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Abstract

The first step in the evolution of primate trichromatic color vision was the expression of a third cone class not present in
ancestral mammals. This observation motivates a fundamental question about the evolution of any sensory system: how is
it possible to detect and exploit the presence of a novel sensory class? We explore this question in the context of primate
color vision. We present an unsupervised learning algorithm capable of both detecting the number of spectral cone classes
in a retinal mosaic and learning the class of each cone using the inter-cone correlations obtained in response to natural
image input. The algorithm’s ability to classify cones is in broad agreement with experimental evidence about functional
color vision for a wide range of mosaic parameters, including those characterizing dichromacy, typical trichromacy,
anomalous trichromacy, and possible tetrachromacy.
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Editor: Matthias Bethge, University of Tübingen and Max Planck Institute for Biologial Cybernetics, Germany

Received July 13, 2013; Accepted April 3, 2014; Published June 26, 2014

Copyright: � 2014 Benson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Commonwealth Universal Research Enhancement (CURE) program from the Pennsylvania Department of Health
(http://www.portal.state.pa.us/portal/server.pt/community/health_research_program_cure/) and by NIH RO1 EY10016. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: dhb@psych.upenn.edu

¤ Current address: Princeton Neuroscience Institute & Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America

Introduction

Primate color vision is initiated when light spectra entering the

eye are encoded by three classes of retinal cone photoreceptors:

the long- (L), medium- (M), and short- (S) wavelength-sensitive

cones. Trichromatic encoding alone, however, is not sufficient to

support functional trichromatic color vision. In addition, the

information encoded by the cones must be preserved by post-

receptoral neural circuitry in a manner that enables both color

discrimination and the representation of stimulus color.

The emergence of distinct L and M cones in primates is a

recent evolutionary event [1–4], and the only known difference

between these cones is the photopigment opsin contained in their

outer segments [5,6]. These observations make it unlikely, given

current knowledge, that the formation of appropriate post-

receptoral circuitry can rely on biochemical markers that

distinguish L and M cones and suggest instead that this circuitry

must be learned.

The fact that the first step in the evolution of trichromatic color

vision was the expression of a third cone class leads to two

important questions. First, how can a post-receptoral visual system

detect the presence of a new cone class? Second, how can such a

system classify individual cones according to their spectral class, so

as to take advantage of the information carried by the newly

expressed opsin? More generally, the question of what information

enables the brain to initially detect and differentiate the presence

of novel sensory transducers applies to any sensory modality which

provides a multidimensional perceptual representation. Here we

provide a computational treatment of these fundamental questions

in the context of primate color vision and show that the inter-cone

correlations induced by natural images may be used to detect

when a mosaic contains three rather than two cone classes and to

accurately classify L versus M cones.

We build on previous work, some available only in abstract

form, that considers the concrete question of how learning might

produce model neural units whose wiring differentiates signals

from L and M cones [7,8]. Importantly, this work shows that there

is indeed information in the cone responses to natural images that

can differentiate L and M cones to some degree, in the sense that

learning enabled above-chance formation of cone-class specific

wiring of model units. Here, we extend the previous work in two

ways.

First, we develop an algorithm that uses inter-cone response

correlations to explicitly classify cones by their spectral type.

Although such explicit classification is not a necessary feature

of the brain’s implementation of visual processing, it allows us

to quantify the degree to which unsupervised learning can

differentiate cones by type to support color vision. This

quantification allows us to explore how classification perfor-

mance depends on key parameters of the mosaic, for example

particular on the number of cone types, the ratio of L to M

cones, and the spectral sensitivities of the different cone

classes.

Second, the appropriate representation of stimulus color

depends on the number of cone classes present in the mosaic. In

humans [9] (and also New World primates [2]) there is individual

variation in this number, primarily in the form of red-green

dichromacy. Thus it is also of interest to investigate whether

learning can detect the number of longer-wavelength-sensitive

cone classes present in an individual retinal mosaic.
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Our approach is computational. That is, we abstract, for the

most part, from known features of retinal and cortical circuitry and

consider what is possible using information encoded by the distal

retina in response to natural images.

Results

We begin by considering how to classify L versus M cones in a

mosaic that is known to contain both cone classes; below we return

to the problem of detecting the number of cone classes present in a

mosaic. To proceed, we simulated the responses of retinal cone

mosaics to natural images. The images used in the simulations

were collected from three hyperspectral image databases [10–12].

A hyperspectral image specifies the full light spectrum at each

pixel, in contrast to standard color images which contain only red,

green, and blue (RGB) values. The use of hyperspectral images

allows us to accurately simulate the responses of cones from their

specified spectral sensitivities. An RGB rendering of a hyperspec-

tral image from the dataset is shown in Figure 1A.

We constructed simulated cone mosaics using parameters

typical of human vision. Figure 2A illustrates one of our simulated

mosaics. The assumed spectral sensitivities are shown in Figure 2B.

We simulated the responses of each cone in the mosaic to 2 million

image patches sampled randomly from our full hyperspectral

image dataset and computed the 400 by 400 correlation matrix

between the responses of all pairs of cones in the mosaic. Because

the distal retina forms spatially antagonistic receptive fields

[13,14], our main analysis used simulated cone responses that

incorporated an opponent surround that draws on neighboring

cones irrespective of their type (see Methods).

Figure 2C depicts one row of the full correlation matrix in

image format, with the gray level of each cone in the panel

indicating the correlation between that cone and the single M cone

shown in green. Two previously observed features of the

correlation structure may be seen in this representation

[7,15,16]. First, correlation in cone responses decreases as a

function of spatial distance. Second, once distance is equated,

correlations between cones of the same class are higher than

correlations between cones of different classes (Figure 2D and 2E).

These two features are induced by the spatial-spectral correlation

structure of natural hyperspectral images (Figure 1B).

Figures 2D and 2E provide intuition about what information

could be used to classify L versus M cones. Consider an illustrative

algorithm that starts with a single cone (e.g., the M cone shown in

Figure 2C) and labels it (arbitrarily) as an M cone. The algorithm

would then classify that cone’s neighbors as being of the same or

different class by setting a threshold on the correlation values. By

propagating this procedure across the mosaic, labels would be

assigned to all cones. Such an algorithm would be effective if the

distributions of nearest neighbor within-class correlations had little

if any overlap with the distribution of between-class correlations.

Figure 2F shows the histograms of such correlations for our

dataset. Although the histograms make clear that within-class

correlations are on average higher than between-class correlations

and therefore carry information about cone class, the overlap

between the two types of correlation means that nearest neighbor

correlations alone are not sufficient for good classification. Note,

however, that the histograms shown in Figure 2F only depict the

information carried by nearest neighbor correlations, leaving open

the possibility that additional information carried by the full

correlation matrix could support a robust solution to the cone

classification problem.

To visualize and exploit the information about cone class

carried by the full correlation matrix, consider a three-dimensional

representational space where the first two dimensions, call them x
and y, provide the spatial position of a cone in the mosaic and

where the third dimension, call it z, indicates spectral class. To

conceive of z as continuous, we treat it as indicating the

wavelength of peak sensitivity, lmax, of each cone. Because the

correlation between two cones decreases both with increasing

spatial distance and with increasing lmax difference between them,

the negative log of the correlation matrix may be thought of as a

proxy for the distance between cones in this abstract representa-

tional space.

We used the well-developed technique of non-metric multidi-

mensional scaling (MDS) [17] to place each cone from the mosaic

shown in Figure 2A at a position in a three-dimensional space such

that the inter-cone distances in this space best predicted, up to a

free monotonic transformation, the negative log of the correlation

matrix. Figure 3A shows the result. Each point represents a single

cone, and the cones are colored red, green, or blue for L, M, and S

respectively. It is clear that when the full correlation matrix is used

to embed the mosaic cones, their positions separate strongly by

class. Figure 3B shows an expanded view of the embedding that

includes only the L and M cones. In both Figure 3A and 3B, the

Figure 1. Natural image correlations are highly regular in both
space and spectrum. (A) An RGB rendering of a hyperspectral image
taken from the natural image database described by Chakrabarti and
Zickler [12]. The code used to render this figure is included in our gitHub
repository (https://github.com/DavidBrainard/ReceptorLearning/). (B)
Image correlations for images from our combined database. Correlation
is plotted as a function of distance (pixel). Each curve represents a
different wavelength separation: the black curve represents no
wavelength difference while the yellow curve represents a difference
of 320 nm (i.e., the 400 nm channel correlated with the 720 nm channel).
doi:10.1371/journal.pcbi.1003652.g001

Author Summary

The human visual system encodes color by comparing the
responses of three different kinds of photoreceptors: the
long- (reddish), medium- (greenish), and short- (bluish)
wavelength-sensitive cone cells. In order for the visual
system to accurately represent the color of stimuli, it must
(in effect) know the class of the cone that produced each
response. The long- and medium-wavelength-sensitive
cones, however, are virtually identical in every known
way except that their responses to a given spectrum of
light differ. Here, we simulate cones in a model human
retina and show that by examining the correlation of the
responses of cones to natural scenes, it is possible to
determine both the number cone classes present in a
retinal mosaic and to explicitly determine the class of each
cone. These findings shed light on the computational
mechanisms that may have enabled the evolution of
human color vision, as well as on the more general
question of whether and when it is possible for sensory
systems to self-organize.

Unsupervised Learning of Cone Spectral Classes
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view is of the z-y plane of the representational space. A view of the

x-y plane for the L and M cones is provided in Figure S1 and

shows that the relative spatial positions of these cones are also well-

preserved in the embedding. Figure S2 shows that the embedding

accounts well for the underlying correlation matrix. Figure S3

shows embeddings for additional simulations where the separation

of L and M cone spectral sensitivities and L:M cone ratio were

varied. These additional simulations are discussed in more detail

below.

Note that MDS embeddings are determined only up to a

distance preserving transformation. In our simulations, for 20|20
mosaics that contained S as well as longer-wavelength-sensitive

cones, the first dimension of the embedding returned by the MDS

algorithm we used (Matlab’s mdscale, found in the Statistics

Toolbox) generally corresponded approximately to the z dimen-

sion of the conceptual representational space described above.

This first dimension is by the conventions of MDS the one that

explains most of the variance in the similarity matrix, and it is the

large separation between the responses of S cones compared to

longer-wavelength-sensitive cones that drives this alignment.

Throughout this paper, then, we refer to the first, second, and

third dimensions of the MDS solution as the z, x, and y
dimensions respectively. The only exceptions to this ordering of

the dimensions were simulations of tritanopic (no S cones) mosaics

and small (10|10 and 15|15) mosaics. When we simulated

tritanopic mosaics and the smaller mosaics, the MDS solutions

reliably separated cone type along the third instead of the first

dimension, instead organizing the spatial arrangement of the

mosaic along the first two dimensions. For all simulations of

mosaics containing S cones, we used an algorithmic procedure to

rotate the embedding returned by the MDS algorithm so that the

first dimension of the rotated solution corresponded more precisely

to the z dimension of the conceptual representational space. The

rotation algorithm is described in Methods. It relied on the fact

that the S cones could be easily identified from the embeddings

(again, see Methods) and it aligned the vector from the mean of the

embedded positions of the non-S cones to the mean of the

embedded position of the S cones. For all simulations with 20|20
mosaics the effect of this rotation was small. We return to the

analysis of learning for tritanopes below.

The embedding shown in Figure 3 separates the three cone

classes along the z (lmax) dimension of the representational space.

The positions of the S cones are highly distinct from those of the L

and M cones. The L and M cones also separate well from each

other, although in other simulation conditions there is overlap in

the z positions of these two cone classes (see, for example, Figure

S3). In most such cases, however, the L and M cones are actually

embedded along separate curved surfaces within the full-three

dimensional representation, but the curvature of these surfaces

produces overlap in the z positions of L and M cones. The curved

surfaces may be flattened in a manner that preserves the local

planar structure of each (see Methods). The result of applying the

flattening procedure to the embedding shown in Figure 3B is

provided in Figure 3C, where the separation between the L and M

clusters remains apparent. To classify cones, we extracted the z
position of each cone in the flattened representation and fit the

resulting distribution as the mixture of two skew normal

distributions (Figure 3D). We then used the parameters of the

two distributions to determine a threshold along the flattened z-

axis, and labeled all cones to the left of the threshold as M and all

cones to the right as L. The threshold was taken as the point

between the means of the two fit distributions where their

probability density functions were equal. Note that the labeling of

L versus M is not arbitrary, but rather is determined by the

position of the well-separated S cones, which are themselves

classified algorithmically through a preprocessing step (again see

Methods). This algorithm classifies 100% of the L and M cones

correctly from the correlation matrix, for the mosaic shown in

Figure 2A.

Across individuals, human retinal mosaics vary in two key ways.

First, there is substantial variation in the L:M cone ratio, from

approximately 1:3 to 16:1 [18–20]. Second, polymorphisms in the

genes that encode the L and M cone opsins lead to variation in the

wavelength of peak sensitivity (lmax) of the L and M cones;

individuals possessing L or M opsins with atypical spectral

sensitivities are referred to as anomalous trichromats [21]. The

existence of these variations motivated us to study how the ability

to classify L and M cones depends on the L:M cone ratio and on

the separation between the lmax values of the L and M cones.

Figure 4A shows the results. Each square in the figure indicates

the mean percentage of cones correctly classified for a particular

choice of L:M cone ratio and particular separation of L and M

lmax across three simulations. The results for individual simula-

tions are given in Figure S4. Although both L and M cone lmax

can vary across individuals, we parameterized differences by

Figure 2. Inter-cone correlations carry information about cone
spectral class and mosaic arrangement. (A) A 20|20 cone mosaic
with an L:M:S ratio of 47:47:6; each cone is colored by class (red, green,
and blue for L, M, and S cones, respectively). (B) The spectral
sensitivities of L, M, and S cones in a typical fovea [52]. (C) The mosaic
from Panel A with grayscale indicating the correlation of each cone’s
response to the response of the single M cone plotted in green. The
correlations are calculated from the responses to 2,000,000 natural
images. At this scale it is readily apparent that correlations decrease
with inter-cone distance and that S cones are distinguished from M
cones by their correlations. (D) Magnified view of the correlation of the
immediately adjacent neighbors of the green M cone from Panel C,
with grayscale indicating correlation. Red and green circles indicate the
class of each neighboring cone. Of the four immediate neighbors of the
central cone, the two neighboring M cones (green) have higher
correlations than the neighboring L cones (red). (E) Magnified view of
the correlation of the diagonal neighbors of the green M cone from
Panel C, with grayscale indicating correlation. The neighboring M cones
have higher correlations than the two neighboring L cones. (F) A
smoothed histogram of the correlations of immediately neighboring
longer-wavelength-sensitive cones in 54 simulated mosaics whose M
cone lmax value was 530 nm and whose L cone lmax value was
558.9 nm. The 54 mosaics differed in their L:M cone ratios and sizes.
Correlations between neighboring L cones, neighboring M cones, and
L-M neighbors are shown in red, green, and black respectively. The
histograms represent correlations from 9,862 L-L cone pairs, 9,769 M-M
cone pairs, and 8,369 L-M cone pairs.
doi:10.1371/journal.pcbi.1003652.g002
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holding the L cone lmax fixed at its typical value of 558.9 nm and

varying the M cone lmax in 5 nm steps between its typical value of

530 nm and an upper bound of 555 nm. The figure shows that the

algorithm is generally robust, but that classification performance

falls off at the more extreme cone ratios. Approximately 16:1 is the

largest reported L:M ratio for individuals whose color vision is

normal by standard tests [20]. Algorithm performance also

degrades with respect to decreases in the lmax separation between

the L and M cones.

The fact that good classification is accomplished with a 20|20
mosaic indicates that the information necessary to support

learning can be accessed by local computations in either the

retina or early retinotopic visual cortex. Indeed, we found that

good learning was maintained when the mosaic size was reduced

to 15|15 and was reduced only slightly for 10|10 mosaics

(Figure S5). In separate simulations, we examined the effect of

showing fewer natural image patches to the retinal mosaic (Figure

S6). For many of our mosaic conditions, asymptotic learning

occurs for many fewer than the 2,000,000 images used in the main

simulations.

Results for simulations without a suppressive surround are given

in Figure S7. A comparison with Figure 4 shows that the presence

of a randomly-wired surround enhances learning performance

slightly relative to no surround while smaller retinal mosaics result

in slightly worse learning. Additional simulations, run using a

retinas with the same parameters as those shown in Figure 4 but

such that the suppressive surround was cone selective (i.e., L cone

surrounds were made only of M cones, M cone surrounds were

made only of L cones), were also performed (Figure S8).

Interestingly, the presence of cone specific opponent surrounds

early in the visual pathways impedes the performance of our

algorithm.

The algorithm as described and evaluated above relied on the

assumption that the mosaic contains both L and M cones. This

assumption entered the calculations at the step where we fit two

skew normal distributions to the z position histograms of the

embedded cones (Figure 3D). In addition to variation in L and M

cone lmax, however, there are also individuals who are dichromats

with mosaics containing S cones and only one longer-wavelength-

sensitive cone class (i.e., red/green color blindness). For such

dichromatic retinal mosaics this algorithm would randomly divide

the single longer-wavelength-sensitive cones into two classes. To

address the question of whether it is possible to determine the

number of longer-wavelength-sensitive cone classes present in a

mosaic, we elaborated the algorithm with a step that compared

how well a mixture of 1, 2, or 3 skew normal distributions fit the z
position histograms and chose the number of longer-wavelength-

sensitive cone classes based on this fit. Specifically, we applied a

Kolmogorov-Smirnov goodness of fit test [22] to the discovered

mixture distributions and chose the smallest mixture number

whose fit to the flattened z positions could not be rejected using a

two-tailed critical p-value of 0.01. When the elaborated algorithm

is applied to the correlation matrices of a dichromatic retinal

mosaic, it correctly detects that there is only a single longer-

wavelength-sensitive cone class and thus classifies all of the longer-

wavelength-sensitive cones as belonging together in a single class

(Figure 5A–5D).

Given the success of the elaborated algorithm at correctly

detecting that the dichromatic retinal mosaic is missing a cone

class, we then asked whether it also detected that trichromatic

retinal mosaics are in fact trichromatic. Figure 4B plots how well

the elaborated algorithm detects that trichromatic retinal mosaics

contain two classes of longer-wavelength-sensitive cones, as a

function of L:M ratio and lmax separation. Cells colored white

indicate cases where the elaborated algorithm correctly detected

the presence of both longer-wavelength-sensitive cone classes for

all simulations. The pattern of accurate detection performance is

generally similar to the patter of accurate classification perfor-

mance, with detection accuracy falling off as the L:M ratio

becomes more extreme and as lmax separation decreases. The

range of good performance for detection shown, however, is

narrower than the range of good classification. An examination of

Figure S4 indicates that more cases of failure occur when the

algorithm detects one (as opposed to three) longer-wavelength-

sensitive cone classes than the other way around. Thus, we could

presumably improve the range of good performance somewhat by

adopting a more lenient criterion (lower critical p-value) in our

algorithm. We have not systematically explored this parameter

space, however, as our view is that the key conclusion to be drawn

from this work is that detection is possible for a reasonable range of

mosaic parameters. A large number of additional factors (size of

image patches, number of images sampled, presence of surround,

cone-specificity of surround, nature of images sampled, optical

blur, noisiness of cone responses) will all interact to push the exact

boundaries of good performance as well as the direction of the

failure modes around, and we do not wish to make too much of the

particular location of these boundaries but rather focus on their

general properties. Figures S5–S11 show both detection and

classification performance as various of these factors are varied.

Online supplemental material available at http://color.psych.

upenn.edu/supplements/receptorlearning provides animated GIF

renderings of the 3D embeddings corresponding to each of these

supplemental figures (as well as to Figures S4 and S9). These

additional simulations do reveal some cases where the algorithm

detects three rather than two longer-wavelength-sensitive cone

classes for some of the mosaic parameters. For the same reasons

Figure 3. Multidimensional scaling allows classification of
cones for a typical trichromatic retinal mosaic. (A) 3D embed-
dings of the correlation matrix of the 20|20 mosaic from Figure 2A.
Each point represents a single cone and is colored red, green, or blue
for L, M, or S respectively, according to its actual identity in the mosaic.
The 3D embeddings shown here and in other figures in this paper are
oriented so that the z-y plane (z horizontal, y vertical) of the
representational space described in the text is shown. The absolute
units on these axes are not meaningful, because MDS solutions are
determined only up to a relative-distance preserving transformation. (B)
The same 3D embedding shown in A zoomed in on the embedding of
the L and M cones only. (C) The 3D embedding of the L and M cones
from A after flattening. (D) A histogram of the z positions of the
embedding from C (i.e., after flattening); best fit skew normals are
shown in red and green. Rotating animations that show the three-
dimensional structure of the embeddings are available online (http://
color.psych.upenn.edu/supplements/receptorlearning).
doi:10.1371/journal.pcbi.1003652.g003
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outlined above, we have not pursued the degree to which these

over detections could be remedied by adjustment of the critical p-

value or model selection procedure. Rather, the broad point we

draw from the set of additional simulations is that the algorithm is

generally robust; see Discussion for additional consideration of

these simulations.

Some dichromats lack S cones but retain both L and M cones

[23]. These individuals are called tritanopes and can make color

discriminations that rely on longer-wavelength-sensitive cones.

Accordingly, we simulated a set of tritanopic retinal mosaics

containing only L and M cones. The resulting embeddings indicate

that there is generally sufficient information in the inter-cone

correlation matrix to classify the L and M cones (Figure S9; also

online supplemental material referenced just above). As discussed in

the legend of Figure S9, however, extracting this information

automatically would require design and implementation of an

additional algorithmic step that aligned the direction of cone

separation in the embedding with the z axis of our representational

space, which we have not implemented. That is, the good alignment

of the first dimension of the MDS solutions with the representational

z axis is driven by the presence of S cones in the mosaic, presumably

because the presence of these cones produces greater correlation

variation along this dimension (and in addition we could exploit the

presence of S cones to refine the alignment). Additionally,

simulation of a larger number of image patches (4.5 million) was

required to produce good separation of the cone classes in the

embedding. Thus, although the presence of S cones is probably not

necessary for learning about longer-wavelength-sensitive cones,

their presence does enhance the performance of our current

algorithm. Note also that in the absence of S cones, the labeling of

which cones are M and which are L becomes arbitrary; it is correct

here because of the manual alignment procedure.

Some female humans possess genes that code for three longer-

wavelength-sensitive cone photopigments, and there is evidence

that all of these photopigments can be expressed in separate cones

[24]. It is uncertain, however, whether these individuals process

the output of their genetically tetrachromatic cone mosaics in a

fashion that enables functional tetrachromatic color vision [25–

27]. We simulated a tetrachromatic mosaic and applied our

classification algorithm to the resulting correlation matrix. The

fourth cone class, which we will call A, was given a lmax value of

545 nm, and the L:M:A ratio was 1:1:1. The algorithm correctly

detected that this mosaic was tetrachromatic. Figure 5E–5H shows

the classification results. The L, M, and A cones separate

reasonably well but not perfectly in the embedding, and if we fit

the flattened z positions with three skew normal distributions

(Figure 5H), the L, M, and A cones were classified with 100%,

100%, and 84% accuracy, respectively. This indicates that there is

information in the correlation matrix that can support unsuper-

vised cone classification in human tetrachromats, albeit imper-

fectly, at least for these specific simulation conditions.

In addition, we simulated tetrachromatic retinal mosaics with L,

M, A, and S cone lmax values of 558.9, 512.8, 466.8, and 420.7

(i.e., with M and A cone lmax values evenly spaced between the

typical L and S cone lmax values) and with L:M:A ratios of 1:1:1,

2:1:1, 2:2:1, 1:2:1, 1:2:2, 1:1:2, and 2:1:2. We found that the

algorithm correctly detected 3 longer-wavelength-sensitive cone

classes in all cases and correctly classified all but 7 cones correctly

between the 7 simulations.

Discussion

The emergence of red-green color vision in primates is relatively

recent, initiated by mutations that led to the expression of three

rather than two cone opsins. In Old World Monkeys, this occurred

approximately 35 million years ago via duplication of an ancestral

M/L opsin gene followed by divergence of the two copies into the

modern M and L cone opsin genes [1,3,4]. New World primates

have also acquired functional trichromatic color vision, but

through a different evolutionary path [2]. The recent evolution

of the L/M split may mean that biochemical differentiation of

post-receptoral circuitry has not yet occurred. Consistent with this,

there are no known molecular markers that differentiate L and M

cones aside from their opsins [5,6]. Earlier work [7] established

that unsupervised learning could produce a degree of cone-specific

wiring, based on statistics of mosaic responses to natural images.

Here we extend our understanding of what can be learned in two

fundamental and important ways: we show that it is possible to

learn the number of longer-wavelength-sensitive cone classes, and

we quantify learning through the performance of an unsupervised

learning algorithm that explicitly classifies each cone in the mosaic.

At present, the precise circuitry underlying red-green color

vision in primates is not fully understood, and for this reason it is

difficult to draw firm conclusions as to the locus where cone-class

specific processing occurs. Some authors have suggested that

circuitry in the adult retina does not distinguish L from M cones

[28,29]. They note that because midget cell centers in the primate

fovea receive input from a single cone [30], random wiring of

cones to ganglion cells would still preserve most of the color

information in the fovea. This would then leave the full separation

of L and M cone signals to be learned at the level of the

cortex. Other authors [31–33] report varying degrees of L versus

Figure 4. The algorithm detects the number of longer-
wavelength-sensitive cone classes and correctly classifies
individual cones for a range of trichromatic mosaic parame-
ters. (A) The fraction of cones correctly classified for various
combinations of L:M cone ratio and M cone lmax value, when the
number of longer-wavelength cone classes (L and M) was assumed to
be 2. The S cone proportion was held at 6%, and S cones were given a
lmax value of 420.7 nm in all simulations. The L cone lmax value was
558.9 nm. Each cell in the plot represents the aggregate results of three
simulations, each with a different mosaic and each shown a different
random sample of 2 million natural image patches. Mosaic responses
for each simulation were obtained with different draws of natural image
patches. Accuracies are reported as the average accuracy for L and M
cones, each calculated separately. For example, if the algorithm
correctly classified 354 of 354 L cones and 1 of 22 M cones in a mosaic
with an L:M ratio of 16:1, the overall accuracy reported here would be
52% (the mean of 354/354 and 1/22) rather than 94% (the fraction of all
cones correctly classified). (B) The number of simulations (of three) for
each L:M ratio and M cone lmax value where the algorithm correctly
detected that there were two longer-wavelength-sensitive cone classes.
The results for individual simulations are given in Figure S4.
doi:10.1371/journal.pcbi.1003652.g004
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M cone-specific wiring for retinal ganglion cells. Such retinal

specificity could result from activity-dependent synaptic plasticity

during development [7], via the type of learning mechanisms

considered here or in earlier work [7,8].

For trichromatic mosaics, our algorithm correctly classified the

cones in the retinal mosaic most of the time, with performance at

ceiling for mosaic parameters most typical of human vision. The

lowest accuracies are found when the L:M ratio is either very large

or very small. One reason for this is that our flattening routine

performs best when the number of cones of each type is

approximately equal (see Methods). This observation is equally

true of the number of longer-wavelength-sensitive cone classes that

our algorithm detects in the trichromatic simulations. The

algorithm was most likely to detect only 1 longer-wavelength-

sensitive cone class in the case of those simulations with extreme

L:M cone ratios. It is possible that a better flattening routine or an

embedding algorithm more attuned to the correlation structure of

natural images could lead to selective increases in our algorithm’s

accuracy for the more extreme L:M ratios. On the other hand, it

could be that the worsened flattening is a symptom reflecting a

greater underlying difficulty in learning for mosaics with more

extreme L:M ratios. In this case, the fact that learning

performance degrades as cone ratios become asymmetric may

indicate fundamental constraints on the mosaic parameters that

support trichromacy. The decreased performance with more

extreme L:M ratios was consistent across many variations in the

details of the simulations (see Figures S4–S11).

Another subset of retinal parameters for which our algorithm’s

performance was degraded were the simulations whose M cone

lmax values were close to those of the L cones, primarily when the

M cone lmax value was 555 nm, only 3.9 nm from the L cone lmax

value of 558.9 nm. In most such cases, the algorithm grouped

these cones into a single class. Considering the small difference

in lmax, this is perhaps not surprising. Our results are thus

consistent with experimental studies finding that intermediate

color discrimination deficiencies result when the separation of L

Figure 5. The algorithm detects dichromatic and tetrachromatic retinal mosaics. On the left are embeddings of the dichromatic retinal
mosaic: (A) the full embedding; (B) the embedding zoomed in on just the L cones; (C) the flattened L cone embedding; and (D) a histogram of the z
positions of the flattened L cone embedding with the best-fit of the single detected skew normal. On the right are embeddings of the tetrachromatic
retinal mosaic: (E) the full embedding; (F) the embedding zoomed in on just the L, M, and anomalous (A) cones; (G) the flattened L, M, and A cone
embedding; and (H) a histogram of the z coordinates of the flattened L, M, and A cone embedding with best fit of a mixture of the detected skew
normals. Note that the units on Panels A, B, C, E, F, and G are arbitrary, as MDS does not produce meaningful units, but rather yields a relative-
distance-preserving embedding. Spectral sensitivity curves for L, M, and S cones are shown in Figure 2A. Anomalous A cones were given lmax values
of 545 nm, and the tetrachromatic retinal mosaic had an L:M:A ratio of 1:1:1. L, A, M, and S cones are colored red, yellow, green, and blue,
respectively.
doi:10.1371/journal.pcbi.1003652.g005
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and M cone lmax values is between *5–8 nm but severe color

discrimination deficiencies when the L and M cone lmax values are

separated by ƒ4 nm [21]. That said, the idea that learning limits

performance in anomalous trichromats is speculative, as we have

not attempted to quantify the performance losses that would be

expected with a failure to correctly classify all of the cones. Nor

have we compared this to the performance losses expected simply

because a reduced separation in lmax values reduces the signal-to-

noise ratio of the information available to make color discrimina-

tions. Also of note with regard to the effect of lmax separation on

performance is the fact that a single nucleotide polymorphism in

the longer-wavelength-sensitive opsin gene can produce a shift in

lmax of *15 nm [34], so that a single mutational event could have

produced a lmax shift large enough to enable learning.

Performance for simulations that included a cone-specific

surround (Figure S8) was lower than for simulations in which

the surround drew uniformly on neighboring cones. Although the

algorithm classified 100% of the cones correctly in the case of a

retina with an L:M ratio of 1 and an M cone lmax value of

530 nm, and also correctly detected that there were two longer-

wavelength-sensitive cone classes present in the mosaic, the

algorithm struggled with many other simulations with cone

selective surrounds. In fact, the embeddings of these simulations

were less organized than other simulations. Although a full analysis

is beyond the scope of this paper, one feature of cone selective

surrounds of fixed spatial extent in mosaics with extreme L:M

ratios is that the number of cones contributing to the surround will

be different for units with L cone centers than for cones with M

cone centers. It is possible that this produces variability that

impedes learning.

Our algorithm correctly detected a tetrachromatic mosaic and

did a reasonable but not perfect job of classifying the cones for this

mosaic, indicating that there is sufficient information in the

correlation of cone responses to natural images to support a degree

of tetrachromatic learning. Although it is established that certain

female carriers of anomalous trichromacy express four cone

classes, whether these individuals exhibit tetrachromatic color

matching performance has been difficult to determine [25–27]. As

noted in the results section, our cone classification results were

reasonable but not perfect, suggesting that one reason for the lack

of routine functional tetrachromacy in female carriers may be that

it is difficult for the post-receptoral visual system to reliably classify

all of the cones [see also 7]. That is, it may be that rather narrowly

delineated conditions must be met for the visual system to learn

that its mosaic contains a fourth cone type and classify the cones

with sufficient accuracy.

Dichromatic mosaics are also correctly detected by our learning

algorithm (Figure 5A–5D), but more easily. This classification

relies partly on an arbitrary choice of a confidence threshold

(pv0:01) regarding the goodness-of-fit of the flattened z positions

of the embedded correlation matrix to a single skew normal

distribution, beneath which we reject dichromacy as an explana-

tion of the retinal mosaic. Although this threshold is arbitrary, it

represents a requirement that we be 99% confident that a

distribution is not dichromatic in order to consider it trichromatic.

Considering our algorithm’s good performance on trichromatic

mosaics, this implies that the dichromat/trichromat decision is one

that the visual system could make reliably.

The multi-dimensional scaling approach that we took to

explicitly classifying cones shares theoretical foundations with the

approach taken in [7]. The point of commonality is that the

coordinates of each cone on a dimension in an MDS represen-

tation may be viewed as analogous to the cone weights for a

corresponding model unit obtained via principal components

(PCA) or independent components (ICA) analysis. Indeed, cone

positions obtained via classical metric MDS and cone weights

obtained via PCA correspond to the rows and columns of the same

underling matrix. That noted, different insights are obtained

through the two approaches. Whereas in [7] the emphasis is most

naturally on the degree of cone selectivity shown by the most

selective model units, in our work the emphasis is on the accuracy

of cone classification possible using the first three dimensions of the

correlation matrix embedding. Indeed, the rotation and flattening

of the embeddings performed by our algorithm use the informa-

tion carried jointly by these first three dimensions. We have

observed that perfect cone classification is possible in the absence

of high cone-selectivity in the implied cone weights of model units

corresponding to these dimensions. On the other hand, our

algorithm does not take advantage of cone selectivity present in

units beyond the initial three returned by the MDS algorithm.

Given these similarities and differences, it is of interest to compare

the results of our work with those obtained in [7]. First, we find

that good classification is possible using the correlation matrix

without considering higher-order statistical structure, whereas [7]

did not find high cone selectivity with PCA. We believe that the

primary reason for this difference is as noted above, that our

algorithm classifies based on information carried jointly by

multiple dimensions. Other factors probably also come into play

(e.g., size of mosaics and number of images simulated both of

which were larger in our work). None-the-less, both approaches

lead to the conclusion that learning is improved with the addition

of blur and is inhibited by a decrease in the spectral separation

between L and M cones. In addition, we find that learning is

improved in the presence of an opponent surround for each cone

that draws non-selectively on its neighbors, consistent with an

analysis of the effect of such surrounds on correlations (see Figure 8

in [7]). On the other hand, we find that we can detect the presence

of a third longer-wavelength-sensitive cone class, while their

approach did not lead to learning of cone-selectivity with respect

to a mosaic representative of human tetrachromats. Given the

considerations discussed above, this is probably a difference in

degree and criterion. We also studied additional factors and find

that learning remains possible when cone spacing is increased

relative to the underlying image data, remains possible when noise

is added to the simulated cone responses, becomes more difficult in

the presence of a cone-selective opponent surround, and becomes

more difficult as the L:M cone ratio becomes more extreme.

Our work embodies a number of simplifying assumptions. First,

we simulated photoreceptors arranged in a rectilinear grid rather

than a more realistic hexagonal grid in order to more easily align

the photoreceptors with the rectilinear pixel grid of the database

images. Nothing in the algorithm relies on rectilinearity, however.

Second, since we have limited information about the optical

quality, and spatial resolution of the cameras used to acquire the

hyperspectral images, we rely on a scale invariance assumption

about natural images to interpret the hyperspectral images as

being matched to foveal resolution. We also do not know how

noisy the camera responses were nor how small artifacts due to

limited camera sensor bit depth might have perturbed our results.

A full exploration of the effect of camera parameters awaits a

hyperspectral image dataset acquired at a resolution matched to

that of human vision with a fully characterized camera. We doubt,

however, that the basic features of the spatial and spectral

correlations in natural images would be so sensitive to camera

parameters so as to change our basic conclusions. To explore this,

we investigated the effect of increasing cone spacing relative to the

image scale by a factor of 2 (20|20 cone mosaic) and a factor of 4

(10|10 cone mosaic), for the standard L and M cone spectral
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sensitivities (558.9 and 530 nm) and an L:M ratio of 1:1. Learning

continued to work well (2 classes of longer-wavelength-sensitive

cones correctly detected and cones classed with 100% accuracy).

This result suggests that our main analysis is not highly sensitive to

image scale. It also serves to explore how learning might generalize

from foveal to peripheral cones, since a key difference between

fovea and periphery is an increase in cone spacing. Third, we

assumed that the hyperspectral images in our database are

representative of natural scenes. As a check on this assumption, we

scrubbed the database of images of obviously man-made objects

and repeated our simulations. The results are generally similar to

those run using the full database, although there are more

instances of failure to detect the correct number of longer-

wavelength-sensitive cones (Figure S10). Finally, we assume that

the responses of the cones to natural images contain no noise. To

address this assumption, we performed simulations in which noise

on the order of both 1% and 5% of the mean of the cone responses

to each natural image was added randomly to each cone (Figure

S11). The accuracy of the algorithm for these simulations is

comparable with the corresponding no-noise results shown in

Figure 4.

We did not incorporate the blur introduced by the optics of the

human eye into our main simulations, in part because we do not

know how much blurring was already introduced by the various

hyperspectral cameras. In this regard, we note that the addition of

optical blur makes the classification problem easier rather than

harder for our algorithm (Figure S12). This is because blur reduces

the variation in cone correlation caused by variation in the spatial

structure of natural images [7]. It is therefore perhaps of interest

that in humans, red-green color vision develops over the first three

months of infancy [7,35,36], during a period when the optical

quality of the image is not yet as good as that in adults [37,38]. As

an explicit test we explored the effect of introducing Gaussian blur

(standard deviation of 4 pixels). Accuracies for the simulations with

blur were high and are shown in Figure S12. The algorithm chose

2 cone classes in 40 of 54 simulations and correctly typed all cones

in 49 of 54 simulations performed with blur. In addition to

evidence that red-green human color vision develops after birth,

monkeys raised in an unusual environment in which the

illumination was always one of four monochromatic lights

displayed impaired color discrimination [39]. Our algorithm as

currently implemented does not capture this effect: we found that

when we ran the algorithm with input that simulated the

deprivation experiment, it still correctly detected that the mosaic

was trichromatic and correctly classified all of the cones. However,

the embedding (not shown) produced by this simulation, while

leading to good separation by cone class along the z axis, was not

typical of other simulation embeddings and did not produce an

reasonable representation of the spatial positions of the cones as do

our typical embeddings.

Why might the visual system have implemented a learning

algorithm based on inter-cone correlations in advance of needing

to determine the class of a newly expressed cone opsin? Previous

authors [40,41] have suggested that high acuity spatial vision

requires learning of the spatial arrangement of cone positions, and

suggested that spontaneous retinal activity as well as changes in

interpolated neural images across eye movements provide

information that would enable such learning. Although not the

focus of this paper, our results (Figure S1) show that inter-cone

correlations contain useful information for learning cone positions.

Thus it seems possible that a learning algorithm based on this

information could already have been in place as part of a system

designed for spatial vision, and as such might have been ready to

learn cone classes as well.

Another possibility is suggested by recent studies of adult

dichromatic monkeys and of knock-in mice expressing the human

long-wavelength opsin. Knock-in female mice heterozygous for the

native mouse and human opsins have been shown to be capable of

limited trichromatic discrimination [42]. Similarly, the addition of

a third opsin using gene therapy can enable trichromatic color

discriminations in adult dichromatic monkeys [43]. Although the

enhanced discrimination does not necessarily mean that the visual

system has used the new cone class to add a dimension to the

perceptual representation of color [44], it does indicate that an

immediate adaptive benefit can be bestowed by the expression of a

novel photopigment, thus allowing for selective preservation of the

mutation and subsequent enhancement through the implementa-

tion of a learning algorithm that classifies the cones.

Our work is at the computational level and does not speak

directly to underlying neural mechanisms. Rather, we show that

the information contained in the inter-cone correlation matrix in

response to natural images is sufficient for detection of the number

of cone classes as well as for classification of individual cones.

Exploring how the information used by our algorithm might be

exploited in a biologically-plausible manner, as well as how the

learned information could be represented, remains an important

future direction. For example, the computations described in [45]

can be viewed as a method for using the knowledge of the class of

each cone in the mosaic to determine the particular cone selective

wiring that optimizes the veridicality of stimulus reconstruction,

given a linking assumption of how the output of model units

determined color appearance at each location. How the informa-

tion used by algorithm could be used by a neural system to set up

wiring with these particular properties, however, remains to be

elucidated. Even in the absence of a neural theory, however, our

work does make experimental predictions: altering inter-cone

correlations during learning should alter how individual cones

contribute to color vision. Recently it has become possible to

independently stimulate individual primate cones using an in vitro

retinal preparation [32] and similar possibilities with human

psychophysics are on the horizon [46,47]. Such techniques might

be used to alter the correlation between a targeted M cone and its

neighbors so as to test whether it is possible to make the post-

receptoral visual system treat the responses from the targeted M

cone as if they originated in an L cone. A second prediction of our

work, to the extend that our current algorithm captures how the

information available for learning varies with mosaic parameters,

is that the range of observed L:M cone ratios for human observers

with functional trichromatic vision will decrease as the lmax

separation between the L and M cones decreases.

In terms of mechanism, it is also important to note that although

the multidimensional scaling technique at the core of our

algorithm provides one way to exploit the inter-cone correlations,

we are not claiming that it is an optimal method nor that the

neural representation of color includes an explicitly labeling of

each type of cone. Multidimensional scaling is a well-established

and principled unsupervised learning method that produces

embeddings that allow detection of the number of cone classes

and the classification of individual cones (Figure S3; online

supplemental material). The components of our algorithm that

exploit the structure of the embedding (flattening, fitting with skew

normals, model comparison), however, are somewhat ad hoc and

tailored to the specific problems we address. We view these steps as

allowing us to quantify the quality of the information available in

the embeddings, not as steps that necessarily reflect how a

biological system would extract the same information. In any case,

with respect to optimality, it is difficult if not impossible to evaluate

our or any algorithm’s optimality without an explicit probabilistic
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model of the statistical structure of natural images, and at present

we do not have such a model [48]. Study of performance with

respect to explicit models of natural image statistics would also

allow investigation into what features of these statistics are key for

supporting learning, a direction which we regard as interesting for

future research. In addition, although we have shown that the

inter-cone correlations contain sufficient information to enable the

requisite learning, we have not shown that they are the only source

of relevant information. For example, previous authors have

suggested that comparison of interpolated neural images across eye

movements might also provide information for separating L from

M cones [8,45]. Such a proposal is consistent with the idea that

sensorimotor contingencies provide key information for enabling

an organism to interact successfully with the external world [49].

With respect to representation, it may be that the the analysis of

signals to extract an appropriate representational structure for

stimuli, which is what MDS accomplishes when applied to

response correlation matrices, is a canonical biological computa-

tion. If so, then the biological extraction of the information about

cone classes that we demonstrate is available may occur, in effect,

as a result of a more general perceptual learning processes. This

notion also provides another possible explanation of why the brain

is prepared to learn about and exploit the addition of novel classes

of sensory transducers.

In summary, we have studied a question that is fundamental to

the formation of any sensory system that provides multidimen-

sional information. Given that the enabling step in the evolution of

such systems must be the expression of novel sensory transducers,

how is it possible to detect and differentiate their presence? We

address these two fundamental questions at the computational

level, using primate color vision as a model system. We find that

inter-cone correlations provide sufficient information for unsuper-

vised learning to detect the number of cone classes present and to

classify individual cones accurately by demonstrating an algorithm

that capitalizes on this information. These results fill an important

gap in our understanding of how color vision could have evolved,

and may also provide insight into the evolution and operation of

other sensory systems.

Methods

Simulating cone responses
We simulated the responses of retinal mosaics to hyperspectral

images. Individual mosaics were specified by 2k{1 parameters: k,

the number of cone classes in the simulated mosaic; n, the size of

the mosaic; w, a k{2 dimensional vector of the values of lmax for

cone classes other than L and S, whose lmax values were held at

558.9 and 420.7 nm respectively; and w, a k{1 dimensional

vector that determined the relative number of cones of different

classes (see below). The code used to simulate cone responses and

compute correlation matrices was developed in Clojure (http://

clojure.org/), a functional open-source Java Virtual Machine

language, and is freely available on gitHub (https://github.com/

DavidBrainard/ReceptorLearning/).

Given mosaic size n, we simulated mosaics consisting of n2

cones, with one cone at each location of an n by n rectangular grid.

The use of a rectangular grid was chosen for computational

convenience. We specified that 6% of the cones be S cones; these

were placed at quasi-regular locations by randomly choosing each

S cone’s position on the grid and rejecting it if it was too close to

another already-placed S cone. The classes of the other cones in

the mosaic were set randomly using the vector w as a ratio in

which the probability of drawing a cone of class j is equal to

wj

.Pk{1
i~1 wi; for example, an L:M ratio of 4:1 can be expressed by

w~(4,1) such that the probability of drawing an L cone would be

4=(4z1)~4=5 and the probability of drawing an M cone would

be 1=(4z1)~1=5.

Given the class of a cone, we determined its spectral sensitivity

from its photopigment’s wavelength of maximum sensitivity lmax.

As noted above, lmax values for L and S cones were held at 558.9

and 420.7 nm respectively. These correspond to typical values for

a human observer. Across simulations, we varied lmax for the M

cones between its typical value of 530 nm up to values of 555 nm

to simulate anomalous trichromacy. To simulate human tetra-

chromatic mosaics, we specified an M cone lmax of 530 nm and

lmax for a fourth cone type of 545 nm. Given its lmax value, the

spectral sensitivity of a cone was determined using the CIE 2-

degree physiological cone fundamental standard [50], as imple-

mented in the Psychophysics Toolbox [51]. This implementation

extends the CIE standard by allowing specification of non-

standard lmax values via the photopigment absorbance nomogram

of Stockman et al. [52]. Figure 2A shows an example mosaic;

Figure 2B shows spectral sensitivities for typical L, M, and S cones

(lmax values of 558.9, 530, and 420.7 nm, respectively). This same

procedure was also used in other simulation conditions where lmax

was varied.

Input images for simulations were taken from three hyperspec-

tral image databases, details of each of which can be found

elsewhere [10–12]. The images in all three databases sampled

scenes along at least 31 evenly-spaced wavelengths. The sampling

depended on the database. All contained data between 420 and

700 nm at 10 nm steps; across databases we had data between

400 nm and 720 nm. Of the 33 total wavelengths available across

all three databases, we extrapolated quadratically to the missing

two (either 400 and 410 nm or 710 and 720 nm) when necessary

so that the combined database specified the spectrum at each pixel

in each image at 10 nm intervals between 400 and 720 nm.

Although there were fewer than 100 images in the three databases,

the simulated mosaics were sufficiently small and the images

sufficiently large that we were able to sub-sample the full images to

produce many possible image patches. For each simulation, n by n
image patches were randomly chosen from the image database.

For the value of n~20 used in our main simulations, the database

contained *82:5 million distinct image patches with overlap

allowed. Unless otherwise specified, each simulation used a

different set of natural image draws. Image patches were drawn

randomly with replacement. For our main calculations, we

simulated the response of each specified mosaic to 2 million

image patches. In supplemental simulations, we explored the effect

of varying the number of image patches used (Figure S6) as well as

the size of the patches (Figure S5).

To simulate the response of a mosaic to an image, we first

computed the raw response r of each mosaic cone to the image. This

was calculated as r~
P32

j~0 sjcj where sj and cj are the spectral

sensitivity of the photoreceptor and the image intensity, respectively,

at wavelength l~400z10j (in nanometers). This gave us the raw

responses to the image that are proportional to photopigment

isomerization rates. Such rates, however, are not directly available

to post-receptoral circuitry, because lateral processes in the retina

form an antagonistic surround that may be measured as early as the

cone synapse [13,14]. To capture this effect, we computed a

suppressive surround for each cone by computing a weighted sum of

the raw responses of the cone’s neighbors, with the weights

w(Dx,Dy) chosen according to a 2D Gaussian in which Dx and Dy
represent the distance from the cone of interest to its neighbors in

units of inter-cone distance. The surround value was subtracted

from the cone response to provide the signal available to our

learning algorithm. We used a standard deviation of s~3 cones and
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w(Dx,Dy)~w0 exp({(Dx2zDy2)=18)) where w0 was a constant

chosen to give the surround a sum of 0.25. In supplemental

simulations, we simulated mosaics without a surround (Figure S7) as

well as mosaics with a cone-specific surround in which L cone

surrounds were composed only of M cones and vice versa (Figure

S8).

Analysis of responses
The responses of each cone from a particular set of natural

images were used to calculate an n2|n2 correlation matrix R. We

used {log((Rz1)=2) as an approximation of the distance

between cones in the 3D representational space of x, y, and

lmax, i.e., position on the retina and cone class. We applied non-

metric multidimensional scaling (MDS) to this distance metric to

produce a 3D embedding of the response correlations. MDS was

performed using the mdscale function in Matlab 8.1.0.604

(R2013a). A three dimensional solution was requested and all

parameters were given default values. Specifically, the following

default parameters were used: ‘Criterion’: ‘stress’ (also known as

STRESS1); ‘Start’: ‘cmdscale’ (use classical multidimensional

scaling as the starting state); ‘Replicates’: 1; ‘Weights’: uniform

(i.e., all weights were 1). Figure 3A shows the 3D embedding of the

mosaic shown in Figure 2A, based on 2 million images. We

consistently found (for 20|20 mosaics that contained S cones)

that the first dimension of the MDS solution corresponded

approximately to the z (lmax) dimension of our desired represen-

tational space. This alignment was refined by rotating embeddings

such that the separation between non-S cone and S cone positions

fell along the first dimension by aligning the vector pointing from

the mean of the longer-wavelength-sensitive cone positions to the

mean of the S cone positions to the vector (1, 0, 0). For most

simulations, this rotation was negligible, with the exception being

10|10 and 15|15 mosaics. In our algorithm, we used k-means

clustering with k~2 to identify the S cones. These were taken as

the members of the cluster with fewer cones. In the tritanope

simulations, this step was skipped, and instead embeddings were

rotated by hand to resemble the orientation of other non-tritanope

simulations, using knowledge of which cones were M and which

were L.

The L and M cone embeddings were flattened by modeling the

average surface along which the embedded L and M cones fell

(see, for example, Figure S3), and removing the curvature of that

modeled surface from the cones in the embedding. This step, as

well as the fitting of skew normals and model comparison, was

implemented in Mathematica, and the implementation’s code is

also available in our gitHub repository (https://github.com/

DavidBrainard/ReceptorLearning/). The model surface was

discovered by minimizing the standard deviation of the distance

from each non-S cone coordinate in the embedding to a second

order polynomial surface parameterized by the second and third

embedded dimensions (i.e., z~a0za1xza2yza3x2za4y2

za5xy). The flattened z value was calculated as the distance of

each cones unflattened embedded position to the surface; the sign

of the flattened z value was negative if the point was on the same

side of the surface as the S cones and was positive if the point was

on the other side. (For the tritanopic simulations, this direction was

determined manually as part of the embedding rotation procedure

described above.) The standard deviation of the distances from the

surface was chosen as the function to be minimized; this

encourages the nonlinear minimization to find the surface that is

equally distant from each cone rather than a surface that is close to

most cones. When the sum of residual distances is minimized

instead, the discovered surface can sometimes find an optimal fit

without capturing the shape of the surfaces on which the cones are

embedded. Notably, these minimization techniques perform best

when the numbers of cones in each class are approximately the

same. In the cases where the L:M cone ratios are extreme, the

surface can over-represent the more numerous cone class, resulting

in a flattened embedding in which the more numerous cone class

has been flattened, but the other cone class is spread over a large

range in the z dimension.

The flattened z positions were used to classify cone types. A

mixture distribution of k skew normal distributions was fit to the

flattened z positions using nonlinear minimization. For each k, a

two-tailed p-value of the Kolmogorov-Smirnov goodness-of-fit

[22] was calculated such that the p-value gave the probability that

the flattened z positions came from the fit distribution. This p-

value was used to discriminate between possible choices of k. The

distribution with the fewest parameters (i.e., the smallest number of

predicted cone classes) whose p-value was w0:01 was selected as

the best fit. Cones were divided into k classes according to the

distribution in the mixture whose value was highest at that point’s

flattened z position. Skew normal distributions were assumed to

represent one cone class each and were assumed to represent

cones with higher lmax values when their mean z positions were

farther from those of the S cones.

Supporting Information

Figure S1 The algorithm finds the approximate relative
spatial locations of the L and M cones. The figure shows the

arrangement of the points in the x-y plane for our algorithm’s

embedding of the randomly-generated retinal mosaic shown in

Figure 2A. The original (correct) mosaic is plotted as open circles

colored red and green for L and M cones according to their

identity in the mosaic. The embedding is plotted as filled points,

colored according to the cone class found by the algorithm. Lines

are drawn from the embedded position of each cone to its correct

mosaic position. A rigid least-squares relative-distance-preserving

transformation in the x-y plane was applied to align the embedded

positions to the original (correct) locations prior to plotting. Note

that x and y here refer to the representational space discussed in

the Results section and not to the first two dimensions of the raw

MDS solution.

(TIFF)

Figure S2 The distances in the multidimensional scal-
ing embedding capture the structure of the correlation
matrix. The figure shows the probability density function of the

correlation between pairs of cones during the simulation versus

their distance in the 3D embedding. This figure is for the

simulation whose mosaic is shown in Figure 2. Each contour line

represents approximately 4,725 pairs of cones.

(TIFF)

Figure S3 The 3D embeddings of the L and M cones
vary systematically with changes in L:M ratio and lmax

separation. Example embeddings are shown for L:M ratios

varying from 1:16 to 16:1 and for M cone lmax values ranging

from 530 nm 555 nm; results for these conditions are also shown

in Figure 4 and are arranged identically here. In many cases, the L

and M cones appear as 2D surfaces with similar shape but with

different offsets. Rotating animations that show the three-

dimensional structure of these embeddings are available online

at: http://color.psych.upenn.edu/supplements/receptorlearning.

(TIFF)

Figure S4 Algorithm performance is consistent across
individual runs of the simulations. This figure shows the

fraction of cones correctly classified in each of the three
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simulations that were aggregated to produce Figure 4. The left

column shows the fraction of cones correctly classified for various

combinations of L:M ratio and M cone lmax value, when the

number of longer-wavelength-sensitive cone classes was assumed

to be 2. The right column shows the number of longer-

wavelength-sensitive cone classes (1, 2, or 3) detected by the

algorithm for each L:M ratio and M cone lmax value. All three

simulations were run with different randomly-generated retinal

mosaics and different draws of 2 million natural image patches.

Reported accuracies in the left column are the average of the

fraction of L and M cones correctly typed.

(TIFF)

Figure S5 Algorithm performance varies across image
patch size. As the size of the image patch declines, classification

performance remains stable, while detection performance declines

slightly. All retinal mosaics were shown a different set of 2 million

randomly-drawn natural image patches. (A) The fraction of cones

correctly typed for a 10|10 mosaic (left) and a 15|15 mosaic

(right), for various combinations of L:M ratio and M cone lmax

value, when the number of longer-wavelength-sensitive cone

classes was assumed to be 2. S cones were held at 6% of the cones

and were given a lmax value of 420.7 in all simulations. (B) The

number of longer-wavelength-sensitive cone classes detected by

the algorithm for each L:M ratio and M cone lmax value.

(TIFF)

Figure S6 Algorithm performance depends on the
number of simulated image patches. The figure panels

show the accuracy of the classification algorithm as a function of

the number of natural image patches shown to the mosaic for

simulations in which the M cone lmax was 530 nm (bottom),

540 nm (middle), and 550 nm (top). The number of images

required to achieve good classification varies with L:M ratio and

lmax separation, but reaches asymptotic levels at about 200,000–

300,000 images for retinas with an M cone lmax value of 530 nm

or 540 nm and an L:M ratio of 1. Simulations with an L:M ratio of

1 but with an M cone lmax value of 550 nm have high

performance but the performance is less stable. Although

300,000 images may seem like a large number, it represents fewer

than one image per second for 6 hours per day for two weeks.

Classification accuracy is lower and less stable for mosaics with M

cone lmax values near that of the L cones and mosaics whose L:M

ratios are much greater than or less than 1. Because our entire

natural image database was several gigabytes in size, it was much

more efficient to read each natural image only once during a

simulation and to draw all patches from the simulation in batch.

Accordingly, the ordering of the images is not fully shuffled for

numbers of image patches less than 2,000,000 (our sampling

algorithm does ensure equal representation for the primary case of

2,000,000 image patches studied in the main conditions of the

paper.) The non-random sampling may be responsible for the

fluctuations in performance with image number that can be seen

for some simulation conditions.

(TIFF)

Figure S7 Algorithm performance degrades somewhat
without simulated surround suppression. This figure

shows the fraction of cones correctly classified when no surround

suppression was simulated. The performance of the algorithm,

when compared to Figure 4, degrades most clearly as the M and L

cone lmax values approach each other, suggesting that surround

suppression helps distinguish cones when their responses are very

similar. All simulations were shown a different randomly-drawn set

of 2 million hyperspectral image patches. (A) Fraction of cones

correctly classified for various combinations of L:M ratio and M

cone lmax value, when the number of longer-wavelength-sensitive

cone classes was assumed to be 2. S cones were held at 6% of the

cones and were given a lmax value of 420.7 in all simulations.

Accuracies are the average of the fraction of L and M cone

correctly typed. (B) The number of longer-wavelength-sensitive

cone classes detected by the algorithm for each L:M ratio and M

cone lmax value.

(TIFF)

Figure S8 The algorithm performs more poorly when a
cone-specific surround suppression is employed. Simu-

lations were run with a Gaussian surround suppression (s~3
cones, weight = 0.25) such that each cone was suppressed only by

nearby cones of different type. L and M cones opposed each other,

and S cone surrounds consisted of both L and M cones. In the case

of retinas with extreme L:M ratios, this often required that some

cones have no surround (no nearby cones of a different type) while

others had very strong surrounds (all nearby cones were of a

different type). Each retinal mosaic was shown a different set of 2

million randomly-drawn natural image patches. (A) The fraction of

cones correctly typed for a 20|20 mosaic, for L:M ratios ranging

from 16:1 to 1:16 and for M cone lmax values ranging from

530 nm and 555 nm. The number of cone classes was assumed to

be 2. S cones were held at 6% of the cones and were given a lmax

value of 420.7 in all simulations. (B) The number of longer-

wavelength-sensitive cone classes detected by the algorithm for

each L:M ratio and M cone lmax.

(TIFF)

Figure S9 Information in the correlation matrix sup-
ports classification of L and M cones for tritanopes (no S
cones). Results are shown for simulations of tritanopic mosaics

with 4.5 million natural image patches. This is more image patches

than were required for mosaics containing S cones. Although

separation of L and M cones could be clearly observed in the 3D

embeddings with 4.5 million image patches (see online supple-

ment), the embeddings produced by the MDS algorithm were not

aligned such that the first dimension of the MDS solution

corresponded to the direction along which L and M cones

separated. Nor, obviously, could we leverage the positions of the S

cones to rotate the solution to produce such alignment as we did

for simulations of mosaics with S cones. Accordingly, we manually

rotated these embeddings before applying the flattening and

classification steps of our algorithm so as to be able to quantify the

separation between the L and M cones that could be achieved in a

manner comparable with our other simulations. (A) The fraction

of cones correctly typed for a 20|20 mosaic, for various values of

the L:M ratio when the number of cone classes was assumed to be

2. The lmax values for L and M cones were 558.9 and 530.3 nm,

respectively. Note, however, the labeling of which cones are L and

which are M by our algorithm becomes arbitrary in the absence of

an S cone anchor. This arbitrariness was accounted for here as

part of the manual rotation of the embedding. (B) The number of

longer-wavelength-sensitive cone classes detected by the algorithm

for each L:M ratio.

(TIFF)

Figure S10 The algorithm performs well for images that
exclude man-made objects. Performance is similar to those

simulations in Figure 4, in which man-made items were not

scrubbed from the image set, although there are a set of cases for

M cone-rich retinas where three rather than two longer-

wavelength-sensitive cone classes are detected. All retinal mosaics

were shown a different set of 2 million randomly-drawn natural

image patches. (A) The fraction of cones correctly typed for a

20|20 mosaic, for various combinations of L:M ratio and M cone
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lmax value, when the number of longer-wavelength-sensitive cone

classes was assumed to be 2. S cones were held at 6% of the cones

and were given a lmax value of 420.7 in all simulations. (B) The

number of longer-wavelength-sensitive cone classes detected by

the algorithm for each L:M ratio and M cone lmax value.

(TIFF)

Figure S11 The algorithm is robust to noise. Noise was

modeled by adding to each cone’s response a random draw from a

normal distribution whose standard deviation was 1% (left) or 5%

(right) of the mean response from all cones. Each retinal mosaic

was shown a different set of 2 million randomly-drawn natural

image patches. (A) The fraction of cones correctly typed for a

20|20 mosaic, for L:M ratios ranging from 16:1 to 1:16 and for

M cone lmax values ranging from 530 nm and 555 nm. The

number of cone classes was assumed to be 2. S cones were held at

6% of the cones and were given a lmax value of 420.7 in all

simulations. (B) The number of longer-wavelength-sensitive cone

classes detected by the algorithm for each L:M ratio and M cone

lmax.

(TIFF)

Figure S12 The algorithm performs well when images
are blurred, although there are a few cases where three rather

than two longer-wavelength-sensitive cone classes are detected.

Blurring was accomplished by convolving each image with a 2D

Gaussian with a standard deviation of 4 pixels. Each retinal mosaic

was shown a different draw of 2 million natural image patches. (A)

The fraction of cones correctly typed for a 20|20 mosaic, for

various combinations of L:M ratio and M cone lmax value, when

the number of longer-wavelength-sensitive cone classes was

assumed to be 2. S cones were held at 6% of the cones and

were given a lmax value of 420.7 in all simulations. (B) The

number of longer-wavelength-sensitive cone classes detected by

the algorithm for each L:M ratio and M cone lmax value.

(TIFF)
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