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Abstract

Morphological analysis as applied to English has generally involved the study of rules for

inflections and derivations. Recent work has attempted to derive such rules from automatic

analysis of corpora. Here we study similar issues, but in the context of the biological literature. We

introduce a new approach which allows us to assign probabilities of the semantic relatedness of

pairs of tokens that occur in text in consequence of their relatedness as character strings. Our

analysis is based on over 84 million sentences from the MEDLINE database, over 2.3 million

token types that occur in MEDLINE, and enables us to identify over 36 million token type pairs

which have assigned probabilities of semantic relatedness of at least 0.7 based on their similarity

as strings. The quality of these predictions is tested by two different manual evaluations and found

to be good.
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Introduction

Morphological analysis is an important element in natural language processing. Jurafsky and

Martin [1] define morphology as the study of the way words are built up from smaller

meaning bearing units, called morphemes. Robust tools for morphological analysis enable

one to predict the root of a word and its syntactic class or part of speech in a sentence.

Stemming algorithms [2] use basic knowledge of grammar to eliminate recognized suffixes,

leaving a putative root word. A good deal of work has also been done toward the automatic

acquisition of rules, morphemes, and analyses of words from large corpora [3-12]. While

this work is important it is mostly concerned with inflectional and derivational rules that can

be derived from the study of texts in a language. While our interest is related to this work,

we are concerned with the multitude of tokens that appear in English texts on the subject of

biology. We believe it is clear to anyone who has examined the literature on biology that

there are many tokens that appear in textual material that are related to each other, but not in

1The current paper is an extension and completion of the earlier work published in BioNLP 2007: Biological, translational, and
clinical language processing, Unsupervised Learning of the Morpho-Semantic Relationship in MEDLINE, pages 201–208, Prague,
June 2007.
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any standard way or by any simple rules that have general applicability even in biology. It is

our goal here to achieve some understanding of when two tokens can be said to be

semantically related based on their similarity as strings of characters.

Thus for us morphological relationship will be a bit more general in that we wish to infer the

relatedness of two strings based on the fact that they have a certain substring of characters

on which they match. But we do not require knowledge of exactly on what part of the

matching substring their semantic relationship depends. In other words we do not insist on

the identification of the smaller meaning bearing units or morphemes. Key to our approach

is the ability to measure the contextual similarity between two token types as well as their

similarity as strings. Neither kind of measurement is unique to our application. Contextual

similarity has been studied and applied in morphology [8, 11, 13, 14] and more generally

[15]. String similarity has also received much attention [16-23]. However, the way we use

these two measurements is, to our knowledge, new. Our approach is based on a simple

postulate: If two token types are similar as strings, but they are not semantically related

because of their similarity, then their contextual similarity is no greater then would be

expected for two randomly chosen token types. Based on this observation we carry out an

analysis which allows us to assign a probability of relatedness to pairs of token types. This

proves sufficient to generate a large repository of related token type pairs among which are

the expected inflectionally and derivationally related pairs and much more besides.

The paper is organized as follows. We begin by defining contextual and lexical similarity.

These definitions are then followed by a description of the method by which they are used to

estimate the probability of semantic relatedness of two tokens. The lexical similarity is

initially based on IDF weights of the substring features used. This was initially chosen

because IDF weighting is a way to account for the information conveyed by a string based

on its frequency in a dataset and is quite successfully used in information retrieval

applications [24, 25]. We find by experiment that weighting all features with the value 1.0 is

more effective than IDF weights and we introduce a procedure for learning these weights

which provides even greater sensitivity. These results are followed by an evaluation of the

accuracy of the predicted probabilities and we show by direct human judgments as well as

by an application to improve the Porter stemmer that the predictions are indeed close to what

humans would predict. Given the learned weights and the resulting probability estimates we

show how to summarize all the data to produce probability estimates that two tokens are

semantically related based on their lexical similarity alone. The fact that the resulting

probability estimates are linearly related to the lexical similarity score, we believe, provides

some support for the machine learning approach used. The paper ends with a discussion and

conclusion section. A preliminary and abridged version of this work appeared in the past

[26], but the current work gives a thorough analysis of the machine learning approach used

and a formal evaluation of the probabilities predicted confirming their accuracy.

Data

A March 2007 copy of MEDLINE was used for this study. In the first step all the

MEDLINE documents were broken into sentences using the MedPost [27] sentence

segmenting function available on SourceForge under the title “medpost” . This produced a
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set of 84,475,092 sentences. The sentences were then tokenized by breaking at all non-

alphanumeric characters including spaces, tabs, and punctuation. The resulting tokens that

contained at least one alphabetic character were retained for analysis. This resulted in

2,341,917 token types and these are the subject of our study.

Measuring Contextual Similarity

In considering the context of a token in a MEDLINE record we do not consider all the text

of the record. In those cases when there are multiple sentences in the record the text that

does not occur in the same sentence as the token may be too distant to have any direct

bearing on the interpretation of the token and will in such cases add noise to our

considerations. Thus we break MEDLINE records into sentences and consider the context of

a token to be the additional tokens of the sentence in which it occurs. Likewise the context

of a token type consists of all the additional token types that occur in all the sentences in

which it occurs. While there is an advantage in the specificity that comes from considering

context at the sentence level, this approach also gives rise to a problem. It is not uncommon

for two terms to be related semantically, but to never occur in the same sentence. This will

happen, for example, if one term is a miss-spelling of the other or if the two terms are

alternate names for the same object. Because of this we must estimate the context of each

term without regard to the occurrence of the other term. Then the two estimates can be

compared to compute a similarity of context. We accomplish this using formulas of

probability theory applied to our setting.

Let T denote the set of 2,341,917 token types we consider and let t1 and t2 be two token

types we wish to compare. Then we define

(1)

Here we refer to pc(t1) and pc(t2) as contextual probabilities for t1 and t2, respectively. The

expressions on the right sides in (1) are given the standard interpretations. Thus p(i) is the

fraction of tokens in MEDLINE that are equal to i and p(t1 | i) is the fraction of sentences in

MEDLINE that contain i that also contain t1. We make a similar computation for the pair of

token types

(2)

Here we have made use of an additional assumption, that given i, t1 and t2 are independent

in their probability of occurrence. While independence is not true, this seems to be just the

right assumption for our purposes. It allows our estimate of pc (t1 ∧ t2) to be nonzero even

though t1 and t2 may never occur together in a sentence. In other words it allows our

estimate to reflect what context would imply if there were no rule that says the same

intended word will almost never occur twice in a single sentence, etc. Our contextual

similarity is then the mutual information based on contextual probabilities
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(3)

There is one minor practical difficulty with this definition. There are many cases where pc(t1
∧ t2) is zero. In any such case we define conSim(t1,t2) to be -1000.

Measuring Lexical Similarity

Here we treat the two token types, t1 and t2 of the previous section, as two ASCII strings and

ask how similar they are as strings. String similarity has been studied from a number of

viewpoints [16-23]. We avoided approaches based on edit distance or other measures

designed for spell checking because our problem requires the recognition of relationships

more distant than simple miss-spellings. Our method is based on character ngrams as

features to represent any string [19, 20, 22, 23]. If t = “abcdefgh” represents a token type,

then we define F(t) to be the feature set associated with t and we take F(t) to be composed of

i) all the contiguous three character substrings “abc”, “bcd”, “cde”, “def”, “efg”, and “fgh”;

ii) the specially marked first trigram “abc!”; and iii) the specially marked first letter “a #”.

This is the form of F(t) for any t at least three characters long. If t consists of only two

characters, say “ab”, we take i) “ab”; ii) “ab!”; and iii) is unchanged. If t consists of only a

single character “a”, we likewise take i) “a”; ii) “a!”; and iii) is again unchanged. Here ii)

and iii) are included to allow the emphasis of the beginning of strings as more important for

their recognition than the remainder. We emphasize that F(t) is a set of features, not a “bag-

of-words”, and any duplication of features is ignored. While this is a simplification, it does

have the minor drawback that different strings, e.g., “aaab” and “aaaaab”, are represented

by the same set of features.

Given that each string is represented by a set of features, it remains to define how we

compute the similarity between two such representations. Our basic assumption here is that

the probability p(t2 | t1), that the semantic implications of t1 are also represented at some

level in t2, should be represented by the fraction of the features representing t1 that also

appear in t2. Of course there is no reason that all features should be considered of equal

value. Let F denote the set of all features coming from all 2.34 million strings we are

considering. We will make the assumption that there exists a set of weights w(f) defined

over all of f ∈ F and representing their semantic importance. Then we have

(4)

Based on (4) we define the lexical similarity of two token types as

(5)

In our initial application of lexSim we take as weights the so-called inverse document

frequency weights that are commonly used in information retrieval [28]. If N = 2,341,917 ,
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the number of token types, and for any feature f, nf represents the number of token types

with the feature f, the inverse document frequency weight is

(6)

This weight is based on the observation that very frequent features tend not to be very

important, but importance increases on the average as frequency decreases.

Estimating Semantic Relatedness

The first step is to compute the distribution of conSim(t1,t2) over a large random sample of

pairs of token types t1 and t2. For this purpose we computed conSim(t1,t2) over a random

sample of 302,515 pairs. This resulted in the value -1000, 180,845 times (60% of values).

The remainder of the values, based on nonzero pc(t1 ∧ t2) are distributed as shown in Figure

1.

Let τ denote the probability density for conSim(t1,t2) over random pairs t1 and t2. Let

Sem(t1,t2) denote the predicate that asserts that t1 and t2 are semantically related in the sense

that a competent English speaker would judge two tokens to be semantically related

(different forms or different spellings of the same word or words referring to closely related

concepts). A key point here is that it is unlikely two randomly chosen tokens will be judged

semantically related. Then our main assumption which underlies the method is

Postulate. For any nonnegative real number r ≤ 1

(7)

has probability density function equal to τ.

This postulate says that if you have two token types that have some level of similarity as

strings (lexSim(t1,t2) > r) but which are not semantically related, then lexSim(t1,t2) > r is just

an accident and it provides no information about conSim(t1,t2).

The next step is to consider a pair of real numbers 0 ≤ r1 < r2 ≤ 1 and the set

(8)

they define. We will refer to such a set as a lexSim slice. According to our postulate the

subset of S(r1,r2) which are pairs of tokens without a semantic relationship will produce

conSim values obeying the τ density. We compute the conSim values and assume that all of

those pairs that produce a conSim value of -1000 represent pairs that are unrelated

semantically. As an example, in one of our computations we computed a slice S(0.7,0.725)

and found the lexSim value -1000 produced 931,042 times.
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In comparing this with the random sample which produced 180,845 values of -1000, we see

that

(9)

So we need to multiply the density for the random sample (shown in Figure 1) by 5.148 to

represent the part of the slice S(0.7,0.725) that represents pairs not semantically related. This

situation is illustrated in Figure 2. Two observations are important here. First, the two curves

match almost perfectly along their left edges for conSim values below zero.

This suggests that sematically related pairs do not produce conSim scores below about -1

and adds some credibility to our assumption that semantically related pairs do not produce

conSim values of -1000. The second observation is that while the higher graph in Figure 2

represents all pairs in the lexSim slice and the lower graph all pairs that are not semantically

related, we do not know which pairs are not semantically related. We can only estimate the

probability of any pair at a particular conSim score level being semantically related. If we let

Ψ represent the upper curve coming from the lexSim slice and Φ the lower curve coming

from the random sample, then

(10)

represents the probability that a token type pair with a conSim score of x is a semantically

related pair. Curve fitting or regression methods can be used to estimate p . Since it is

reasonable to expect p to be a nondecreasing function of its argument, we use isotonic

regression to make our estimates. For a full analysis we set

(11)

and consider the set of lexSim slices  and determine the corresponding set of

probability functions .

Learned Weights

Our initial step was to use the IDF weights defined in equation (6) and compute a database

of all nonidentical token type pairs among the 2,341,917 token types occurring in

MEDLINE for which lexSim(t1,t2) ≥ 0.5. We focus on the value 0.5 because the similarity

measure lexSim has the property that if one of t1 or t2 is an initial segment of the other (e.g.,

‘glucuron’ is an initial segment of ‘glucuronidase’) then lexSim(t1,t2) ≥0.5 will be satisfied

regardless of the set of weights used. The resulting data included the lexSim and the conSim

scores and consisted of 141,164,755 pairs.

We performed a complete slice analysis of this data and based on the resulting probability

estimates 20,681,478 pairs among the 141,164,755 total had a probability of being
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semantically related which was greater than or equal to 0.7. While this seems like a very

useful result, there is reason to believe the IDF weights used to compute lexSim are far from

optimal. In an attempt to improve the weighting we divided the 141,164,755 pairs into C−1

consisting of 68,912,915 pairs with a conSim score of -1000 and C1 consisting of the

remaining 72,251,839 pairs. Letting  denote the vector of weights we defined a cost

function

(12)

and carried out a minimization of ∧ to obtain a set of learned weights which we will denote

by . The minimization was done using the L-BFGS algorithm [29]. Since it is important

to avoid negative weights we associate a potential v(f) with each ngram feature f and set

(13)

The optimization is carried out using the potentials. The optimization can be understood as

an attempt to make lexSim as close to zero as possible on the large set C−1 where conSim =

−1000 and we have assumed there are no semantically related pairs, while at the same time

making lexSim large on the remainder. While this seems reasonable as a first step it is not

conservative as many pairs in C1 will not be semantically related. Because of this we would

expect that there are ngrams for which we have learned weights that are not really

appropriate outside of the set of 141,164,755 pairs on which we trained. If there are such,

presumably the most important cases would be those where we would score pairs with

inappropriately high lexSim scores. Our approach to correct for this possibility is to add to

the initial database of 141,164,755 pairs all additional pairs which produced a lexSim(t1,t2) ≥

0.5 based on the new weight set . This augmented the data to a new set of 223,051,360

pairs with conSim scores. We then applied our learning scheme based on minimization of

the function ∧ to learn a new set of weights . There was one difference. Here and in all

subsequent rounds we chose to define C−1 as all those pairs with conSim(t1,t2) ≤ 0 and C1

those pairs with conSim(t1,t2) > 0. We take this to be a conservative approach as one would

expect semantically related pairs to have a similar context and satisfy conSim(t1,t2) > 0 and

graphs such as Figure 2 support this. In any case we view this as a conservative move and

calculated to produce fewer false positives based on lexSim score recommendations of

semantic relatedness. As described in Table 1 we go through repeated rounds of training and

adding new pairs to the set of pairs. This process is convergent as we reach a point where the

weights learned on the set of pairs does not result in the addition of a significant amount of

new material.

As evidence that the repeated weight production shown in Table 1 is a convergent process

we computed the correlation coefficient between w3 and w4 and obtained an r = 0.986. By

contrast the correlation coefficient between IDF and w4 is r = 0.024. The w4 weights appear

to be completely unrelated to the IDF weights. Another way to compare the two sets of

weights is to compare the potentials that are defined by equation (13). Like energies,

potentials are only defined up to a constant additive factor, i.e., adding a constant factor to

Wilbur and Smith Page 7

Open Inf Syst J. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



all potentials in the set will effectively multiply all weights by a constant factor and have no

effect on lexSim values. The potentials for IDF and w4 weights are compared in Figure 3 and

it is evident that there is more variation in the learned weights than in the IDF weights. An

important question then is whether the learned weights are overtrained. In an effort to avoid

this we have expanded the set of pairs on which training is done as shown in Table 1. The

training data for w4 consists of 440 million pairs of tokens and there are 82,388 weights to

be learned (this number of features occur among the pairs of tokens in the training data).

The amount of training data versus the number of weights itself is some evidence against

overtraining, however, not all features have a high frequency in the training data. In order to

examine this issue we have plotted a point for each feature in Figure 4. The y-axis of a point

represents the number of times that feature appears in token pairs in the training data and the

x-axis the potential learned for that feature. It is clear that the potential only deviates from

zero (hence the weight from the average weight), when there is a substantial frequency of

that feature in the training data. This is strong evidence against overtraining.

Probability Predictions

Based on the learned weight set w4 we performed a slice analysis of the 440 million token

pairs on which the weights were learned and obtained a set of 36,173,520 token pairs with

predicted probabilities of being semantically related of 0.7 or greater. We performed the

same slice analysis on this 440 million token pair set with the IDF weights and the set of

constant weights all equal to 1. The results are given in Table 2. Here it is interesting to note

that the constant weights perform substantially better than the IDF weights and come close

to the performance of the w4 weights. While the w4 predicted about 1.5 million more

relationships at the 0.7 probability level, it is also interesting to note that the difference

between the w4 and constant weights actually increases as one goes to higher probability

levels so that the learned weights allow us to predict over 2 million more relationships at the

0.9 level of reliability. This is more than a 25% increase at this high reliability level and

justifies the extra effort in learning the weights.

A sample of the learned relationships based on the w4 weights is contained in Table 3 and

Table 4. The symbol ‘lacz’ stands for a well-known and much studied gene in the E. coli

bacterium. Due to its many uses it has given rise to myriad strings representing different

aspects of molecules, systems, or methodologies derived from or related to it. The results are

not typical of the inflectional or derivational methods generally found useful in studying the

morphology of English. Some might represent miss-spellings, but this is not readily apparent

by examining them. On the other hand ‘nociception’ is an English word found in a

dictionary and meaning “a measurable physiological event of a type usually associated with

pain and agony and suffering” (Wikepedia).

Table 4 shows that ‘nociception’ is related to the expected inflectional and derivational

forms, forms with affixes only found in biology, readily apparent miss-spellings, and foreign

analogs.
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Manual Evaluation

We manually evaluated the predicted probability of relatedness in the w4 set of Table 2 in

two ways. To prepare for this, we took all word pairs with lexSim ≥ 0.5 (using w4 weights)

and probability of semantic relatedness ≥ 0.7 based on equation (10), and we refer to these

as high-prob pairs; pairs of words not meeting this criterion are referred to as low-prob

pairs. There were a total of 35,121,574 high-prob (alphanumeric) word pairs. Our direct

evaluation examined a sample of these, and our stem evaluation examined a sample of pairs

of words with a common Porter stem, comparing them to the high-prob and low-prob sets.

Direct Evaluation

We randomly selected and judged the relatedness of 400 word pairs from high-prob set

using uniform sampling over that subset of pairs for which both words appeared in at least

100 different MEDLINE articles. We imposed this restriction because many low frequency

tokens are unfamiliar and difficult for a human to judge. Each word pair was examined

independently by two judges.

The basis for judgment was whether or not a pair of words appear in MEDLINE with a

related meaning that can be credited to a common substring they possess. The judges

disagreed on less than 5% of word pairs, and the differences were reconciled by conference.

All judging was completed without knowledge of the predicted probability of relatedness.

A total of 65 out of 400 word pairs were judged to be unrelated. Examples of unrelated pairs

are borrowing/throwing and the abbreviations mcas/cas. Examples of pairs judged to be

related include sapovirus/adenoviruses (based on the common string virus) and

sphingoid/sph (based on the string sph which is sometimes used as an abbreviation for

sphingoid).

The judged relatedness was compared to the predicted probabilities using a Pearson chi-

squared test on a contingency table that combined probabilities from 0.7-0.8, 0.8-0.9, and

0.9-1.0. The data is shown in Table 5. The Pearson chi-squared test for independence gives

χ2 =32.06 with a p< 0.001.

The data was also visualized using the PAV algorithm [30-32] which finds the maximum

likelihood estimate of the probability of judged relatedness given the predicted probability

of relatedness. This curve, shown in Figure 5 reveals an increasing relationship between

predicted and actual probabilities of relatedness. There appears to be a relatively consistent

lag of the humanly judged probabilities behind the machine predictions, but this effect is not

large.

Stem Evaluation

The Porter stemmer [2] is an algorithm that removes recognized suffixes from words to

yield a putative root, or stem. Words that are stemmed to the same root word are presumed

conflatable. That is, they may be used to refer to similar things, and hence they are

candidates for query expansion. We evaluated this hypothesis directly by manually
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evaluating pairs of words having a common stem, and compared the results with the set of

high-prob word pairs.

We randomly selected 1,000 distinct words from MEDLINE using a sampling probability

proportional to their frequency. Each word was also required to have at least one other word

with a common Porter stem, and was associated with that one with the highest MEDLINE

frequency. The list of 1,000 word pairs was alphabetized by the first word, and each pair

was examined to judge whether they possessed a common root.

Based on this manual evaluation, 63 pairs out of 1,000 were judged to not possess a

common root. For example, the Porter stemmer identified unrelated pairs general/generated,

and international/internal. Examples of word pairs judged to be related were cornea/

corneas, and unilaterally/unilateral.

These judgments were then compared with the set of high-prob pairs, as described above.

Within the 1,000 pairs, 792 were high-prob pairs and 208 low-prob pairs. Among the 792

high-prob pairs, 3.5% were judged unrelated. But among the 208 low-prob pairs, the error

rate was more than four times this, at 16.8%. The Pearson chi-squared test for independence

gives χ2 = 49.32, with a negligible p-value. This confirms that the probability for pairs of

words computed by equation (10) is indicative of semantic relatedness. It also suggests a

potential method of filtering query expansions based on Porter stemming.

Probability Estimates Based on Lexsim Alone

Based on the processing of all 440 million token pairs with lexSim ≥ 0.5 where the w4

trained weights are used, we can estimate the probability that a pair of token types are

semantically related just from the value lexSim. This calculation is based on the assumption

that when conSim = −1000 the pair is not semantically related. For all other pairs the

probability is calculated based on the above lexSim slice analysis and the functions .

The composite curve for the probability of semantic relatedness is computed again by use of

isotonic regression and the reasonable assumption that the probability should be a non-

decreasing function of the lexSim score. The result is shown in Figure 6.

An interesting aspect of Figure 6 is the observation that the predicted probabilities based on

lexSim score alone are almost never as great as 0.7. This is to be compared with the fact that

by making use of the context information available in conSim we are able to identify over 36

million token type pairs with a probability of being semantically related that is greater than

or equal to 0.7 and this is just over 8% of the total of 440 million candidate token type pairs.

Another point worth mentioning is the almost linear nature of the probability of semantic

relatedness as a function of lexSim score. While linearity is not necessary for the slice

analysis to work, linearity does seem desirable and perhaps provides a modicum of support

for equations (4) and (5).

Discussion and Conclusion

There are several possible uses for the type of data produced by our analysis. Words

semantically related to a query term or terms typed by a search engine user can provide a
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useful query expansion in either an automatic mode or with the user selecting from a

displayed list of options for query expansion. Many missspellings occur in the literature and

are disambiguated in the token pairs produced by the analysis. They can be recognized as

closely related low frequency-high frequency pairs. They may allow better curation of the

literature on the one hand or improved spelling correction of users queries on the other. In

the area of more typical language analysis, a large repository of semantically related pairs

can contribute to semantic tagging of text and ultimately to better performance on the

semantic aspects of parsing. Also the material we have produced can serve as a rich source

of morphological information. For example, inflectional and derivational transformations

applicable to the technical language of biology are well represented in the data.

There is the possibility of improving on the methods we have used, while still applying the

general approach. Either a more sensitive conSim or lexSim measure or both could lead to

superior results. Undoubtedly conSim is limited by the fact that tokens in text follow a

Zipfian [33] frequency distribution and most tokens appear infrequently. A pair of tokens

that each appears infrequently have a decreased chance of encountering the same contextual

tokens even when such an encounter would be appropriate to their meaning. This limits the

effectiveness of conSim and we believe accounts for only being able to extract 8% of the

440 million token type pairs at a probability of semantic relatedness ≥ 0.7. There is probably

no cure for this issue other than a larger corpus, which would be expected to yield a larger

set of such high probability pairs (but perhaps not a fraction higher than 8%). While it is

unclear to us how conSim might be structurally improved, it seems there is more potential

with lexSim. lexSim treats features as basically independent contributors to the similarity of

token types and this is not ideal. For example the feature ‘hiv’ usually refers to the human

immunodeficiency virus. However, if ‘ive’ is also a feature of the token we may well be

dealing with the word ‘hive’ which has no relation to a human immunodeficiency virus.

Thus a more complicated model of the lexical similarity of strings could result in improved

recognition of semantically related strings.

In future work we hope to investigate the application of the approach we have developed to

multi-token terms. We also hope to investigate the possibility of more sensitive lexSim

measures for improved performance. The current best lexSim weights are based on the

machine learning method we present in this paper. It is possible that other methods of

machine learning can also be used to bootstrap improved weights and such methods need to

be investigated.
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Figure 1.
Distribution of conSim values for the 40% of randomly selected token type pairs which gave

values above -1000, i.e., for which pc(t1 ∧ t2) > 0.
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Figure 2.
The distribution based on the random sample of pairs represents those pairs in the slice that

are not semantically related, while the portion between the two curves represents the number

of semantically related pairs.
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Figure 3.
Comparison of the frequencies of different potentials for the w4 and IDF weights. Both sets

have the average potential set to zero.
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Figure 4.
The number of times a feature appears in the training data versus its learned potential in the

w4 weight set.
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Figure 5.
The maximum likelihood estimate of the probability that a pair is judged to be related given

its predicted probability of relatedness. The curve is found using the PAV algorithm on data

from 400 manually judged high-prob pairs and their probability of relatedness (equation 10).
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Figure 6.
Probability of semantic relatedness of a token type pair as a function of lexSim score.

Applies only to pairs where lexSim ≥ 0.5.
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Table 1

Repeated training and addition of new pairs satisfying lexSim ≥ 0.5 based on the new weights obtained until

convergence of the process. IDF produces the first total set of 141.2 Million pairs, then each wi is trained on

the total pairs listed in its row and is used to produce the additional pairs added in the next row.

Weights Pairs added with lexSim ≥ 0.5 Total Pairs Pairs with conSim >0 Pairs with conSim ≤0

IDF, w0 141.2 M 41.9 M 99.2 M

w1 81.9 M 223.1 M 63.8 M 159.2 M

w2 181.7 M 404.8 M 106.5 M 298.3 M

w3 27.1 M 431.8 M 113.9 M 318.0 M

w4 8.5 M 440.4 M 116.4 M 324.0 M

0.6 M 441.0 M 116.8 M 324.2 M
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Table 2

Number of token pairs and the level of their predicted probability of semantic relatedness found with three

different weight sets.

Weight Set Prob. Semantically Related ≥ 0.7 Prob. Semantically Related ≥ 0.8 Prob. Semantically Related ≥ 0.9

w4 36,173,520 22,381,318 10,805,085

Constant 34,667,988 20,282,976 8,607,863

IDF 31,617,441 18,769,424 8,516,329
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Table 3

A table showing 30 out of a total of 379 tokens predicted to be semantically related to ‘lacz’ and the estimated

probabilities. Ten entries are from the beginning of the list, ten from the middle, and ten from the end. Breaks

where data was omitted are marked with asterisks.

Probability of a Semantic Relationship Token 1 Token 2

0.973028 lacz 'lacz

0.975617 lacz 010cblacz

0.963364 lacz 010cmvlacz

0.935771 lacz 07lacz

0.847727 lacz 110cmvlacz

0.851617 lacz 1716lacz

0.90737 lacz 1acz

0.9774 lacz 1hsplacz

0.762373 lacz 27lacz

0.974001 lacz 2hsplacz

*** *** ***

0.95951 lacz laczalone

0.95951 lacz laczalpha

0.989079 lacz laczam

0.920344 lacz laczam15

0.903068 lacz laczamber

0.911691 lacz laczatttn7

0.975162 lacz laczbg

0.953791 lacz laczbgi

0.995333 lacz laczbla

0.991714 lacz laczc141

*** *** ***

0.979416 lacz ul42lacz

0.846753 lacz veroicp6lacz

0.985656 lacz vglacz1

0.987626 lacz vm5lacz

0.856636 lacz vm5neolacz

0.985475 lacz vtkgpedeltab8rlacz

0.963028 lacz vttdeltab8rlacz

0.993296 lacz wlacz

0.990673 lacz xlacz

0.946067 lacz zflacz
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Table 4

A table showing 30 out of a total of 96 tokens predicted to be semantically related to ‘nociception’ and the

estimated probabilities. Ten entries are from the beginning of the list, ten from the middle, and ten from the

end. Breaks where data was omitted are marked with asterisks.

Probability of a Semantic Relationship Token 1 Token 2

0.727885 nociception actinociception

0.90132 nociception actinociceptive

0.848615 nociception anticociception

0.89437 nociception anticociceptive

0.880249 nociception antincociceptive

0.82569 nociception antinoceiception

0.923254 nociception antinociceptic

0.953812 nociception antinociceptin

0.920291 nociception antinociceptio

0.824706 nociception antinociceptions

*** *** ***

0.802133 nociception nociceptice

0.985352 nociception nociceptin

0.940022 nociception nociceptin's

0.930218 nociception nociceptine

0.944004 nociception nociceptinerg

0.882768 nociception nociceptinergic

0.975783 nociception nociceptinnh2

0.921745 nociception nociceptins

0.927747 nociception nociceptiometric

0.976135 nociception nociceptions

*** *** ***

0.88983 nociception subnociceptive

0.814733 nociception thermoantinociception

0.939505 nociception thermonociception

0.862587 nociception thermonociceptive

0.810878 nociception thermonociceptor

0.947374 nociception thermonociceptors

0.81756 nociception tyr14nociceptin

0.981115 nociception visceronociception

0.957359 nociception visceronociceptive

0.862587 nociception withnociceptin
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Table 5

Contingency table for manual evaluation of 400 high-prob pairs. Rows correspond to the manual judgment,

and columns correspond to the range of predicted probability. The chi-squared statistic for this data is 32.1,

which is statistically significant at p<0.001.

Manual Judgment Predicted Probability of Relatedness

0.7-0.8 0.8-0.9 0.9-1.0 Sum

0 33 22 10 65

1 75 91 169 335

Sum 108 113 179 400
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