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Abstract It has been suggested that a connection between

the STN and value-sensitive areas of the prefrontal cortex

might mediate value-based actions in perceptual decision

making. In this study, we first seek to quantify a structural

connection between the STN and a cortical region that was

associated with mechanisms underlying bias in choice

behavior (vmPFC). Next, we tested whether individual

differences in the probabilistic tract-strength of this con-

nection were predictive for individual differences in the

magnitude of bias in a perceptual decision-making task.

Probabilistic tractography was used to measure the tract-

strength between the STN and the vmPFC. Bias was

quantified using an accumulation-to-bound model where a

shift in the starting point of the accumulation of sensory

evidence causes faster and more choices for an alternative

that is more likely or more valuable. Results show that

vmPFC is structurally connected with the STN and that the

strength of this connection is predictive for choice bias

towards an alternative that is more valuable, but not for

choice bias towards an alternative that is more likely.

These findings confirm the involvement of the cortico-

subthalamic circuit in mechanisms underlying value-based

actions in perceptual decision making.

Keywords Probabilistic tractography � vmPFC � STN �
Perceptual decision making � Choice bias

Introduction

The subthalamic nucleus (STN) has been implicated in

mechanisms underlying perceptual decision making (Frank

2006; Fleming et al. 2010a, b; Simen et al. 2006; Bogacz

and Gurney 2007; Bogacz 2007; Bogacz et al. 2010a;

Cavanagh et al. 2011). These mechanisms are described by

formal models that conceptualize the decision process as

the accumulation of sensory information over time toward

a decision threshold (for review, see Bogacz 2007;

Gold and Shadlen 2007; Ratcliff and McKoon 2008;

Wagenmakers 2009). The STN is believed to be involved

in the adaptation of the decision threshold, which results in

a change of distance between the starting and ending point

of the accumulation process (Frank 2006). When the con-

flict between two response alternatives is high, an increase

in the distance results in a longer time to decide, reducing

premature choices.

Interestingly, evidence from human and animal studies

has implicated the STN in value-based processes as well

(Kantak et al. 2012; Matsumura et al. 1992; Baunez et al.

2002, 2005; Darbaky et al. 2005; Witjas et al. 2005;

Teagarden and Rebec 2007; Lardeux and Baunez 2008;

Lardeux et al. 2009; van Wouwe et al. 2011). Furthermore,

computational models of perceptual decision making sug-

gest that the STN might receive value-based information

from cortical regions that are involved in processing value

(e.g. OFC; Frank 2006). Along these lines, the STN might

play a role in adjusting the distance between the starting and

ending point of the accumulation process, which can be an

optimal strategy to maximize reward (Bogacz et al. 2006;

Feng et al. 2009; Simen et al. 2006, 2009). According to this

idea, a preferred choice would correspond to a smaller

distance than for the non-preferred choice, also giving rise

to more and faster preferred choices (i.e., choice bias).
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Bias mechanisms like these might be mediated by a

connection between the STN and value-sensitive areas of

the prefrontal cortex. Anatomical models have proposed a

structural pathway originating from these cortical regions

and the STN (Temel et al. 2005; Baunez and Lardeux

2011). Indeed, although cortical inputs to the STN seem to

originate mainly from (pre)motor and lateral prefrontal

cortex regions (Lambert et al. 2012; Aron et al. 2007; Aron

and Poldrack 2006), evidence from animal studies show

projections from the medial–orbital cortical areas to the

STN in rodents (Maurice et al. 1998, 1999) and from the

orbito/ventromedial areas to the STN in monkeys as well

(Haynes and Haber 2013). Furthermore, it is shown that

fibers originating from the monkey orbito/ventromedial

area travel through the basal ganglia (Ferry et al. 2000;

Haber et al. 2006) including the STN (Lehman et al. 2011).

In line with these findings, studies using deep brain stim-

ulation in patients with Parkinson’s disease reported

changes in the blood flow and metabolism of orbito/ven-

tromedial prefrontal regions (Brodmann area 11) after

stimulation of the STN (Gjedde and Geday 2009; Kalbe

et al. 2009). Although these studies suggest a connection

between medial–orbital cortical areas and the STN, up until

now it is unclear whether such structural pathway really

exists in the human brain (Marani et al. 2008).

In this study, we first address the anatomical question

whether there exists a structural connection between the

STN and a value-sensitive region of the prefrontal cortex.

For this purpose, we use diffusion weighted imaging

(DWI) in combination with probabilistic tractography. As

our cortical region, we choose a cluster (sphere) that is

specifically associated with bias in perceptual decision

making for the sample of subjects that are included in the

current DWI analyses (vmPFC11; Mulder et al. (2012).

This region has been reported by studies of value-based

processes in the orbito/ventromedial prefrontal cortex

(e.g. Gläscher et al. 2009; Philiastides et al. 2010; Blair

et al. 2006; Hampton et al. 2007; Smith et al. 2010; Liu

et al. 2007; Ramnani et al. 2004; Knutson et al. 2004, 2005,

2007; Beckmann et al. 2009; Kable and Glimcher 2007).

As such, this group-specific cortical cluster is a suitable

candidate to test for an anatomical connection with the

STN, as it is functionally associated with choice bias and

value-based processes.

Second, if such a connection exists, we will test whether

individual differences in the strength of this connection

predict individual differences in the magnitude of choice

bias. Bias was measured using two versions of the random-

dots motion task in which bias was manipulated by either

assigning a larger reward to one of two alternatives

(potential payoff) or changing the prior likelihood of

occurrence for two alternatives (prior probability; Mulder

et al. 2012). For each task, we fitted the drift-diffusion

model (DDM; Ratcliff 1978) to the behavioral data and

used the starting point parameter from the model to mea-

sure the magnitude of choice bias (Fig. 1). Importantly, the

vmPFC region was associated with both types of bias

(Mulder et al. 2012), allowing us to test whether the

vmPFC–STN connection might be associated with mech-

anisms underlying choice bias that is driven by value

(payoff) or likelihood of occurrence (probability).

Third, we investigated whether the striatum might be

part of a possible tract between vmPFC and STN. Recently,

a tracing study with non-human primates showed that tracts

originating in the vmPFC travel through the striatum before

reaching the STN (Lehman et al. 2011). Furthermore, both

the STN and the striatum are involved in the circuit

underlying decision and reward processes (Frank 2009). As

such, the striatum might be an important waypoint for the

tract between vmPFC and STN.

Materials and methods

Subjects

Sixteen healthy subjects (11 female, mean age = 23.6,

SD = 2.7) were included in the present study. All subjects

participated in a previous functional magnetic resonance

imaging (fMRI) study investigating the biasing effects

of prior knowledge on choice behavior (for details, see

Mulder et al. 2012). Subjects were recruited through the

University of Amsterdam and had normal or corrected-to-

normal vision. The procedure was approved by the ethical

review board at the University of Amsterdam and informed

consent was obtained from each subject. According to self-

report, no subject had a history of neurological, major

medical, or psychiatric disorder.

Behavioral data

Subjects participated in two sessions of a perceptual deci-

sion-making paradigm (inside and outside the scanner

environment). Since the chosen vmPFC region (see below)

was identified by values of choice bias that were measured

during the scanner session, we will report task details for

this session only.

Subjects performed a RT version of the random-dot

motion direction-discrimination task. On each trial, sub-

jects had to decide whether a cloud of white dots moved to

the left or to the right, on a black background. We matched

the difficulty level of the motion stimulus across subjects at

1 This region was labeled as medFG in Mulder et al. (2012).

However, peak coordinates are in accordance with the ventral part of

the medFG (MNI coordinates: 16 58–10; BA11).
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80 % accuracy (for details see Mulder et al. 2012). Partic-

ipants performed two blocks for each manipulation. Each

experimental block consisted of 40 bias trials and 40 neutral

trials. Each stimulus was preceded by a cue, which was an

arrow pointing to the left or to the right (bias) or a square

with the size of the arrow without arrow-points (neutral). In

the bias trials, the cue indicated which direction had a

higher likelihood of occurrence (prior probability) or which

direction would lead to the highest payoff (potential pay-

off). In the prior probability manipulation, 80 % of the bias

trials were valid (i.e., in 32 of the 40 trials the direction

indicated by the cue was consistent with the direction of the

stimulus) and 20 % of the bias trials were invalid (i.e., in 8

of the 40 trials, cue and stimulus direction were inconsis-

tent). Subjects received five points for each correct response

in both the biased and neutral trials. No points were given

for an incorrect response. In the potential payoff manipu-

lation, half of the bias trials were valid, i.e., cue and stim-

ulus direction were consistent, and a large reward (eight

points) was received for a correct response. On the other

half of the bias trials, the cue and stimulus direction were

inconsistent and subjects received two points for a correct

response. No points were given for an incorrect response.

Fitting the drift-diffusion model to the data

The DDM assumes that for two-alternative forced choice

decisions, sensory evidence in favor of one of the alter-

natives begins to accumulate from a starting point z (for

review, see Bogacz 2007; Gold and Shadlen 2007; Ratcliff

and McKoon 2008; Wagenmakers 2009). When the evi-

dence accumulation process reaches a threshold value, a

response is initiated (Ratcliff 1978; Ratcliff and Tuerlinckx

2002; Ratcliff and McKoon 2008). The DDM can capture

the effects of bias by changing the starting point

(Dz; Edwards 1965; Laming 1968; Link and Heath 1975;

Ratcliff 1985; Voss et al. 2004; Bogacz et al. 2006;

Diederich and Busemeyer 2006; van Ravenzwaaij et al.

2012; Leite and Ratcliff 2011; Ratcliff et al. 1999). For

neutral trials, we assumed that starting point z equals half

the decision threshold a. For a valid trial, we assume that

the decision process is biased by the cue toward the correct

bound (z ? Dz). For invalid trials, we assume that the

decision process is biased away from the correct bound

(z - Dz). We fitted the DDM to the data from each subject

and each condition separately for the prior probability and

potential payoff manipulations. First, for each trial-type

(valid, neutral, and invalid) RT data were divided by RT-

bins defined by the 10th, 30th, 50th, 70th, and 90th quan-

tiles of the RT-distribution for correct and incorrect

responses. RT-bins together with the proportion correct

responses for each bin were entered in a Fortran routine

that minimizes a X2 value using a Nelder-Mead SIMPLEX

optimization algorithm Ratcliff and Tuerlinckx (2002).

Bias was quantified as the proportional change in the mean

starting point (Dz/z; for details see Mulder et al. 2012). In

sum, by fitting the DDM to the data we were able to cap-

ture the bias in RT and accuracy for each individual subject

in a single parameter (starting point).

Imaging acquisition

Imaging data were acquired on a 3T Philips scanner using a

32-channel head coil. For each subject, a T1 anatomical

scan was acquired (T1 turbo field echo, 220 coronal slices

of 1 mm, with a resolution of 1 9 1 mm, field of view =

240 9 188 9 220 mm, flip angle = 8�, TR = 8.4 ms,

TE = 3.9 ms).

Four repetitions of a multi-slice spin echo (MS-SE),

single shot DWI scans were acquired on a 3T MRI

Fig. 1 Schematic

representation of the drift-

diffusion model. The model

assumes that dichotomous

decisions are based on the

accumulation of noisy evidence

over time that starts at the

starting point and ends at a

decision threshold. Drift rate

represents the average amount

of evidence accumulated per

time unit. Non-decision time is

the time for processes other than

the decision process. Prior

information (green text) biases

the decision process by

adjusting the starting point,

resulting in a smaller distance

for the accumulation process to

hit the decision threshold
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(TR = 7,545 ms, TE = 86 ms, 60 transverse slices of

2 mm, with a resolution of 2 9 2 mm, field of view =

224 9 224 9 60 mm). Diffusion weighting was distrib-

uted along 32 directions (b-value = 1,000 s/mm2). For

each repetition, one image with no diffusion weighting

(b0; b-value = 0 s/mm2) was acquired.

For the validation and visualization data set, we

acquired 7T DWI data from an individual that did not

participate in the current experiment. Four repetitions of

a MS-SE, single shot DWI scans were acquired on a 7T

MRI (TR = 5,000 ms, TE = 86 ms, 60 transverse slices

of 0.87 mm, with a resolution of 0.87 9 0.9 mm, field of

view = 256 9 256 9 176 mm). Diffusion weighting was

distributed along 64 directions (b-value = 1,000 s/mm2).

For each repetition, one image with no diffusion weighting

(b0; b-value = 0 s/mm2) was acquired.

Preprocessing

Diffusion image preprocessing was done using FSL 4.1.4

(www.fmrib.ox.ac.uk/fsl). All four DWI runs were merged

and corrected for motion and eddy currents by registering

each volume, including b0 volumes, to a reference DWI

volume using FLIRT (Jenkinson and Smith 2001). Next,

the anatomical T1 was registered to the b0 image. To use

probabilistic tractography, we estimated the diffusion

parameters using a sampling technique, while controlling

for crossing fibers using a dual-fiber model (bedpostX; FSL

4.1.4; Behrens et al. 2007).

Masks

The vmPFC mask was taken from a conjunction analysis

between two bias manipulations reported elsewhere (Mul-

der et al. 2012). A sphere of 10-mm radius was drawn

around the peak coordinate (MNI coordinates: 16 58-10).

The STN mask was taken from the atlas probability map of

the STN (Forstmann et al. 2010a, 2012; www.fmrib.ox.

ac.uk/fsl; www.nitrc.org/projects/atag) and thresholded at

20 %. The striatal mask was created using subcortical

regions (caudate, putamen, and nucleus accumbens) from

the Harvard-Oxford subcortical structural atlas (www.

fmrib.ox.ac.uk/fsl) and thresholded at 25 %. All masks

were registered to each subject’s native space. First, for

each subject, the MNI-standard brain was registered to the

anatomical T1 image, which was already registered to the

DWI image. Then, these registration parameters were used

to register all masks to the individual’s native space. All

registration steps were done using trilinear interpolation as

implemented in FLIRT (Jenkinson and Smith 2001; FSL

4.1.4). For each individual we verified the registration

procedure using visual inspection. The resulting masks had

an average (SD) number of voxels of vmPFC = 484.10

(99.2), STN = 90.9 (12.2) and striatum = 2,224 (225.8).

The contralateral (exclusion) masks for the left STN and

left striatum were generated using the probabilistic atlases

that are implemented in FSL. For the left vmPFC we took

the original peak coordinates and mirrored it to the other

hemisphere by taking the negative of the x-coordinate.

Next, a sphere was drawn around this flipped coordinate

resulting in the contralateral vmPFC mask.

For Fig. 2b, a manually segmented STN mask was

created (Forstmann et al. 2010a, 2012) using anatomical

images acquired on a 7T Magnetom MRI system (Siemens,

Erlangen), with a 24-channel head array Nova coil (NOVA

Medical Inc., Wilmington MA, USA). For this purpose,

whole brain images were acquired with an MP2RAGE

(Deichmann et al. 2000) sequence (TR = 3,000 ms,

TE = 2.95 ms, TI = 1,100 ms, voxel size: 0.8 mm iso-

tropic, flip angle = 6�, GRAPPA acceleration factor 2).

Probabilistic tractography

Diffusion image analyses were performed using FSL 4.1.4

(www.fmrib.ox.ac.uk/fsl). Estimation of tracts was con-

ducted using probabilistic tractography (Behrens et al.

2003a). This method uses the orientation of water diffusion

within white matter fibers to reconstruct a (probabilistic)

white matter tract from voxel to voxel (Mori and van Zijl

2002; Mori 2006). At each voxel, a probability distribution

of the diffusion direction is estimated, resulting in proba-

bilistic maps of fiber connectivity between brain regions.

These distributions are then used to estimate the probability

that a fiber starting at a voxel in a seed region, travels

through any other voxel towards a voxel in a classification

region, and vice versa (Behrens et al. 2003a, b).

Five thousand tracts were sampled from each voxel in

the seed mask (e.g., vmPFC) at a curvature threshold of

0.2. Next, the number of samples that reach the classifi-

cation target mask (e.g., STN or striatum) was measured.

In addition, contralateral exclusion masks were used to

discard pathways crossing over to the contralateral hemi-

sphere before traveling to the classification target mask. To

control for the difference in mask-size, the number of

voxels in the seed mask for which a minimum of 10

samples reached the classification mask (Aron and Pold-

rack 2006; Aron et al. 2007; Forstmann et al. 2012) was

divided by the total number of voxels in the seed mask.

This results in a value that represents the proportion of the

seed mask that was probabilistically connected to the

classification mask.

As directionality cannot be inferred from tractography

analyses, we followed a similar procedure in the opposite

direction (where the seed and classification masks were

switched). Next, probabilistic tract-strength was defined as
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the average of the two proportions that resulted from the

seed-to-classification and classification-to-seed analyses.

These values were then used in a correlational test (two-

sided) together with individuals shift in starting point DDM

model parameters.

Tracts

We investigated the connection between the right vmPFC

and STN while using several inclusion and exclusion

masks. Below we will describe each analysis in detail.

vmPFC–STN

We tested for a probabilistic tract between the right vmPFC

and the right STN while using the contralateral (left)

vmPFC and STN regions as exclusion masks. This means

that in the probabilistic tractography analyses, tracts were

not allowed to travel via the left vmPFC or via the left

STN, respectively.

Cortico-subthalamic and the striatum

To study the structural role of the striatum in the cortico-

subthalamic tracts, we ran three additional probabilistic

tractography analyses. First, we investigated whether the

striatum served as an important waypoint for this tract. To

this end, we used the mask of the striatum as a waypoint

mask, which limited the probabilistic tractography analyses

to only those tracts between the vmPFC and the STN that

travel via the striatum. Second, an additional analysis was

done to test whether a tract between the vmPFC and STN

exists that does not travel via the striatum. To this end, the

striatum was used as an exclusion mask, ensuring that no

tracts traveled via the striatum in the probabilistic trac-

tography analyses. Third, we investigated whether a

probabilistic tract exists between vmPFC and striatum and

tested for a relationship between individual differences in

the probabilistic tract-strength of this tract and individual

differences in choice bias.

Striatal-subthalamic connection

Finally, we investigated whether there was a probabilistic

tract between the striatum and STN, and whether individual

differences in this tract were related to individual differ-

ences in choice bias.

Results

In this study, we seek to quantify the structural connection

between the STN and a cortical region that was associated

with mechanisms underlying bias in choice behavior

(vmPFC). Next, we tested whether the probabilistic tract-

strength of this connection was predictive for the magni-

tude of bias in a perceptual decision-making task. Below

we first report the results of the probabilistic tractography

analyses. We then report the results of the correlational

analyses between individual measures of the probabilistic

tract-strength and the individual measures of choice bias. In

addition, we report results of probabilistic tractography

analyses in which we investigated the possible role of the

striatum in the cortico-subthalamic tract.

Fig. 2 MR Images showing the

connection (red) between

vmPFC (yellow) and STN

(green) for 3 Tesla (A) and 7

Tesla (B) images. Background

images are anatomical scans

acquired at a 3T Philips (T1)

and 7T Siemens (MP2RAGE)

scanner
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Probabilistic tractography

For each of the 16 subjects, we estimated the probabilistic

tract-strength between a functionally defined vmPFC mask

and an anatomically defined STN mask using probabilistic

tractography (Behrens et al. 2003a). The results show a

probabilistic tract [mean (std) tract - strength = 0.30

(0.26)] starting from the vmPFC traveling via the anterior

corona radiata (acr) and the anterior limb of the internal

capsule (aic) through the STN. The tract is depicted for one

subject in Fig. 2a.

Since the registration of the probabilistic STN mask to

individual space might induce inter-individual variability

in the size and localization of the STN, we validate the

analysis on an independent DWI data set that was

acquired on a Siemens 7T Magnetom MRI system.

Instead of using the probabilistic STN map, we used a

mask of the STN that was manually segmented for this

participant (see Forstmann et al. 2010a, 2012 for seg-

mentation procedure details). Note also that this subject

did not participate in the current 3T study, and as such

was not part of the analyses described below. Results are

shown in Fig. 2b.

Individual differences in probabilistic tract-strength

and choice bias

All 16 healthy subjects performed an RT version of a

random-dot motion direction-discrimination task in which

bias was manipulated by a cue indicating a higher value

associated with the motion stimulus (potential payoff) or a

higher probability of the direction of the motion stimulus

(prior probability). Subjects tended to make more and

faster decisions toward the alternative that had the largest

value or was the most likely. Bias was quantified by fitting

the drift-diffusion model to the behavioral data. The results

show that the biasing effect was primarily driven by a

change in the starting point of the accumulation process

(Mulder et al. 2012). These individual differences in

starting point were used to test whether the vmPFC–STN

connection is associated with mechanisms underlying

choice bias that is driven by value (payoff) or likelihood of

occurrence (probability).

We performed a two-sided correlational test using the

individual values of the connection strength between

vmPFC and STN together with the individual values of

choice bias (e.g., shift in starting point of the accumulation

process). Results show that the strength of the connection

between vmPFC and STN were associated with the shift in

starting point for the potential payoff manipulation

(r = 0.58, P = 0.02), but not for the prior probability

manipulation (r = -0.03, P = 0.92; see Fig. 3). These

results suggest that the connection strength is predictive of

choice bias, but only when it is value-driven.

To test whether the probabilistic tract-strength was a

better predictor for value-driven compared to probability-

driven choice bias, we performed a permutation test. At

each of ten thousand permutations we randomly reordered

the tract-strength values, and re-paired the new values with

the choice bias values. We recalculated the explained

variance (r2) for each manipulation and calculated the

difference between them. This resulted in a distribution of

all possible differences under the null hypothesis that there

is no difference between the explained variances of both

manipulations. Next, a two-sided p value was calculated

from the proportion of times in which the (absolute) dif-

ference computed from the permuted values was greater

than the (absolute) difference between original values.

Results confirmed that probabilistic tract-strength was a

better predictor for value-driven choice bias compared to

probability-driven choice bias (P \ 0.05).

Fig. 3 a Schematic representation of tracts between vmPFC, stria-

tum, and STN. No significant correlations were found between

vmPFC–striatum tracts (red) and choice bias. For the vmPFC–STN

connection (green), we found that individual differences in probabi-

listic tract-strength predict individual differences in value-driven but

not probability-driven choice bias (b)
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Cortico-subthalamic and the striatum

Our results show that tracts originating in the vmPFC travel

through the striatum before reaching the STN (Fig. 2),

which is in line with findings from tracing studies with

non-human primates (Lehman et al. 2011). Furthermore,

the cortico-striatal circuit is associated with the adaptation

of the decision threshold for choices under speed stress

(Forstmann et al. 2008, 2010a; van Maanen et al. 2011). To

investigate whether the relationship between the strength of

the vmPFC–STN tract and choice bias depends on the

striatum, we re-ran the probabilistic tractography analyses

with an anatomically defined (probabilistic) mask of the

striatum (see ‘‘Methods’’). This mask was first registered to

each individual’s native space and then used as waypoint,

exclusion or classification mask in the following probabi-

listic tractography analyses:

1. Striatum as a waypoint mask: In this analysis, tracts

were required to pass through the striatum. Tracts that

did not pass the striatum were discarded from the tract-

strength calculation. Probabilistic tract-strength did not

change [mean (SD) tract-strength = 0.30 (0.26)] and

the relationship with choice bias was as strong as

before (r = 0.58, P = 0.02).

2. Striatum as an exclusion mask: In this analysis, all

pathways were discarded if they enter the striatum.

No tracts arrived at the STN [mean (SD) tract-

strength = 0.0 (0.0)].

3. Striatum as a target mask: Here we tested for a

probabilistic tract between vmPFC and striatum, while

excluding those tracts that might travel via the STN.

We found a tract between vmPFC and striatum [mean

(SD) tract-strength = 0.71 (0.11)]. No significant

relationship was found between the strength of the

vmPFC–striatum tract and choice bias (r = 0.16,

P = 0.56 for potential payoff and r = -0.38,

P = 0.15 for prior probability).

Striatal-subthalamic connection

Although the individual differences in cortico-striatal

connection strength could not explain the individual dif-

ferences in choice bias, it might be the case that the relation

is driven by a connection between the striatum and the

STN. To test this, we run the probabilistic tractography

analyses between the striatal and STN masks. Results show

a connection between the striatum and STN [mean (SD)

tract-strength = 0.74[0.09]). No significant relationship

with choice bias was found (r = 0.05, P = 0.86 for

potential payoff and r = 0.19, P = 0.49 for prior

probability).

Note that the strength of the probabilistic tract for the

different parts (vmPFC–striatum and striatum–STN tracts)

deviates from the strength of the entire tract (vmPFC–

STN). This is inherent to the method: Although the prob-

abilistic tractography will ‘follow’ the existing white

matter tracts (see also Jbabdi et al. 2013), it does not rep-

resent an absolute measure of white matter volume (for

further details see Johansen-Berg and Behrens 2009).

Rather, it represents the likelihood that a tract will travel

from a seed to a target region, which will vary with the

distance between the seed and target regions. As such, the

probabilistic strength of a tract will likely deviate from

the strength of its parts.

In sum, the results show a structural connection between

vmPFC and STN that travels through the striatum. As such,

it is likely that the striatum plays a role in the relation

between the probabilistic strength of the vmPFC–STN tract

and choice bias. However, no correlation was found

between the strength of one of the two parts of the tract

(vmPFC–striatum or striatum–STN), suggesting that the

relationship was not driven by one of these parts alone.

Discussion

In this study, we identified a structural tract in vivo

between the STN and a cortical region that was associated

with mechanisms underlying bias in choice behavior

(vmPFC). We used (DWI) and probabilistic tractography to

measure the tract-strength and tested whether individual

differences in this tract-strength were predictive for indi-

vidual differences in the magnitude of choice bias. Choice

bias was quantified using the DDM where a shift in the

starting point of evidence accumulation produces faster

choices and a larger proportion of choices for an alternative

that is more likely or more valuable. Results show that the

STN is structurally connected with this region of the

vmPFC and that the strength of this connection is predic-

tive for choice bias towards an alternative that is more

valuable, but not for choice bias towards an alternative that

is more likely.

Recently, we showed that the vmPFC was active for

both value-driven and probability-driven choice bias. This

raises the question why the individual differences in the

strength of the cortico-subthalamic tract would be selec-

tively related to value-driven, but not to probability-driven

choice bias. Note that the absence of a relationship between

the probabilistic tract-strength and probability-driven

choice bias does not have to imply that the connection is

not used in probability-driven decision processes at all.

Rather, it might be the case that individual differences in

processing the information about the likelihood of an
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alternative cannot be explained solely by the differences in

strength of the vmPFC–STN tract. Indeed, activation pat-

terns related to probability-driven choice bias show a

broadly distributed network of brain regions (Mulder et al.

2012; Forstmann et al. 2010b; Preuschhof et al. 2010),

whereas the network for value-driven bias might be less

diffuse (Mulder et al. 2012). A possible explanation may

involve the type of prior information that is processed

before the moment of choice; although the consequences

might be the same (a shift in starting point), information

about the possible direction of the stimulus might rely on

other cognitive resources than information about the value

associated with the alternatives. It might be the case that

the latter is more closely related to the reward-circuit, and

as such is more sensitive to individual changes therein.

A key question remains: how does the STN use the

value-based information to bias the decision process? One

hypothesis is that the STN has to resolve the conflict

between the possible choice outcomes that compete for

access to the motor system (Zaghloul et al. 2012).

According to this idea, the value-driven bias signal causes

a difference in conflict between the alternatives. First, the

STN pre-selects the motor program that is associated with

the most valuable alternative. This pre-selection is then put

on a hold, until an action has been chosen in response to the

stimulus. When the appropriate motor response to the

stimulus is not compatible with the pre-selected program,

the conflict between prior (cue) and actual information

(stimulus) is high, causing the STN to respond and inhibit

the motor system (Gurney et al. 2001; Humphries et al.

2006; Zaghloul et al. 2012; Frank 2006). As such, a choice

with a preceding invalid cue (that is, representing prior

knowledge that is not compatible with the stimulus) would

cause slower and fewer correct decisions. In contrast, when

the pre-selected motor program is compatible with the

upcoming stimulus (valid), the conflict between the pre-

selected (cue) and selected (stimulus) responses will be

low, resulting in faster and more correct decisions.

Such a scenario would be in line with the behavioral

expectations of the DDM, where a shift in the starting point

of the accumulation process results in faster response times

for valid but slower response times for invalid preceding

cues (e.g., van Ravenzwaaij et al. 2012; Mulder et al. 2012;

Edwards 1965; Laming 1968; Link and Heath 1975; Rat-

cliff 1985; Voss et al. 2004; Bogacz et al. 2006; Leite and

Ratcliff 2011; Ratcliff et al. 1999; Diederich and Buse-

meyer 2006). Within this framework, the mechanisms

underlying choice bias might be similar to an adaptation of

the decision threshold. When two alternatives are highly

conflicting, an increase in the decision threshold results in a

larger distance between the starting and ending point of the

accumulation process, which in turn results in a longer

time to decide, reducing premature choices (Frank 2006).

Similarly, a shift in the starting point towards the preferred

alternative (i.e., low conflict) results in a smaller distance

towards the preferred alternative, with faster and more

preferred choices as a consequence (choice bias). As such,

the model-based framework provides a possible explana-

tion of how the STN might use the value-driven informa-

tion in biasing perceptual choices.

A second remaining open question is: what is the role of

the striatum in the relationship between the probabilistic

tract-strength and choice bias? Our data shows that the

vmPFC–STN tract travels through the striatum. This is in

line with animal studies showing projections from the

medial/orbito frontal regions to the STN via striatal regions

(Lehman et al. 2011; Maurice et al. 1998, 1999). As noted

earlier, the strength of the probabilistic tracts between the

striatum and vmPFC or STN (vmPFC–striatum and stria-

tum–STN) were different from the strength of the entire

tract (vmPFC–STN). Although this is inherent to the

method, individual differences in tract strength for the

whole tract might still be similar to the individual differ-

ences in tract strength of its parts, meaning that the cor-

relation between tract-strength and behavior might still be

apparent for the vmPFC–striatum and striatum–STN tracts.

However, the relationship with choice bias could not be

explained by the cortico-striatal or striatal-subthalamic

connections. Possibly, both the cortico-striatal and cortico-

subthalamic circuits process information concurrently in

the reward and motor domain (Nambu et al. 2002; Temel

et al. 2005; Teagarden and Rebec 2007; Heida et al. 2008).

Earlier findings show that the striatum plays an impor-

tant role in adjusting the decision threshold under speed

stress (Bogacz et al. 2010b; Frank 2006; Forstmann et al.

2008, 2010a; van Maanen et al. 2011). According to these

studies, people lower their decision threshold by activating

the striatum, resulting in a release of inhibition of selected

motor programs with faster choices (and more errors) as a

consequence (speed–accuracy tradeoff; Bogacz et al.

2010b). Interestingly, the stronger the connection strength

between the striatum and pre-supplementary motor area

(pre-SMA), the more flexible subjects are in changing the

decision threshold (Forstmann et al. 2010a). This might

suggest that the cortico-striatal connections are involved in

an increasing speed, without considering which response is

the most appropriate one. In contrast, activating the STN

results in an inhibition of a motor response, preventing a

premature response to occur before the appropriate one is

actually chosen (Frank 2006). Along these lines, the

vmPFC–STN tract might have a purpose in mediating the

selection of the most valuable option, and inhibiting

the least appropriate one.

Taken together, in this study we quantified a structural

connection between vmPFC and STN using probabilistic

tractography. We showed that the strength of this
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connection predicts the magnitude of value-driven choice

bias in a simple perceptual decision-making task. These

results confirm the importance of cortico-subthalamic

structural networks in perceptual decision making.
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