of coronary flow suggest that vasculogenesis may be operative

while the contribution of de novo myocyte formation is uncertain. Additionally, the injected

BMCs activate the growth and differentiation of resident CSCs via a paracrine effect,

mediated by the release of a multiplicity of cytokines [39,40]. Importantly, the recent

identification of CSCs has shifted the attention to endogenous cell mechanisms as a novel

target of cell therapy for the failing heart.

Cardiac progenitor cell types

Dynamic cardiomyogenesis characterises the response of the damaged heart prenatally and

shortly after birth. Additionally, in the adult zebrafish, cardiac regeneration in the absence of

scar formation takes place after resection of up to 20% of the ventricle. Traditionally,

muscle reconstitution in this model has been considered to be mediated by cardiomyocyte

proliferation [41]. A similar regenerative response has been observed after surgical resection

of the apex of the left ventricle in the neonatal mouse heart [42]. Again, cardiomyocyte

proliferation was viewed as the crucial cell process, promoting cardiac repair. However,

investigators in several laboratories concur with the notion that the adult heart contains a

compartment of stem/ progenitor cells [43–53]. Distinct protocols based on the recognition

of surface markers and transcription factors, and functional assays have been employed for

the isolation of stem cells from the myocardium. The stem cell antigens c-kit and Sca-1 are

expressed in partially overlapping pools of cardiac primitive cells. The presence of Sca-1

has been reported [45– 47,51–53] and the expression of c-kit has been detected in multiple

studies [44,46,52,53] and found to be absent in another [45]. c-kit-positive cells are an

established component of the canine [49] and human [28,48,50,54] heart, and their

activation leads to the formation of new myocardium. The regenerative potential of c-kit-

positive and Sca-1-positive cells after ischaemic injury differs significantly; a robust

regenerative response occurs with c-kit-positive cells [44,55] whereas little engraftment and

repair takes place with Sca-1-positive cells [45]. Whether the modality of administration of

cells, the animal model, and the properties of the injected cells are responsible for the

different outcome is presently unclear.

The developing heart and adult heart typically contains a CSC pool that has the ability to

efflux the Hoechst 33342 dye [43,45,47,51,56]. Similar cells, which express an ATP-binding

cassette transporter, have been identified in other organs and termed side-population (SP)

cells [51,57]. The classicmember of this family is a P-glycoprotein that confers to the cells

multidrug resistance by extruding anticancer drugs and rhodamine 123. These putative CSCs

are 93% Sca-1-positive and appear to represent a small subset of the Sca-1-positive cells in

the mouse heart [45]. According to a different study, however, SP cells comprise 2% of all
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cells (2 per 100 cardiac cells) [47]. Cardiac SP cells appear to express CD31 and form

haematopoietic colonies in vitro [47]. The presence of CD31, common to bone marrow SP

cells [29,57] together with the peculiar growth behaviour of these cells in vitro, raises

questions concerning their actual origin and suggests the possibility of a colonisation to the

heart from the haematopoietic system.

More recently, a novel Sca-1-positive, Hoechst 33342 dyelow, and CD31-negative cardiac

SP cell has been identified [51,56]. The modest expression of c-kit in these cells was

attributed to methodological limitations inherent in the enzymatic cleavage of this receptor

during digestion of the myocardium and cell isolation [51]. There is 1 SP cell per 30 000

cardiac cells in the mouse heart. CD31-negative cardiac SP cells form beating

cardiomyocytes in vitro and acquire the adult phenotype in vivo through cellular coupling

with differentiated cardiomyocytes [51]. These results strengthen the notion of a functional

role for resident SP cells in the heart.

The Isl1 transcription factor is associated with the commitment to the myocyte lineage of

cardiac cells that have lost their undifferentiated stem cell state. Isl1 and GATA4 are

transcriptional coactivators of the myocyte transcription factor MEF2C [58]. Homozygous

deletion of Isl1 alters the development of the heart, affecting the atria, right ventricle, and

outflow tract [59,60]. However, these cells disappear after birth, which raises serious

questions on the possibility of employing Isl1-positive cells for therapeutic purpose.

Cell culture in serum-free media on non-adhesive substrates has been employed for the

isolation of primitive cells in several organs including the brain and the heart [61]. The

formation of spherical clusters of cells known as floating spheres is achieved by a

suspension culture method which is used for large-scale amplification of stem/progenitor

cells as an alternative technique to single-cell deposition and clonal expansion [44,49]. The

suspension protocol does not reflect the formation of multicellular clones from single

founder cells. Spheres are highly motile structures, prone to fuse [62] and may, therefore,

correspond to aggregate non-homogeneous cells. This peculiar form of anchorage-

independent growth typically occurs with neural stem cells [63]. A central core of

proliferating cells is commonly surrounded by quiescent cells with restricted developmental

options. This dynamic phenotypic transition from a ‘mesenchymal’ monolayer state to an

‘epithelial’ floating state is commonly seen in culture of bone marrow MSCs [64].

Cardiospheres possess similar characteristics. Whether cardiospheres are clonal or

oligoclonal in nature, cardiosphere-derived cells represent the progeny of the most primitive

cells within the aggregates. A fraction of cells located in the core of the cardiospheres

express the stem cell antigen c-kit and is surrounded by an outer layer composed of cells

positive for CD105, a membrane glycoprotein commonly expressed in bone marrow MSCs

[64]. Cardiosphere-derived cells undergo spontaneous maturation toward the myocyte

lineage, and the process of commitment can be coaxed by co-culture with neonatal

ventricular myocytes [65]. Connexin 43 is expressed between highly dividing cells within

the cardiospheres and in the expanded differentiating cardiosphere-derived cells [66]. The

presence of gap junctions between uncommitted and differentiated cells mimics the

HOSODA et al. Page 5

J Thromb Haemost. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



organisation of stem cell niches in vivo raising the possibility that the differentiated cells

may function as supporting cells [67,68].

The c-kit receptor tyrosine kinase originally was detected in a class of murine HSCs with

long-term reconstituting ability in irradiated recipients [69]. More recently, c-kit has been

found in several populations of stem cells in the adult liver, brain, and pancreas [70]. In the

heart, this stem cell antigen identifies a pool of resident CSCs that are self-renewing,

clonogenic, and multipotent in vitro and in vivo [44,49]. These CSCs replace infarcts with

functionally competent myocardium restoring ventricular performance experimentally.

Importantly, an identical cell with similar biological and functional characteristics exists in

the human heart (Fig. 1) [2]. c-kit-positive CSCs and cardiosphere-derived cells are

currently employed in clinical trials for the treatment of ischaemic cardiomyopathy

(ClinicalTrials.gov Identifier: NCT00474461, NCT00893360). Encouraging results have

been obtained [71] although the small number of treated patients and the short duration of

the follow-up preclude definitive conclusions concerning the efficacy of cardiac progenitors

in the treatment of heart failure. Together, these observations are consistent with the notion

that the heart possesses an intrinsic capacity for regeneration, but whether differences in the

expression of surface antigens reflect CSC subclasses, which are functionally distinct, is

difficult to ascertain.

Cardiac stem cell niches

Stem cells are sheltered in specialised structures called niches, which provide a

microenvironment designed to preserve the survival and replication potential of the

primitive cells [72]. The concept of niches was introduced in 1978 by Schofield, who

defined niche as ‘a stable microenvironment that might control haematopoietic stem cell

behaviour’ [73]. Currently, the niche is viewed as ‘a subset of tissue cells and extracellular

substrates that can indefinitely house one or more stem cells and control their self-renewal

and progeny production in vivo’ [72]. Interstitial structures with the architectural

organisation of niches have been found in the adult heart [1,67]. CSCs, progenitors,

precursors and early differentiating cells are clustered together in the niche and are coupled

with the surrounding cells through the expression of gap and adherens junctions [74,75].

Gap junctions are intercellular channels formed by individual structural units called

connexins [76,77] while adherens junctions are composed of cadherins. Gap junctions allow

cells to communicate with each other and to exchange small molecules. CSCs utilise gap

junctions to transmit and receive signals from the surrounding tissue for cell survival,

proliferation or differentiation [68,74,75,78,79]. Adherens junctions appear to be involved in

the preservation of the undifferentiated state of CSCs. The function of gap junctions is

probably cell and tissue specific. However, deregulation of the expression of connexins and

cadherins, and alterations in the configuration of the junctional complexes affect the growth

and commitment of stem cells.

Resident CSCs accumulate in areas exposed to low levels of haemodynamic load and wall

stress. These properties are commonly found in the atria and in the apical portion of the

ventricle. However, niches have been detected in several sites of the free wall of the left

ventricle indicating that CSCs are preferentially but not exclusively present in protected
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areas of the heart. The formation of ventricular niches may be dictated by the migration of

CSCs from their sites of storage to the regions of damage, which are typically located in the

ventricular wall. Physical forces in the ventricular wall can be transduced in intracellular

responses that regulate cell behaviour and fate. The consequences of mechanical factors on

CSC function are unknown. The low haemodynamic stress in the atria and apex may

facilitate the preservation of the CSC pool while the high degree of stress at the base

andmid-region of the left ventricular wall may condition CSC commitment. Importantly,

abnormal pathologic loads are coupled with the initiation of myocyte regeneration, which is

heterogeneous and tends to parallel the alterations in the distribution of stresses in the

damaged heart [80,81]. The effects of strain on CSCs are currently unknown. However, the

peculiar topographical distribution of CSCs in the heart suggests that a relationship may

exist between the function of CSCs and the level of haemodynamic stress.

Growth kinetics of c-kit-positive cardiac stem cells

If the heart is a dynamic organ, the replenishment of its parenchymal and non-parenchymal

cells is regulated by a stem cell compartment and by the ability of these primitive cells to

self-renew and differentiate. Regeneration conforms to a hierarchical archetype: slowly

dividing stem cells give rise to highly proliferating, lineage-restricted progenitor cells, which

then become committed precursors that, eventually, reach growth arrest and terminal

differentiation. Stem cells divide rarely while committed transient amplifying cells are the

actual group of replicating cells in self-renewing organs. The short-lived amplifying cells

possess a unique property; they undergo a finite number of doublings and simultaneously

differentiate until they withdraw from the cell cycle and reach terminal full maturation.

Stem cells divide symmetrically and asymmetrically. When stem cells divide symmetrically,

two self-renewing daughter stem cells may be formed. The purpose of this modality of

replication is the expansion of the stem cell pool, which occurs in active phases of growth

during prenatal organ development. Stem cells can also divide symmetrically into two

committed daughter cells; this type of cytokinesis is triggered by an emergent situation, that

requires restoration of the lost tissue upon a pathological insult. This process may decrease

the number of primitive cells. With asymmetric division, two differently fated sibling cells

are generated: one daughter-stem cell and one daughter-committed cell. The non-stem cell

sister is a short-life committed progenitor cell that divides and simultaneously differentiates,

i.e. the amplifying cell [70,82–84]. When the amplifying cell acquires complete maturation,

the cell cannot divide further and reaches the terminal state of differentiation. The objective

of asymmetric division is to maintain a steady state in which organ homeostasis is

conditioned by a tight balance between stem cell formation and the production of a

committed progeny. The developmental choice made by CSCs at any given time has a direct

impact on the number of stem cells, progenitors, precursors, amplifying cells and,

ultimately, mature cells. The size of the amplifying myocyte pool conditions the magnitude

of the homeostatic and regenerative response in damaged heart.

The organisation of the stem cell compartment in niches is crucial for the maintenance of the

primitive cell pool and for the preservation of organ homeostasis [67,72,82,83,85,86]. The

niche microenvironment controls the number of stem cells and their progeny by influencing
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the pattern of stem cell division. The inhomogeneous intracellular segregation of selective

proteins in daughter cells at the time of mitosis constitutes the intrinsic determinants of CSC

fate in animals and humans. Genes, including numb, α-adaptin and members of the Notch

pathway, interact to enable single primitive cells to produce differently destined sibling cells

[87–90]. Numb can segregate to one of the two daughter cells or be equally distributed in the

cytoplasm of both daughter cells [87–90]. Numb is expressed during mitosis, from late

prophase to telophase, and in the early stages of life of the new daughter cell [91]. Numb

localises to endocytic vesicles and binds to the endocytic protein α-adaptin inducing the

internalisation and inactivation of the Notch receptor [92].

CSCs that receive Numb become unresponsive to Notch while Numb-negative CSCs retain

their responsiveness to Notch and adopt the phenotype associated with Notch activation

[87,93]. Signalling through the Notch receptor can occur only between closely adjacent stem

cells and supporting cells. The Notch ligands are transmembrane proteins, which, upon

binding, cleave the Notch receptor so that its intracellular domain is translocated to the

nucleus where it forms complexes with transcription factors of the recombinant DNA

binding protein RBP-Jk [94–96]. These effector pathways are operative in the heart and

Notch1 activation by the Jagged1 ligand promotes the commitment of CSCs to the myocyte

lineage within the cardiac niches in the mouse heart [97]. A similar behaviour has been

observed in human CSCs (hCSCs). The progressive dropout of myocytes with aging and

pathological states may activate an emergency response of CSCs towards the differentiating

pathway to generate rapidly a large number of muscle cells. The long-term outcome of CSC

growth is a reduction of the stem cell pool and, ultimately, the exhaustion of their replicating

reserve.

Cardiomyogenesis and myocyte turnover in the aging heart

The adult heart is largely composed of terminally differentiated myocytes. Damaged and old

units of this highly specialised compartment of contracting cells are constantly replaced by

new younger elements. Mitosis and cytokinesis have been recognised in poorly

differentiated myocytes with a thin subsarcolemmal halo of myofibrils (Fig. 2) [50], in

combination with telomerase activity [50,54,98,99]. These in vivo findings, together with

observations in vitro [44], have indicated that replicating myocytes are transit amplifying

cells derived from lineage commitment of CSCs. The ability to replenish old and damaged

cells is maintained by the existence of telomerase-competent CSCs. Telomerase activity has

been documented in the decompensated old rat heart [100], in the failing canine heart [101],

and in the human myocardium. In humans, cardiac hypertrophy with modest ventricular

dysfunction [54], and prematurely aged heart with severe functional impairment [102] are

characterised by an increase in telomerase activity. This enzyme, however, cannot prevent

telomere erosion [54]. In hCSCs, telomere shortening occurs at a rate of approximately 130

base pairs per population doublings, possibly limiting CSC lifespan. Thus, aging effects on

CSCs lead to an imbalance between telomerase activity and length of telomeres, resulting in

critical telomeric shortening, permanent withdrawal from the cell cycle, and CSC

senescence.
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The controversy on the growth reserve of the adult human heart has not been resolved, and

the extent of myocyte renewal claimed by different groups varies dramatically. A recent

study, based on retrospective carbon 14 (14C) birth dating of cells, has claimed that 1% and

0.45% replacement of myocytes occurs annually in the human heart at 25 and 75 years of

age, respectively [103]. These findings indicate that only 50% of myocytes are renewed

during the entire life of the human heart, from birth to death, whereas an equal number lives

as long as the organ and organism, up to 100 years of age and longer. Although the

possibility of myocyte regeneration was confirmed, the actual magnitude of the process is in

contrast with the level of myocyte apoptosis found in the adult human heart [104] and the

progressive increase in myocyte loss that occurs with aging in humans [105]. Myocyte

regeneration increases as a function of age, and the age of cardiomyocytes does not coincide

with the age of the organ and organism. This discrepancy becomes more apparent in the

senescent myocardium in which a large proportion of myocytes is 5 years old or younger in

both women and men [106]. The older the human heart, the younger is its myocyte

compartment. From 19 to 104 years of age, essentially none of the myocytes present at birth

is preserved in the young adult, middle-aged, and senescent heart [106]. These findings

question the contention that 50% of cardiomyocytes are not replaced during the entire

lifespan in humans [103], suggesting that a large proportion of cells survives and retains its

function for more than 100 years.

The presence of hCSCs throughout the lifespan of the human heart is apparently at variance

with the limited capacity of endogenous tissue repair after infarction [50]. This phenomenon

has been interpreted as the unequivocal documentation of the inability of the adult heart to

create cardiomyocytes [107– 110]. A possible explanation for this apparent paradox has

been obtained in animal models in which dead stem cells have been found throughout the

infarct, indicating that the fate of hCSCs is comparable to that of the other cells located in

the ischaemic region [84]. It might come as a surprise, but a similar event occurs in other

solid and nonsolid organs including the skin, bone marrow, liver, intestine, and kidney. In all

cases, occlusion of a supplying artery leads to scar formation mimicking cardiac pathology

[1,84].

hCSC aging conditions myocardial aging; chronological age leads to telomeric attrition in

hCSCs, which generate a progeny that rapidly attains the senescent phenotype. Daughter

cells acquire the shortened telomeres of maternal hCSCs and, after a few rounds of division

and terminal differentiation, express p16INK4a in nearly 2 years [106]. The pool of old

cardiomyocytes progressively increases, defining the aging myopathy. Telomere length

reflects the past replicative history and cumulative oxidative DNA damage occurring during

the life cycle of the cell [111]. Telomerase activity delays but does not prevent telomere

erosion, which is mediated by downregulation of telomerase, reactive oxygen species, and

loss of telomere-related proteins [50,112]. Shortening of telomeres beyond a critical length

triggers cellular senescence, which corresponds to irreversible growth arrest in G1 with loss

of specialised functions, including cell proliferation, migration, and differentiation.

Suggestive evidence in humans and genetically manipulated mice [113–115] points to

shortening of telomeres as a critical determinant of cellular senescence and, possibly, organ

aging. In this regard, a lineage relationship was found between hCSCs with short telomeres

and the formation of old myocytes. In a mouse model of accelerated aging, the deletion of
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the RNA competent of telomerase leads to cardiac hypertrophy, cavitary dilation and heart

failure [113]. These pathological alterations are dictated by excessive myocyte apoptosis and

defective cardiomyogenesis. In analogy with HSCs [116], forced expression of telomerase in

CSCs may prevent replicative senescence. Although it is difficult to establish whether

telomeric shortening is a consequence of aging or a primary event conditioning the aging

myopathy, telomerase deletion is coupled with telomere shortening and the manifestation of

a premature aging cardiac phenotype [113].

Importantly, the female heart possesses a superior ability to sustain the multiple variables

associated with the aging process and the development of the senescent myopathy. At all

ages, the female heart is equipped with a larger pool of functionally competent hCSCs and

younger myocytes than the male myocardium. The replicative potential is higher and

telomeres are longer in female hCSCs than in male hCSCs. Animal studies have shown that

the insulin-like growth factor (IGF)-1– IGF-1 receptor system is present in CSCs at very old

age [117] and overexpression of IGF-1 in cardiomyocytes prevents the manifestations of the

senescent cardiac phenotype and heart failure [118]. Additionally, the IGF-1–IGF-1 receptor

axis is enhanced in female myocytes [119], and it may condition the favourable outcome of

age in this gender. Importantly, premature cardiac aging appears to affect predominantly

men than women [102]. Additionally, oestrogens phosphorylate IGF-1 receptors [120]

mimicking the effects of IGF-1, a powerful inducer of CSC division, survival, and

maintenance of telomere length [117,118]. In postmenopausal women and throughout life in

men, oestrogen is synthesised in extragonadal organs including bone, cartilage, adipose

tissue, skin, breast, and heart [121]. With aging, oestrogen loses its circulating generalised

function and works mainly at the local level as a paracrine, autocrine, or intracrine factor.

Oestrogen induces transcription of the catalytic subunit of the telomerase protein (TERT),

because an oestrogen response element is present in the TERT promoter [122]. Additional

downstream effector pathways of oestrogen involve the activation of phosphatidylinositol 3-

kinase/Akt cascade, which exerts multiple beneficial effects on cardiac performance and

biology [123].

Myocyte regeneration in the physiologically aging heart takes place at previously

unexpected levels in both women and men. In the female heart, myocyte replacement occurs

at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively.

Corresponding values in the male heart are 7%, 12%, and 32% per year [106], documenting

that myocyte turnover involves a large and progressively increasing number of parenchymal

cells with aging. From 20 to 100 years of age, the myocyte compartment undergoes 15

cycles of complete replacement in women, and 11 cycles in men [106].

This high degree of myocyte turnover, which increases further with age, is strikingly

different from the data derived from the integration of 14C into the DNA of myocyte nuclei

[103]. Retrospective birth dating of human myocardium DNA by 14C mirrors the

incorporation of thymidine analogues in animal models, an analysis that has only been rarely

possible in human beings and, thus far, has been restricted to the brain [124] and more

recently to the heart [125]. An inherent limitation of 14C birth dating is related to the need to

introduce mathematical models with assumptions that affect the computed cell turnover

values [103]. The scenario chosen presumed that the number of myocytes in the heart was
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constant and that cells turned over at a near constant rate. This form of invariant growth

defines parenchyma in a steady state in which cell death is compensated by cell regeneration

in young healthy individuals. However, this steady-state scenario poorly represents the

biology of aging in men where nearly 64 × 106 cardiomyocytes are lost per year.

Furthermore, because women do not lose cardiomyocytes as they age like men [105]

different models should be used to reflect the changing cell populations. Importantly,

myocyte number increases postnatally [125,126] and cell loss typically occurs with cardiac

diseases [104].

Another problem with the study of retrospective 14C birth-dating involves the use of

troponin I expression as a marker for the isolation of a representative pool of myocyte

nuclei. The presence of troponin I almost exclusively identifies a population of p16INK4a-

positive senescent cells that exhibit marked alterations in the permeability of nuclear pore

complexes [125]. Additionally, the percentage of p16INK4a-positive myocytes varies

dramatically with age and cardiac diseases [50,102]. Multiple markers in a large number of

healthy hearts spanning a large age range are required to measure and model the actual

degree of cardiac cell turnover [106].

Conclusions

The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that

modulate cardiac homeostasis and condition of organ aging. Hopefully, recent findings will

resolve the long debate that has divided the scientific community in strong opponents and

passionate supporters of the regenerative potential of the human heart, offering a more

biologically valid understanding of cardiac homeostasis and repair. A common ground can

now be found to translate this different perspective of cardiac biology into the development

of novel strategies for the management of the human disease. However, the magnitude of the

process, the effects of age on the extent of myocyte renewal, and the origin of newly formed

cardiomyocytes remains a matter of controversy.
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Fig. 1.
Viral tagging of cultured hCSCs and myocardial regeneration. Band of regenerated

myocardium (arrowheads) within the infarcted region of the rat left ventricle. Newly formed

myocytes express α-SA (upper panel, red) and EGFP (central panel, green). Lower panel,

merge of upper and central panel. *Spared myocytes.
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Fig. 2.
Spontaneous myocyte regeneration within the infarcted human myocardium. (A) Clusters of

highly proliferating small developing myocytes are visible. Myocytes are labelled by cardiac

myosin (red) and nuclei by DAPI (blue). Most of these cells are positive for MCM5 (white).

Two dividing small myocytes are shown in insets. (B) Small developing myocytes within

the infarct are positive for telomerase (magenta) and MCM5 (white) in the nuclei (Scale

bars: A, 100 μm; B, 10 μm).
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