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Abstract

Substantial evidence indicates that major psychiatric disorders are associated with distributed

neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately

predict disorder status. In this work, we are specifically interested in a multivariate approach that

uses features derived from whole-brain resting state functional connectomes. However, functional

connectomes reside in a high dimensional space, which complicates model interpretation and

introduces numerous statistical and computational challenges. Traditional feature selection

techniques are used to reduce data dimensionality, but are blind to the spatial structure of the

connectomes. We propose a regularization framework where the 6-D structure of the functional

connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused

Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and

margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using

the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support

vector machine (SVM) with embedded feature selection. We introduce a novel efficient

optimization algorithm based on the augmented Lagrangian and the classical alternating direction

method, which can solve both fused Lasso and GraphNet regularized SVM with very little

modification. We also demonstrate that the inner subproblems of the algorithm can be solved

efficiently in analytic form by coupling the variable splitting strategy with a data augmentation

scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset

show that our proposed approach can identify predictive regions that are spatially contiguous in

the 6-D “connectome space,” offering an additional layer of interpretability that could provide

new insights about various disease processes.
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1. Introduction

There is substantial interest in establishing neuroimaging-based biomarkers that reliably

distinguish individuals with psychiatric disorders from healthy individuals. Towards this

end, neuroimaging affords a variety of specific modalities including structural imaging,

diffusion tensor imaging (DTI) and tractography, and activation studies under conditions of

cognitive challenge (i.e., task-based functional magnetic resonance imaging (fMRI)). In

addition, resting state fMRI has emerged as a mainstream approach that offers robust,

sharable, and scalable ability to comprehensively characterize patterns of connections and

network architecture of the brain.

Recently a number of groups have demonstrated that substantial quantities of discriminative

information regarding psychiatric diseases reside in resting state functional connectomes

(Castellanos et al., 2013; Fox and Greicius, 2010). In this article, we define the functional

connectomes as the cross-correlation matrix that results from parcellating the brain into

hundreds of distinct regions, and computing cross-correlation matrices across time

(Varoquaux and Craddock, 2013). Even with relatively coarse parcellation schemes with

several hundred regions of interest (ROI), the resulting connectomes encompass hundreds of

thousands of connections or more. The massive size of connectomes offers new possibilities,

as patterns of connectivity across the entirety of the brain are represented. Nonetheless, the

high dimensionality of connectomic data presents critical statistical and computational

challenges. In particular, mass univariate strategies that perform separate statistical tests at

each edge of the connectome require excessively stringent corrections for multiple

comparisons. Multivariate methods are promising, but these require specialized approaches

in the context where the number of parameters dominate the number of observations, a

setting commonly referred to as the “large p small n problem,” denoted p ≫ n (Bühlmann

and van de Geer, 2011; West, 2003).

In the p ≫ n regime, it is important to leverage any potential structure in the data, and

sparsity is a natural assumption that arises in many applications (Candes and Wakin, 2008;

Fan and Lv, 2010). For example, in the context of connectomics, it is reasonable to believe

that only a fraction of the functional connectome is impacted under a specific disorder, an

assumption that has been supported in nearly all extant studies (see Castellanos et al.

(2013)). Furthermore, when sparsity is coupled with a linear classifier, the nonzero variables

can be interpreted as pairs of brain regions that allow reliable discrimination between

controls and patients. In other words, sparse linear classifiers have the potential of revealing

connectivity-based biomarkers that characterize mechanisms of the disease process of

interest (Atluri et al., 2013).

The problem of identifying the subset of variables relevant for prediction is called feature

selection (Guyon and Elisseeff, 2003; Jain et al., 2000), which can be done in a univariate or
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a multivariate fashion. In the univariate approach, features are independentally ranked based

on their statistical relationship with the target label (e.g., two sample t-test, mutual

information), and only the top features are submitted to the classifier. While this method is

commonly used (Sripada et al., 2013b; Zeng et al., 2012), it ignores the multivariate nature

of fMRI. On the other hand, multivariate approaches such as recursive feature elimination

(Guyon and Elisseeff, 2003) can be used to capture feature interactions (Craddock et al.,

2009; Dai et al., 2012), but these methods are computationally intensive and rely on

suboptimal heuristics. However, a more serious shortcoming common to all the methods

above is that outside of sparsity, no structural information is taken into account. In

particular, we further know that functional connectomes reside in a structured space, defined

by pairs of coordinate points in 3-D brain space. Performing prediction and feature selection

in a spatially informed manner could potentially allow us to draw more neuroscientifically

meaningful conclusions. Fortunately, regularization methods allow us to achieve this in a

natural and principled way.

Regularization is a classical technique to prevent overfitting (James and Stein, 1961;

Tikhonov, 1963), achieved by encoding prior knowledge about the data structure into the

estimation problem. Sparsity promoting regularization methods, such as Lasso (Tibshirani,

1996) and Elastic-net (Zou and Hastie, 2005), have the advantage of performing prediction

and feature selection jointly (Grosenick et al., 2008; Yamashita et al., 2008); however, they

also have the issue of neglecting additional structure the data may have. Recently, there has

been strong interest in the machine learning community in designing a convex regularizer

that promotes structured sparsity (Chen et al., 2012; Mairal et al., 2011; Micchelli et al.,

2013), which extends the standard concept of sparsity. Indeed, spatially informed

regularizers have been applied successfully in task-based detection, i.e., decoding, where the

goal is to localize in 3-D space the brain regions that become active under an external

stimulus (Baldassarre et al., 2012; Gramfort et al., 2013; Grosenick et al., 2013; Jenatton et

al., 2012; Michel et al., 2011). Connectomic maps exhibit rich spatial structure, as each

connection comes from a pair of localized regions in 3-D space, giving each connection a

localization in 6-D space (referred to as “connectome space” hereafter). However, to the best

of our knowledge, no framework currently deployed exploits this spatial structure in the

functional connectome.

Based on these considerations, the main contributions of this paper are two-fold. First, we

propose to explicitly account for the 6-D spatial structure of the functional connectome by

using either the fused Lasso (Tibshirani et al., 2005) or the GraphNet regularizer (Grosenick

et al., 2013). Second, we introduce a novel scalable algorithm based on the classical

alternating direction method (Boyd et al., 2011; Gabay and Mercier, 1976; Glowinski and

Marroco, 1975) for solving the nonsmooth, large-scale optimization problem that results

from these spatially-informed regularizers. Variable splitting and data augmentation

strategies are used to break the problem into simpler subproblems that can be solved

efficiently in closed form. The method we propose only restricts the loss function to be

convex and margin-based, which allows non-differentiable loss functions such as the hinge-

loss to be used. This is important, since using the fused Lasso or the GraphNet regularizer

with the hinge-loss function leads to a structured sparse support vector machine (SVM)
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(Grosenick et al., 2013; Ye and Xie, 2011), where feature selection is embedded (Guyon and

Elisseeff, 2003), i.e., feature selection is conducted jointly with classification. We

demonstrate that the optimization algorithm we introduce can solve both fused Lasso and

GraphNet regularized SVM with very little modification. To the best of our knowledge, this

is the first application of structured sparse methods in the context of disease prediction using

functional connectomes. Additional discussions of technical contributions are reported in

Sec. 2.3. We perform experiments on simulated connectomic data and resting state scans

from a large schizophrenia dataset to demonstrate that the proposed method identifies

predictive regions that are spatially contiguous in the connectome space, offering an

additional layer of interpretability that could provide new insights about various disease

processes.

Notation

We let lowercase and uppercase bold letters denote vectors and matrices, respectively. For

every positive integer n ∈ ℕ, we define an index set [n] := {1, …, n}, and also let In ∈ ℝn×n

denote the identity matrix. Given a matrix A ∈ ℝn×p, we let AT denote its matrix transpose,

and AH denote its Hermitian transpose. Given w, υ ∈ ℝn, we invoke the standard notation

 to express the inner product in ℝn. We also let 

denote the ℓp-norm of a vector, p ≥ 1, with the absence of subscript indicating the standard

Euclidean norm, ∥·∥ = ∥·∥2.

2. Material and methods

2.1. Defining Functional Connectomes

In this work, we produced a whole-brain resting state functional connectome as follows.

First, 347 non-overlapping spherical nodes are placed throughout the entire brain in a

regularly-spaced grid pattern, with a spacing of 18 × 18 × 18 mm; each of these nodes

represents a pseudo-spherical ROI with a radius of 7.5 mm, which encompasses 33 voxels

(the voxel size is 3 × 3 × 3 mm). For a schematic representation of the parcellation scheme,

see Fig. 1. Next, for each of these nodes, a single representative time-series is assigned by

spatially averaging the BOLD signals falling within the ROI. Then, a cross-correlation

matrix is generated by computing Pearson’s correlation coefficient between these

representative time-series. Finally, a vector x of length  is obtained by

extracting the lower-triangular portion of the cross-correlation matrix. This vector x ∈

ℝ60,031 represents the whole-brain functional connectome, which serves as the feature

vector for disease prediction.

The grid-based scheme for brain parcellation used in this work provides numerous

advantages. Of note, this approach has been validated in previous studies (Sripada et al.,

2013a, 2014, 2013b). Furthermore, the uniformly spaced grid is a good fit with our

implementation of fused Lasso and GraphNet, as it provides a natural notion of nearest-

neighbor and ordering among the coordinates of the connectome. This property also turns

out to be critical for employing our optimization algorithm, which will be discussed in Sec.
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2.3. This is in contrast to alternative approaches, such as methods that rely on anatomical

(Tzourio-Mazoyer et al., 2002; Zeng et al., 2012) or functional parcellation schemes

(Dosenbach et al., 2010). Anatomical parcellations in particular have been shown to yield

inferior performance to alternative schemes in the literature (Power et al., 2011).

Additionally, grid-based approaches provide scalable density: there is a natural way to

increase the spatial resolution of the grid when computational feasibility allows. In

particular, to increase node density, one could reduce the inter-node distance and also reduce

the node size such that suitable inter-node space remains. This scalable density property

turns out to be quite important, as our grid-based scheme is considerably more dense than

standard functional parcellations (e.g., Dosenbach et al. (2010); Shirer et al. (2011)) that use

as many as several hundred fewer nodes, and thus have tens of thousands fewer connections

in the connectome. Finally, the use of our grid-based scheme naturally leaves space between

the nodes. While on the surface this may appear to yield incomplete coverage, this is in fact

a desirable property to avoid inappropriate inter-node smoothing. This may result as a

function of either the point-spread process of fMRI image acquisition or be introduced as a

standard preprocessing step. In recognition of these advantages, we have elected to use a

grid scheme composed of pseudo-spherical nodes spaced at regular intervals.

One pragmatic advantage of using an a priori parcellation scheme as opposed to one that

combines parcellation and connectome calculation is that it permits the usage of a grid, and

thus yields all the advantages outlined above. Moreover, it allows for easier comparison

across studies since an identical (or at least similar) parcellation can be brought to bear on a

variety of connectomic investigations. Secondly, while an approach that embeds both

parcellation and connectome calculation in a single step may be suitable for recovering a

more informative normative connectome, it would not necessarily be appropriate for

recovering discriminative information about diseases in the connectome unless features were

selected based on their disease-versus-healthy discriminative value. This approach, however,

would require nesting parcellation within cross validation and would lead to highly

dissimilar classification problems across cross validation folds and present challenges to any

sort of inference or aggregation of performance. In light of these challenges, we have elected

to use our a priori grid-based scheme.

2.2. Statistical learning framework

We now formally introduce the statistical learning framework adopted to perform joint

feature selection and disease prediction with spatial information taken into consideration.

2.2.1. Regularized empirical risk minimization and feature selection—In this

work, we are interested in the supervised learning problem of linear binary classification.

Suppose we are given a set of training data {(x1, y1), ⋯, (xn, yn)}, where xi ∈ ℝp is the input

feature vector and yi ∈ {−1, +1} is the corresponding class label for each i ∈ [n]. In our

application, xi represents functional connectome and yi indicates the diagnostic status of

subject i ∈ [n], where we adopt the convention of letting y = +1 indicate “disorder” and y =

−1 indicate “healthy” in this article. The goal is to learn a linear decision function sign (〈x,
w〉), parameterized by weight vector w ∈ ℝp, that predicts the label y ∈ {−1, +1} of a new
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input x ∈ ℝp. A standard approach for estimating w is solving a regularized empirical risk

minimization (ERM) problem with the form

(1)

The first term  corresponds to the empirical risk of a margin-based loss

function ℓ : ℝ → ℝ+ (e.g., hinge, logistic, exponential), which quantifies how well the

model fits the data. The second term R : ℝp → ℝ+ is a regularizer that curtails overfitting

and enforces some kind of structure on the solution by penalizing weight vectors that deviate

from the assumed structure. The user-defined regularization parameter λ ≥ 0 controls the

tradeoff between data fit and regularization. Throughout this work, we assume the loss

function and the regularizer to be convex, but not necessarily differentiable. Furthermore,

we introduce the following notations

which allow us to express the empirical risk succinctly by defining a functional L : ℝn → ℝ+

which aggregates the total loss 

Regularized ERM (1) has a rich history in statistics and machine learning, and many well

known estimators can be recovered from this framework. For example, when the hinge loss

ℓ(t) := max(0, 1 − t) is used with the smoothness promoting ℓ2-regularizer , we recover

the SVM (Cortes and Vapnik, 1995). However, while smoothness helps prevent overfitting,

it is problematic for model interpretation, as all the coefficients from the weight vector

contribute to the final prediction function. Automatic feature selection can be done using the

ℓ1-regularizer ∥w∥1 known as the Lasso (Tibshirani, 1996), which causes many of the

coefficients in w to be exactly zero. Because the prediction function is described by a linear

combination between the weight w and the feature vector x, we can directly identify and

visualize the regions that are relevant for prediction.

While the ℓ1-regularizer possesses many useful statistical properties, several works have

reported poor performance when the features are highly correlated. More precisely, if there

are clusters of correlated features, Lasso will select only a single representative feature from

each cluster group, ignoring all the other equally predictive features. This leads to a model

that is overly sparse and sensitive to data resampling, creating problems for interpretation.

To address this issue, Zou and Hastie (2005) proposed to combine the ℓ1 and ℓ2 regularizers,

leading to the Elastic-net, which has the form , where γ ≥ 0 is a second

regularization parameter. The ℓ1-regularizer has the role of encouraging sparsity, whereas

the ℓ2-regularizer has the effect of allowing groups of highly correlated features to enter the
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model together, leading to a more stable and arguably a more sensible solution. While

Elastic-net addresses part of the limitations of Lasso and has been demonstrated to improve

prediction accuracy (Carroll et al., 2009; Ryali et al., 2010), it does not leverage the 6-D

structure of connectome space. To address this issue, we employ the fused Lasso and

GraphNet (Grosenick et al., 2013).

2.2.2. Spatially informed feature selection and classification via fused Lasso
and GraphNet—The original formulation of fused Lasso (Tibshirani et al., 2005) was

designed for encoding correlations among successive variables in 1-D data, such as mass

spectrometry and comparative genomic hybridization (CGH) data (Ye and Xie, 2011). More

specifically, assuming the weight vector w ∈ ℝp has a natural ordering among its

coordinates j ∈ [p], the regularized ERM problem with the fused Lasso has the following

form:

(2)

where w(j) indicates the j-th entry of w. Like Elastic-net, this regularizer has two

components: the first component is the usual sparsity promoting ℓ1-regularizer, and the

second component penalizes the absolute deviation among adjacent coordinates. Together,

they have the net effect of promoting sparse and piecewise constant solutions.

The idea of penalizing the deviations among neighboring coefficients can be extended to

other situations where there is a natural ordering among the feature coordinates. For

instance, the extension of the 1-D fused Lasso (2) for 2-D imaging data is to penalize the

vertical and horizontal difference between pixels; here, the coordinates are described via

lexicographical ordering. This type of generalization applies to our 6-D functional

connectomes by the virtue of the grid pattern in the nodes, and the ERM formulation reads

(3)

where Nj is the first-order neighborhood set corresponding to coordinate j in 6-D

connectome space. The spatial penalty  accounts for the 6-D

structure in the connectome by penalizing deviations among nearest-neighbor edges,

encouraging solutions that are spatially coherent in the connectome space. This type of

regularizer is known as an anisotropic total variation (TV) penalty in the image processing

community (Wang et al., 2008b), and an analogous isotropic TV penalty was applied by

Michel et al. (2011) for the application of 3-D brain decoding.

When the absolute value penalty in the spatial regularizer |w(j) − w(k)| in (3) is replaced by

the squared penalty , we recover the GraphNet model proposed by

Grosenick et al. (2013):
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(4)

GraphNet also promotes spatial contiguity, but instead of promoting sharp piecewise

constant patches, it encourages the clusters to appear in smoother form by penalizing the

quadratic deviations among the nearest-neighbor edges (i.e., the coordinates of the

functional connectome x). We emphasize that the optimization algorithm we propose can be

used to solve both fused Lasso (3) and GraphNet (4) with very little modification.

To gain a better understanding of the neighborhood set Nj in the context of our application,

let us denote (x, y, z) and (x′, y′, z′) the pair of 3-D points in the brain that define the

connectome coordinate j. Then, the first-order neighborhood set of j can be written precisely

as 1

Fig. 2 provides a pictorial illustration of Nj in the case of a 4-D connectome, where the

nodes reside in 2-D space.

There are multiple reasons why fused Lasso and GraphNet are justified approaches for our

problem. For example, fMRI is known to possess high spatio-temporal correlation between

neighboring voxels and time points, partly for biological reasons as well as from

preprocessing (e.g., spatial smoothing). Consequently, functional connectomes contain rich

correlations among nearby coordinates in the connectome space. In addition, there is a

neurophysiological basis for why the predictive features are expected to be spatially

contiguous rather than being randomly dispersed throughout the brain; this point will be

thoroughly discussed in Sec. 4.1. Finally, the spatial coherence that fused Lasso and

GraphNet promote helps decrease model complexity and facilitates interpretation.

Letting C ∈ ℝe×p denote the 6-D finite differencing matrix (also known as the incidence

matrix), the spatial regularization term for both fused Lasso and GraphNet can be written

compactly as

where each row in C contains a single +1 and a −1 entry, and e represents the total number

of adjacent coordinates in the connectome. This allows us to write out the regularized ERM

formulation for both fused Lasso (3) and GraphNet (4) in the following unified form:

1If (x, y, z) or (x′, y′, z′) are on the boundary of the brain volume, then neighboring points outside the brain volume are excluded from
Nj.
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(5)

We will focus on this matrix-vector representation hereafter, as it is more intuitive and

convenient for analyzing the variable splitting framework in the upcoming section.

2.3. Optimization

Solving the optimization problem (5) is challenging since the problem size p is large and the

three terms in the cost function can each be non-differentiable. To address these challenges,

we now introduce a scalable optimization framework based on augmented Lagrangian (AL)

methods. In particular, we introduce a variable splitting scheme that converts the

unconstrained optimization problem of the form (5) into an equivalent constrained

optimization problem, which can be solved efficiently using the alternating direction method

of multipliers (ADMM) algorithm (Boyd et al., 2011; Gabay and Mercier, 1976; Glowinski

and Marroco, 1975). We demonstrate that by augmenting the weight vector with zero entries

at appropriate locations, the inner subproblems associated with ADMM can be solved

efficiently in closed form.

2.3.1. Alternating Direction Method of Multipliers—The ADMM algorithm is a

powerful algorithm for solving convex optimization problems having the separable structure

(Boyd et al., 2011)

(6)

where x̄ ∈ ℝp̄ and ȳ ∈ ℝq̄ are unknown primal variables, f̄ : ℝp̄ → ℝ ∪ {+∞} and ḡ : ℝq̄ →

ℝ ∪ {+∞} are closed convex functions, and Ā ∈ ℝc×p̄ and B̄ ∈ ℝc×q̄ are matrices

representing c linear constraints. More specifically, the ADMM algorithm solves for the

primal variables in (6) through the following iterative procedure:

(7)

(8)

(9)

where superscript t denotes the iteration count and u ∈ ℝc denotes the (scaled) dual variable.

The convergence of the ADMM algorithm has been established in Theorem 1 of Mota et al.

(2011), which states that if matrices Ā and B̄ are full column-rank and the problem (6) is

solvable (i.e., it has an optimal objective value), the ADMM iterations (7) - (9) converges to

the optimal solution. While the AL parameter ρ > 0 does not affect the convergence property
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of ADMM, it can impact its convergence speed. We use the value ρ = 1 in all of our

implementations, although this value can be empirically tuned in practice.

2.3.2. Variable splitting and data augmentation—The original formulation of our

problem (5) does not have the structure of (6). However, we can convert the unconstrained

optimization problem (5) into an equivalent constrained optimization problem (6) by

introducing auxiliary constraint variables, a method known as variable splitting (Afonso et

al., 2010). While there are several different ways to introduce the constraint variables, the

heart of the strategy is to select a splitting scheme that decouples the problem into more

manageable subproblems. For example, one particular splitting strategy we can adopt for

problem (5) is

(10)

where υ1, υ2, υ3, υ4 are the constraint variables. It is easy to see that problems (5) and (10)

are equivalent, and the correspondence with the ADMM formulation (6) is as follows:

(11)

However, there is an issue with this splitting strategy: one of the resulting subproblems from

the ADMM algorithm requires us to invert a matrix involving the Laplacian matrix CT C ∈

ℝp×p, which is prohibitively large. Although this matrix is sparse, it has a distorted structure

due to the irregularities in the coordinates of x. These irregularities arise from two reasons:

(1) the nodes defining the functional connectome x are placed only on the brain, not the

entire rectangular field of view (FOV), and (2) x lacks a complete 6-D representation since it

only contains the lower-triangular part of the cross-correlation matrix. Fig. 3a displays the

Laplacian matrix that results from the 347-node functional connectome defined in Section

2.1, and the distorted structure is clearly visible.

To address this issue, we introduce an augmentation matrix A ∈ ℝp̃×p, whose rows are either

the zero vector or an element from the trivial basis {ej ∣ j ∈ [p]}, and has the property AT A
= Ip. Furthermore, we define the augmented weight vector w̃ := Aw, where A rectifies the

irregularities in the coordinates of w (and x) by padding extra zero entries, accommodating

for: (1) the nodes that were not placed in the FOV (i.e., the regions outside the brain), and

(2) the diagonal and upper-triangular part of the cross-correlation matrix, which were

disposed due to redundancy; further details regarding this augmentation scheme is reported

in Appendix A. As a result, we now have a new differencing matrix C̃ ∈ ℝẽ×p̃ corresponding

to w̃ ∈ ℝp̃, whose Laplacian matrix C̃T C̃ ∈ ℝp̃×p̃ has a systematic structure, as shown in Fig.

3b. In fact, this matrix has a special structure known as block-circulant with circulant-blocks
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(BCCB), which is critical since the matrix inversion involving C̃T C̃ can be computed

efficiently in closed form using the fast Fourier transform (FFT) (the utility of this property

will be elaborated more in Section 2.3.3). It is important to note that this BCCB structure in

the Laplacian matrix arises from the grid structure introduced from the parcellation scheme

we adopted for producing the functional connectome.

Finally, by introducing a diagonal masking matrix B ∈ {0, 1}ẽ×ẽ, we have

 for q ∈ {1, 2}. Note that this masking strategy was adopted from the

recent works of Allison et al. (2013) and Matakos et al. (2013), and has the effect of

removing artifacts that are introduced from the data augmentation procedure when

computing the -norm. This allows us to write out the fused Lasso and GraphNet

problem (5) in the following equivalent form:

Moreover, this can be converted into a constrained optimization problem

(12)

and the correspondence with the ADMM formulation (6) now becomes:

(13)

The dual variables corresponding to υ1, υ2, υ3, and υ4 are written in block form u = [u1
T,

u2
T, u3

T, u4
T]T. Note that functions f̄ and ḡ are convex, and matrices Ā and B̄ are full

column-rank, so the convergence of the ADMM iterations (7)-(9) is guaranteed (see

Theorem 1 in Mota et al. (2011)).

2.3.3. ADMM: efficient closed-form updates—With the variable splitting scheme (12)

and ADMM formulation (13), the ADMM update for the primal variable x̄ (7) decomposes

into subproblems

(14)
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(15)

whereas the updates for primal variable ȳ (8) are

(16)

(17)

(18)

The update for the dual variable u is a trivial matrix-vector multiplication (9) (see Algorithm

1 line 14-17).

We now demonstrate that the minimization problems (14)-(18) each admits an efficient,

closed form solution.

w update: The quadratic minimization problem (14) has the following closed form solution:

(19)

Note we used the fact that YT Y = In and AT A = Ip to arrive at this expression. Applying

update (19) brute force will require an inversion of a (p × p) matrix, but this can be

converted into an (n × n) inversion problem by invoking the matrix inversion Lemma

(20)

In the context of our work, n denotes the number of scanned subjects, which is typically on

the order of a few hundred. The matrix (XT X + 2Ip)−1 can be stored in memory if p is small,

but the massive dimensionality of the functional connectome in our application dismisses

this option. Therefore, we instead precompute the (p × n) matrix

 in (20), and let

This way, the update (19) can be implemented as follows:
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(21)

which allows us to carry out the w-update without having to store a (p × p) matrix in

memory.

υ1 and υ2 update: The minimization problems (16) and (17) have the form of the (scaled)

proximal operator ProxτF : ℝp → ℝp (Rockafellar and Wets, 1998), defined by

(22)

where F : ℝp → ℝ ∪ {+∞} is a closed convex function. Using standard subdifferential

calculus rules (Borwein and Lewis, 2006), it is straightforward to show that a point u* ∈ ℝp

solves the minimization in (22) if and only if the condition

(23)

holds. Here, ∂F (u*) denotes the subdifferential of function F at u*, defined by

In addition, both updates (16) and (17) are fully separable across their coordinates,

decomposing into the following sets of elementwise scalar optimization problems:

(24)

(25)

where [·]i and [·]j each index the i-th and j-th element of a vector in ℝn and ℝp respectively.

For some margin-based loss functions, their corresponding proximal operator (24) can be

derived in closed form using the optimality condition (23). Fig. 4 plots a few commonly

used margin-based losses and their corresponding proximal operators, and Table 1 provides

their closed form expressions. The choice of the margin-based loss is application dependent,

such as whether differentiability is desired or not. The proximal operator of the ℓ1-norm (17)

and the absolute loss function (25) corresponds to the well known soft-threshold operator

(Donoho, 1995)

(26)

The absolute loss and the soft-threshold operator are also included in Fig. 4 and Table. 1 for

completeness.
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υ3 update: The solution to the minimization problem (15) depends on the choice of q ∈ {1,

2}, where q = 1 recovers fused Lasso and q = 2 recovers GraphNet.

In the fused Lasso case q = 1, since the masking matrix B ∈ {0, 1}ẽ×ẽ is diagonal, the update

(15) is fully separable. Letting ζ(t) := C̃υ4
(t) − u3

(t), the minimization problem decouples into

a set of scalar minimization problems of the form:

(27)

where bk is the k-th diagonal entry of B and  is the k-th entry of ζ(t) ∈ ℝẽ. On one hand,

when bk = 0, the minimizer for problem (27) returns the trivial solution . On the other

hand, when bk = 1, the minimizer will once again have the form of the proximal operator

(22) corresponding to the absolute loss function |·|, recovering the soft-threshold operator

(26). To summarize, when q = 1, the update for υ3 (15) can be done efficiently by

conducting the following elementwise update for each k ∈ [ẽ]:

(28)

where [·]k indexes the k-th element of a vector in ℝẽ.

In the GraphNet case q = 2, update (15) is a quadratic optimization problem with the closed

form solution

(29)

which is trivial to compute since the matrix (γB + ρIẽ) is diagonal.

υ4 update: The closed form solution to the quadratic optimization problem (18) is

(30)

To suppress notations, let us define Q ∈ ℝp̃×p̃ and b ∈ ℝp̃, where Q := C̃T C̃ + Ip̃ and

As stated earlier, the Laplacian matrix C̃T C̃ is block-circulant with circulant-blocks

(BCCB), and consequently, the matrix Q is BCCB as well. It is well known that a BCCB

matrix can be diagonalized as (Davis, 1979)
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where U ∈ ℝp̃×p̃ is the (6-D) DFT matrix and Λ ∈ ℝp̃×p̃ is a diagonal matrix containing the

(6-D) DFT coefficients of the first column of Q. As a result, the update (30) can be carried

out efficiently using the (6-D) FFT

(31)

where fft and ifft denote the (6-D) FFT and inverse-FFT operation2, ϕ is a vector containing

the diagonal entries of Λ, and ⨸ indicates elementwise division (more precisely, vectors b
and ϕ are reshaped into 6-D arrays prior to the 6-D FFT and inverse-FFT operations, and the

result of these operations is re-vectorized).

AL-based optimization methods that involve this kind of FFT-based inversion have been

applied in image processing (Afonso et al., 2010; Allison et al., 2013; Matakos et al., 2013).

Problems such as image denoising, reconstruction, and restoration are typically cast as a

regularized ERM problem involving the squared loss function. The data augmentation

scheme we propose allows us to apply this FFT-based technique with 6-D functional

connectomes in the context of binary classification with margin-based loss functions.

Finally, note that the ADMM algorithm was also used to solve the fused Lasso regularized

SVM problem in (Ye and Xie, 2011) under a different variable splitting setup. However,

their application focuses on 1-D data such as mass spectrometry and array CGH.

Consequently, the Laplacian matrix corresponding to their feature vector is tridiagonal with

no irregularities present. Furthermore, the variable splitting scheme they propose requires an

iterative algorithm to be used for one of the ADMM subproblems. In contrast, the variable

splitting scheme and the data augmentation strategy we propose allow the ADMM

subproblems to be decoupled in a way that all the updates can be carried out efficiently and

non-iteratively in closed form.

Summary: the final algorithm and termination criteria: Algorithm 1 outlines the

complete ADMM algorithm for solving both the fused Lasso and GraphNet regularized

ERM problem (5), and is guaranteed to converge. In our implementations, all the variables

were initialized at zero. The algorithm is terminated when the relative difference between

two successive iterates falls below a user-specified threshold:

(32)

2.4. Generation of synthetic data: 4-D functional connectomes

To assess the validity of our method, we ran experiments on synthetic 4-D functional

connectome data. The data were generated to imitate functional connectomes resulting from

a single slice of our grid-based parcellation scheme (see Fig. 1). Specifically, we selected

only the nodes that are present at axial slice z = 18 in the MNI space; this slice was selected

2These multidimensional FFT and inverse FFT operations are implemented using fftn and iffn functions in MATLAB.
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for its substantial X and Y coverage. Fig. 5a provides a schematic representation of the

selected nodes.

To mimic the control vs. patient binary classification setup, we created two classes of

functional connectomes sampled from random normal distributions. The mean and the

variance for these distributions were assigned using the functional connectomes generated

from the real resting state dataset described later in Sec. 2.5. Specifically, we first took the

subject-level functional connectomes corresponding to the 67 healthy controls in the dataset,

and extracted the entries that represent the edges among the nodes at slice z = 18. Since there

are 66 nodes within this slice, this gives us  edges for each subjects. Next, we

applied Fisher transformation on these edges to map the correlation values to the real line.

For each of these transformed edges, we calculated the inter-subject sample mean and

sample variance, which we denote by {μ̂(k), σ̂2(k)} with k ∈ [2145] indexing the edges.

Finally, a synthetic subject-level “control class” connectome is realized by sampling edges

individually from a set of random normal distributions having the above mean and variance,

and

Algorithm 1 ADMM for solving fused Lasso (q = 1) or GraphNet (q = 2)

1 Initialize primal variables w, υ1, υ2, υ3, υ4

2 Initialize dual variables u1, u2, u3, u4

3 Set t = 0, assign λ ≥ 0, γ ≥ 0

4
Precompute H : =

1
4

X T (In +
1
2

X X T )
−1

5 repeat

6  x̄-update (7)

7   w(t+1) ← (XT X + 2Ip)−1 (XTYT[υ1
(t) − u1

(t)]+ [υ2
(t) − u2

(t)] + AT[υ4
(t) − u4

(t)])

                      ⊳ apply update (21)

8
   υ3

(t+1) ← {solve using (28) if q = 1 (fused Lasso)

solve using (29) if q = 2 (GraphNet)

9  ȳ-update (8)

10
   

υ1
(t+1) ← Prox L

nρ

(Y X w (t+1) + u1
(t)) ⊳apply (24) elementwise

11   υ2
(t+1) ← Softλ/ρ (w(t+1)+u2

(t))         ⊳ apply (25) elementwise

12   υ4
(t+1) ← (C̃T C̃ + Ip̃)−1 (C̃T[υ3

(t+1) + u3
(t)] + Aw(t+1) + u4

(t))

                  ⊳ solve using FFT approach (31)

13  u-update (9)

14   u1
(t+1) ← u1

(t) + Y X w(t+1) − υ1
(t+1)

15   u2
(t+1) ← u2

(t) + w(t+1) − υ2
(t+1)

16   u3
(t+1) ← u3

(t) + υ3
(t+1) − C̃υ4

(t+1)

17   u4
(t+1) ← u4

(t) + Aw(t+1) − υ4
(t+1)

18  t ← t + 1

19 until stopping criterion is met
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then applying inverse Fisher transformation tanh : ℝ → (−1, +1) on these sampled edges,

i.e.,

Realizations of the “patient class” connectomes are generated in a similar manner, but here

we introduced two clusters of anomalous nodes, indicated by the red nodes in Fig. 5b. These

clusters participate in a disease-specific perturbation, where signal was added to all

connections originating in one cluster and terminating in the other. More formally, let K ⊂

[2145] denote the index set corresponding to these disease-specific anomalous edges, which

consist of a complete bipartite graph formed by the anomalous node clusters C1 = {8, 14, 15,

16, 23} and C2 = {41, 48, 49, 50, 56} C1, C2 ⊂ [66]. Under these notations, a synthetic

subject-level “patient class” connectome is realized by the following procedure:

In other words, if an edge k is a member of the anomalous edge set K, a non-random signal d

· σ̂(k) is added to the sampled edge-value. Here, d denotes Cohen’s effect size (Cohen,

1988), which we set at d = 0.6 for our experiments. Overall, since |C1| = |C2| = 5, we have |

K| = |C1| · |C2| = 25, i.e., there are 25 anomalous edges in the patient group; see Fig. 5b for a

pictorial illustration of the anomalous edge set K in the 2-D node space. Fig. 5c presents a

binary support matrix indicating the structure of the anomalous edges in the 4-D connectome

space, with the locations of the anomalous edges specified by the product set C1 × C2 ⊂ [66]

× [66].

It is important to note that the inclusion of the clusters of anomalous nodes is motivated

from the “patchiness assumption” of brain disorders, a view that has been born from

multiple task-based and connectivity-based studies; this point will be expounded in finer

detail in 4.1. In short, the “patchiness assumption” is the view that major psychiatric

disorders manifest in the brain by impacting moderately sized spatially contiguous regions,

which is what the clusters of anomalous nodes are intended to mimic in this simulation.

For training the classifiers, we sampled 100 functional connectomes consisting of 50 control

samples and 50 patient samples. For evaluating the performance of the classifiers, we

sampled 500 additional functional connectomes consisting of 250 control samples and 250

patient samples.

2.5. Real experimental data: schizophrenia resting state dataset

To further assess the utility of the proposed method, we also conducted experiments on real

resting state scans.

Participants—We used the Center for Biomedical Research Excellence (COBRE) dataset

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) made available by the Mind
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Research Network. The dataset is comprised of 74 typically developing control participants

and 71 participants with a DSM-IV-TR diagnosis of schizophrenia. Diagnosis was

established by the Structured Clinical Interview for DSM-IV (SCID). Participants were

excluded if they had mental retardation, neurological disorder, head trauma, or substance

abuse or dependence in the last 12 months. A summary of the participant demographic

characteristics is provided in Table 2.

Data collection was performed at the Mind Research Network, and funded by a Center of

Biomedical Research Excellence (COBRE) grant 5P20RR021938/P20GM103472 from the

NIH to Dr. Vince Calhoun. The COBRE data set can also be downloaded from the

Collaborative Informatics and Neuroimaging Suite data exchange tool (COINS (Scott et al.,

2011); http://coins.mrn.org/dx).

Data Acquisition—A multi-echo MPRAGE (MEMPR) sequence was used with the

following parameters: TR/TE/TI = 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, flip angle = 7°,

FOV = 256 × 256 mm, slab thickness = 176 mm, matrix size = 256 × 256 × 176, voxel size

= 1 × 1 × 1 mm, number of echoes = 5, pixel bandwidth = 650 Hz, total scan time = 6

minutes. With 5 echoes, the TR and TI time to encode partitions for the MEMPR are similar

to that of a conventional MPRAGE, resulting in similar GM/WM/CSF contrast. Resting

state data were collected with single-shot full k-space echo-planar imaging (EPI) with ramp

sampling correction using the intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29

ms, matrix size: 64 × 64, 32 slices, voxel size: 3 × 3 × 4mm3).

Imaging Sample Selection—Analyses were limited to participants with: (1) MPRAGE

anatomical images, with consistent near-full brain coverage (i.e., superior extent included

the majority of frontal and parietal cortex and inferior extent included the temporal lobes)

with successful registration; (2) complete phenotypic information for main phenotypic

variables (diagnosis, age, handedness); (3) mean framewise displacement (FD) within two

standard deviations of the sample mean; (4) at least 50% of frames retained after application

of framewise censoring for motion (“motion scrubbing”; see below). After applying these

sample selection criteria, we analyzed resting state scans from 121 individuals consisting of

67 healthy controls (HC) and 54 schizophrenic subjects (SZ). Demographic characteristics

of the post-exclusion sample are shown in Table 2.

Preprocessing—Preprocessing steps were performed using statistical parametric mapping

(SPM8; www.fil.ion.ucl.ac.uk/spm). Scans were reconstructed, slice-time corrected,

realigned to the first scan in the experiment for correction of head motion, and co-registered

with the high-resolution T1-weighted image. Normalization was performed using the voxel-

based morphometry (VBM) tool-box implemented in SPM8. The high-resolution T1-

weighted image was segmented into tissue types, bias-corrected, registered to MNI space,

and then normalized using Diffeomorphic Anatomical Registration Through Exponentiated

Lie Algebra (DARTEL) (Ashburner, 2007). The resulting deformation fields were then

applied to the functional images. Smoothing of functional data was performed with an 8

mm3 kernel.
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Connectome generation—Functional connectomes were generated by placing 7.5 mm

radius nodes representing ROIs encompassing 33 3 × 3 × 3 mm voxels in a regular grid

spaced at 18 × 18 × 18 mm intervals throughout the brain. Spatially averaged time series

were extracted from each of the ROIs. Next, linear detrending was performed, followed by

nuisance regression. Regressors included six motion regressors generated from the

realignment step, as well as their first derivatives. White matter and cerebrospinal fluid

masks were generated from the VBM-based tissue segmentation step noted above, and

eroded using the fslmaths program from FSL to eliminate border regions of potentially

ambiguous tissue type. The top five principal components of the BOLD time series were

extracted from each of the masks and included as regressors in the model – a method that

has been demonstrated to effectively remove signals arising from the cardiac and respiratory

cycle (Behzadi et al., 2007). The time-series for each ROI was then band-passed filtered in

the 0.01 – 0.10 Hz range. Individual frames with excessive head motion were then censored

from the time series. Subjects with more than 50% of their frames removed by scrubbing

were excluded from further analysis, a threshold justified by simulations conducted by other

groups (Fair et al., 2013), as well as by our group. Pearson product-moment correlation

coefficients were then calculated pairwise between time courses for each of the 347 ROIs.

Standard steps in functional connectivity analysis (removing motion artifacts and nuisance

covariates and calculating Pearson’s product moment correlations between pairs of nodes)

was performed with ConnTool, a functional connectivity analysis package developed by

Robert C. Welsh, University of Michigan.

3. Results

3.1. Results on synthetic functional connectome data

In order to evaluate the validity of our proposed method, we compared the performance of

four linear classifiers trained on the synthetic functional connectome data described in

Section 2.4, where the training set consists of 100 samples with 50 patients and 50 controls.

Specifically, we solved the regularized ERM problem (1) using the hinge-loss and the

following four regularizers: Lasso, Elastic-net, GraphNet, and fused Lasso. Lasso and

Elastic-net were also solved using ADMM, although the variable splitting scenario and the

optimization steps are different from Algorithm 1. The ADMM algorithm for Elastic-net is

provided in Appendix B, and the algorithm for Lasso follows directly from Elastic-net by

setting γ = 0. The ADMM algorithm was terminated when the tolerance level (32) fell below

ε = 4 × 10−3 or the algorithm reached 400 iterations. Note that in our experiment, we let y =

+1 indicate the “patient class” and y = −1 indicate the “control class.”

With the exception of Lasso, the regularizers we investigated involve two tuning parameters:

λ ≥ 0 and γ ≥ 0. We tuned these regularization parameters by conducting a 5-fold cross-

validation on the training set over a two-dimensional grid, and tuned Lasso over a one-

dimensional grid. More precisely, the ℓ1 regularization parameter λ ≥ 0 was tuned over the

range λ ∈ {2−11, 2−10.75, …, 2−3.5} for all four regularizers. The second regularization

parameter γ ≥ 0 was tuned over the range γ ∈ {2−16, 2−15.5, …, 2+2} for Elastic-net and

GraphNet and γ ∈ {2−16, 2−15.5, …, 2−5} for fused Lasso3. The final weight vector estimates

are obtained by retraining the classifiers on the entire training set using the regularization
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parameter values {λ, γ} that yielded the highest 5-fold cross-validation classification

accuracy. For visualization, the estimated weight vectors are reshaped into 66 × 66

symmetric matrices with zeroes on the diagonal (although these are matrices, we will refer

to them as “weight vectors” as well), and the classification accuracies are evaluated on a

testing set consisting of 500 samples with 250 patients and 250 controls.

The top row of Fig. 6 displays the estimated weight vectors, and the corresponding testing

classification accuracies are reported under the subcaptions. Here, the fused Lasso

regularized SVM yielded the best classification accuracy at 88.2% using 92 features,

followed by 85.6% from GraphNet which used 104 features; Lasso and Elastic-net both

achieved 77.0% classification accuracy using 230 and 232 features respectively. However, a

perhaps more interesting observation is that fused Lasso and GraphNet were able to recover

the structure of the anomalous edges much more clearly than Lasso and Elastic-net; this can

be seen by comparing the weight vectors estimated by the four regularizers with the support

of the anomalous edges displayed in Fig. 6e. While Lasso and Elastic-net yielded weight

vector estimates with salt-and-pepper patterns that are difficult to interpret, the weight vector

estimates for fused Lasso and GraphNet closely resembles the structure of the anomalous

edges. To quantify the regularizers’ ability to identify the discriminative edges, we

generated a receiver operating characteristic (ROC) curve by thresholding the absolute value

of the elements of the estimated weight vector. The resulting ROC curve for the four

regularizers are plotted in Fig. 6f; we emphasize that this ROC curve summarizes the

regularizers’ ability to identify the informative edges, and does not represent classification

accuracy. From this ROC curve, we see that fused Lasso and GraphNet attain the best

performances, achieving a nearly perfect area under the curve (AUC) value of 0.998 and

0.997 respectively, whereas the AUC value for Lasso and Elastic-net were 0.921 and 0.939

respectively. In short, Fig. 6a-f demonstrate that fused Lasso and GraphNet not only

improved classification accuracy, but also exhibited superior performance in recovering the

discriminatory edges with respect to their non-spatially informed counterparts, Lasso and

Elastic-net.

In our next analysis, we studied how classification accuracy and sparsity (i.e., number of

features selected) behave as a function of the regularization parameters {λ, γ}. For this, we

conducted a grid search over the same range of λ and γ values presented above, but the

classifiers were trained over the entire training set. Classification accuracy was evaluated on

the same testing set as the above experiment. The result of the grid search is presented in

Fig. 7, where the top row plots the testing classification accuracy and the bottom row plots

the number of features selected, both as a function of the regularization parameters {λ, γ}.

To further study the performance of our method, we next conducted a sample complexity

analysis (Gramfort et al., 2011), where we studied how the classification accuracy of the

four regularizers behaved as a function of the training sample size n. This was done by

repeating our earlier experiment of tuning the regularization parameters via 5-fold cross-

3The grid search region for γ is different for fused Lasso since we observed a clear drop-off in classification performance for any
values of γ higher than the range presented. We found this to be true for the real data experiment in Sec. 3.2 as well; see Fig. 7 and
Fig. 9.
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validation on the training set, but here we varied the training sample size over the range n ∈

{20, 40, 60, …, 200}; the same testing set of size 500 was used throughout for evaluating

the classification accuracy. Note the labels are balanced for all datasets, i.e., the training set

consists of n/2 patients and n/2 controls, and similarly the testing set consists of 250 patients

and 250 controls. The result of this experiment is reported in Fig. 8 and Table 3. A key

observation from this analysis is that the classification accuracy for GraphNet and fused

Lasso consistently outperformed Lasso and Elastic-net, which can be attributed to the spatial

information injected by these spatially-informed regularizers. Overall, fused Lasso yielded

the best classification accuracy.

It is important to note that the inclusion of the anomalous node clusters in the data

generating process certainly favors fused Lasso and GraphNet. However, we remind the

readers that these anomalous node clusters are not some arbitrary structures we introduced to

favor the spatially-informed regularizers, but are motivated from the “patchiness

assumption” of brain disorders, a neuroscientific viewpoint which we discuss in detail in

Sec. 4.1. The results from the simulation experiments confirm the intuition that if the

“patchiness assumption” of brain disorders holds true, spatially-informed classifiers can be a

powerful tool for recovering relevant biosignatures.

3.2. Results on resting state fMRI data from a schizophrenia dataset

In this experiment, we examined the performance of linear classifiers trained using

regularized ERM (1) with the hinge-loss, and three regularizers were subject to comparison:

Elastic-net, GraphNet, and fused Lasso. The study involved 121 participants, consisting of

54 schizophrenic subjects (SZ) and 67 healthy controls (HC). We adopt the convention of

letting y = +1 indicate SZ and y = −1 indicate HC subjects. The ADMM algorithm was

terminated when the tolerance level (32) fell below ε = 4 × 10−3 or the algorithm reached

400 iterations. Empirically, we found the algorithm to converge at around 180~300

iterations. For the two regularization parameters, we conducted a two-dimensional grid

search: the ℓ1 regularization parameter λ ≥ 0 was searched over the range λ ∈ {2−20, 2−19,

⋯, 2−3} for all three regularizers, and the second regularization parameter γ ≥ 0 was

searched over γ ∈ {2−20, 2−19, ⋯, 2−3} for Elastic-net and GraphNet and γ ∈ {2−20, 2−19,

⋯, 2−3} for fused Lasso. Ten-fold cross-validation to evaluate the generalizability of the

classifiers. Furthermore, we analyzed the sparsity level achieved during the grid search by

computing the average number of features selected across the cross-validation folds.

The resulting testing classification accuracy and sparsity level for different combinations of

{λ, γ} are rendered as heatmaps in Fig. 9. The general trend observed from the grid search is

that for all three regularization methods, the classification accuracy improved as more

features entered the model. We observed the same trend when using other loss functions as

well, specifically the truncated-least squares loss and the huberized-hinge loss (using δ =

0.5) function. Although this behavior may be somewhat surprising, it has been reported that

in the p ≫ n setting, the unregularized SVM often performs just as well as the best

regularized case, and accuracy can degrade when feature pruning takes place (see Ch.18 in

Hastie et al. (2009)).
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A common practice for choosing the final set of regularization parameters is to select the

choice that gives the highest prediction accuracy. Based on the grid search result reported in

Fig. 9, one may be tempted to conclude that the prediction models from GraphNet and fused

Lasso are not any better than Elastic-net. However, the ultimate goal in our application is the

discovery and validation of connectivity-based biomarkers, thus classification accuracy by

itself is not sufficient. It is equally important for the prediction model to be interpretable

(e.g., sparse) and inform us about the predictive regions residing in the high dimensional

connectome space. From the grid search, we found that for all three regularization methods,

the classifiers achieved a good balance between accuracy and sparsity when approximately

3, 000 features (≈ 5%) were selected out of p = 60, 031. More specifically, Elastic-net,

GraphNet, and fused Lasso achieved classification accuracies of 73.5%, 70.3%, and 71.9%,

using an average of 3076, 3403, and 3140 features across the cross-validation folds.

Corresponding regularization parameter values {λ, γ} were: {2−6, 2−1}, {2−5, 2−2}, and

{2−9, 2−10}. Therefore, we further analyzed the classifiers obtained from these regularization

parameter values.

During cross-validation, we learned a different weight vector for each partitioning of the

dataset. In order to obtain a single representative weight vector, we took the approach of

Grosenick et al. (2013), computing the elementwise median of the weight vectors across the

cross-validation folds. Note that this approach possesses attractive theoretical properties; see

Grosenick et al. (2013) and Minsker (2013) for a detailed discussion. For visualization and

interpretation, we grouped the indices of these weight vectors according to the network

parcellation scheme proposed by Yeo et al. (2011), and augmented this parcellation with

subcortical regions and cerebellum derived from the parcellation of Tzourio-Mazoyer et al.

(2002) (see Table 4); these weight vectors are then reshaped them into 347 × 347 symmetric

matrices with zeroes on the diagonal. Furthermore, we generated trinary representations of

these matrices in order to highlight their support structures, where red, blue, and white

denotes positive, negative, and zero entries respectively. The resulting matrices are

displayed in Fig. 10.

From these figures, one can observe that Elastic-net yields solutions that are scattered

throughout the connectome space, which can be problematic for interpretation. In contrast,

the weight vector returned from GraphNet has a much smoother structure, demonstrating the

impact of the smooth spatial penalty; this is arguably a far more sensible structure from a

biological standpoint. Finally, the weight vector from fused Lasso reveals systematic

sparsity patterns with multiple contiguous clusters present, indicating that the predictive

regions are compactly localized in the connectome space (e.g., see the rich connectivity

patterns present in the intra-visual and intra-cerebellum network). It is noteworthy the fused

Lasso not only appears to identify more densely packed patches of abnormalities in certain

regions, it also generates large areas of relative sparsity (e.g., see somatomotor network

interconnections with other networks, and the nodes that fall outside the augmented Yeo

parcellation scheme, which are labeled “×”). These areas are more sparse in the fused Lasso

map, and this appears to be consistent with existing knowledge of connectivity alterations in

schizophrenia (see Sec. 4.3 of the Discussion). In addition, the weight vector estimate from

fused Lasso appears to implicate certain nodes more often in connectivity alterations. In
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order to emphasize this point, the bottom row in Fig. 10 also plots the degree of the nodes,

i.e., the number of connections a node makes with the rest of the nodes (this is another

example of “spatial contiguity” in the 6-D connectome space).

Finally, in order to convey the regional distribution of the edges recovered by fused Lasso,

we rendered implicated edges on canonical 3-D brains (Fig. 11; these figures were generated

with the BrainNet Viewer, http://www.nitrc.org/projects/bnv/). We focus on the three sets of

network-to-network connections, intra-frontoparietal, frontoparietal-default, and intra-

cerebellum, as these three networks have particularly extensive evidence of their

involvement in schizophrenia (see Discussion in Sec. 4). It is noteworthy that lateral

prefrontal cortex, an important region in frontoparietal network, is well represented in the

fused Lasso map. Edges involving this region represent 39.3% of the intra-frontoparietal

connections and 43.6% of the frontoparietal-default network connections. This finding is

consistent with previous studies of schizophrenia that emphasize the importance of this

region (see Discussion in Sec. 4).

3.3. Computational considerations

It is important to note that the benefit of spatial regularization comes with higher

computational expense. To illustrate this point, we ran the ADMM algorithms for Elastic-

net, GraphNet, and fused Lasso for 1000 iterations on the full resting state dataset using

regularization parameter values {λ, γ} = {2−15, 2−15} and compared their computation times

(the algorithm for Elastic-net is reported in Appendix B, whereas the algorithms for

GraphNet and fused Lasso are reported in Algorithm 1). This timing experiment was

implemented in MATLAB version 7.13.0 on a desktop PC with Intel quad-core 3.40 GHz

CPU and 12 GB RAM. The total computation times for Elastic-net, GraphNet, and fused

Lasso were 17.04 seconds, 96.07 seconds, and 112.45 seconds respectively. The increase in

computation time for GraphNet and fused Lasso stems from the fact that unlike the ℓ2-

penalty in Elastic-net, the spatial penalty , q ∈ {1, 2} is not separable across the

coordinates of w. To address this difficulty, the variable splitting strategy proposed for

GraphNet and fused Lasso (12) contains four constraint variables, which is two more than

the splitting proposed for Elastic-net (B.1); as a consequence, the ADMM algorithms for

GraphNet and fused Lasso contain two additional subproblems. Furthermore, the

computational bottlenecks of the ADMM algorithms for GraphNet and fused Lasso are the

6-D FFT and inverse-FFT operations (31), which are not conducted for the Elastic-net.

Therefore, if achieving high classification accuracy is the central goal, then Elastic-net

would be the most sensible and practical choice, as it yields good classification accuracy and

is by far the fastest among the three regularization methods we studied.

Finally, in order to assess the practical utility of our proposed algorithm with respect to

existing methods, we conducted another timing experiment using the ADMM algorithm

proposed by Ye and Xie (2011), which also solves fused Lasso regularized SVM. It is

important to note that the variable splitting scheme they employ is different from the one we

introduce, and consequently, their method requires the following matrix inversion problem

to be solved for one of the ADMM updates:
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As suggested in Ye and Xie (2011), we applied the conjugate gradient algorithm to

numerically solve this large scale matrix inversion problem4. Using the same experimental

protocol as our first timing experiment, we ran Ye and Xie’s algorithm for 1000 iterations

on the full resting state dataset, which resulted in a total computation time of 331.36

seconds, which is nearly three times longer than the algorithm we proposed. This illustrates

the practical benefit of our proposed variable splitting and data augmentation scheme, which

allows all the ADMM updates to be solved analytically.

4. Discussion

Abundant neurophysiological evidence indicates that major psychiatric disorders are

associated with distributed neural dysconnectivity (Konrad and Eickhoff, 2010; Müller et

al., 2011; Stephan et al., 2006). Thus, there is strong interest in using neuroimaging methods

to establish connectivity-based biomarkers that accurately predict disorder status (Cohen et

al., 2011; Klöppel et al., 2012; Sundermann et al., 2013). Multivariate methods that use

whole-brain functional connectomes are particularly promising since they comprehensively

look at the network structure of the entire brain (Castellanos et al., 2013; Fornito et al.,

2012), but the massive size of connectomes requires some form of dimensionality reduction.

In this work, we developed and deployed a multivariate approach based on the SVM (Cortes

and Vapnik, 1995) and regularization methods that leverage the 6-D spatial structure of the

functional connectome, namely the fused Lasso (Tibshirani et al., 2005) and the GraphNet

regularizer (Grosenick et al., 2013). In addition, we introduced a novel and scalable

algorithm based on the classical alternating direction method (Boyd et al., 2011; Gabay and

Mercier, 1976; Glowinski and Marroco, 1975) for solving the nonsmooth, large-scale

optimization problem that results from the structured sparse SVM. Note that most existing

multivariate methods in the literature rely on some form of a priori feature selection or

feature extraction (e.g., principal component analysis, locally linear embedding) before

invoking some “off the shelf” classifier (e.g., nearest-neighbor, SVM, linear discriminant

analysis) (Castellanos et al., 2013). In contrast, our feature selection method is not only

spatially informed, but is also embedded (Guyon and Elisseeff, 2003), meaning that feature

selection is conducted together with model fitting. This type of joint feature selection and

classification has been rarely applied in the disease prediction framework with functional

connectomes.

We used a grid-based parcellation scheme for producing whole-brain resting state functional

connectomes (see Section 2.1), and this has two advantages. First, it endows a natural

ordering and a notion of nearest neighbors among the coordinates of functional

connectomes, which is important when defining the neighborhood set for fused Lasso and

GraphNet (one may consider predefining an arbitrary graph structured neighborhood set, but

4The conjugate gradient algorithm was ran until either the ℓ2-norm of the residual fell below 1 × 10−3 or the algorithm reached 60
iterations.
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we prefer an approach that enforces little a priori assumption on the structure of the

predictive regions). Second, the finite differencing matrix corresponding to this (augmented)

functional connectome has a special structure that allows efficient FFT-based matrix

inversion to be applied (this structure is absent when a functional or an anatomical based

parcellation scheme is adopted). When this property is used in tandem with variable

splitting, the inner subproblems associated with the proposed ADMM algorithm admit

closed form solutions that can be carried out efficiently and non-iteratively.

Using a simulation method and a large real-world schizophrenia dataset, we demonstrate

that the proposed spatially-informed regularization methods can achieve accurate disease

prediction with superior interpretability of discriminative features. To the best of our

knowledge, this is the first application of structured sparse methods in the context of disease

prediction using functional connectomes.

4.1. Rationale behind spatial regularization

The rationale for using the fused Lasso and GraphNet regularizer can be better appreciated

by considering the “patchiness assumption” – the view that major psychiatric diseases

manifest in the brain by impacting moderately-sized (e.g., 1, 000 mm3 to 30, 000 mm3)

spatially contiguous neural regions. This assumption has been repeatedly born out across

different imaging modalities. In structural studies and task-based activation studies, theorists

have consistently identified mid-sized blobs in maps of differences between patients and

controls (Dickstein et al., 2006; Glahn et al., 2005; Wright et al., 2000). In studies of

functional connectivity, the patchiness assumption has found clear support. The vast

majority of previous connectivity studies are seed-based; they create maps of connectivity

with a single or a handful of discrete seeds, and compare these maps between patients and

controls. These studies nearly always report connectivity between patients and controls is

altered at one or more discrete medium-sized blobs, similar to structural studies and

activation-based studies (Etkin and Wager, 2007; van den Heuvel and Pol, 2010; Konrad

and Eickhoff, 2010).

In addition to actual findings from previous connectivity studies, the patchiness assumption

is justified by careful examination of the hypotheses proposed by theorists. It is exceedingly

common for theorists to state their hypotheses in terms of altered connectivity between two

discrete regions or discrete sets of regions. For example, based on hypofrontality models of

auditory hallucinations in schizophrenia, Lawrie and colleagues (Lawrie et al., 2002)

predicted that individuals with schizophrenia would exhibit decreased connectivity between

dorsal lateral prefrontal cortex (DLPFC; Brodman’s areas 9 and 10), involved in top-down

control, and superior temporal gyrus (STG), which is involved in auditory processing. Both

DLPFC and STG are large structures, and they encompass roughly a dozen nodes each in

our grid-based parcellation. If Lawrie and colleagues’ conjecture is correct, then we should

observe alterations in connectivity between the large set of connections that link the nodes

that fall within the respective brain structures. Moreover, Lawrie and colleagues’ hypothesis

implies that the predicted changes will be relatively discrete and localized to connections

linking these two regions. For example, the finding of salt and pepper changes throughout

the connectome would of course not support their conjecture. Moreover, their hypothesis

Watanabe et al. Page 25

Neuroimage. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



predicts that even regions that are relatively close to dorsal lateral prefrontal cortex, for

example precentral gyrus, involved in motor processing, do not change their connectivity

with STG – the connectivity changes they predict are relatively localized and discrete.

In addition to hypotheses about region-to-region abnormalities, the patchiness assumption is

also evident in recent network models of mental disorders. In recent years, theorists have

recognized that the human brain is organized into large-scale networks that operate as

cohesive functional units (Bressler and Menon, 2010; Laird et al., 2011; Yeo et al., 2011).

Each individual network is composed of a set of discrete regions, and each region itself

encompasses multiple nodes given a standard, suitably dense parcellation scheme (such as

our grid-based scheme). Concurrent with the rise of this network understanding of neural

organization, theorists have proposed models in which psychiatric disorders are seen to

involve perturbations in the interrelationships between individual pairs of network, where

the remainder of the network interrelationships remain essentially unaffected (Lynall et al.,

2010; Menon, 2011; Tu et al., 2013). If these network models of disease are correct, then

using functional connectivity methods, we should discover that in a psychiatric disease that

is proposed to affect the interrelationship between network A and network B, the set of

regions that make up network A change their relationship with the set of regions in network

B. The regions that abut the regions in networks A and B are, by hypothesis, not proposed to

alter their connectivity. In connectomic space, this pattern would be represented as patchy

changes in the sets of connections linking the blobs of contiguous nodes that represent

networks A and B, with the remainder of the connectome remaining largely unaffected.

In sum, actual results from structural, task-based, and connectivity studies suggest the

patchiness assumption is reasonable, while close examination of the form of the hypotheses

routinely made by psychiatric researchers suggests the assumption underlies theorists’

conjectures about disease processes. If these claims are correct, then this provides a

powerful rationale for both the fused Lasso and GraphNet penalty. Fused Lasso penalizes

abrupt discontinuities, favoring the detection of piecewise constant patches in noisy

contexts. Similarly, GraphNet also promotes spatial contiguity, but encourages the clusters

to appear in smoother form. Given that there is a solid basis for expecting that the disease

discriminative patterns in functional connectomes will consist of spatially contiguous

patches, rather than consisting of salt-and-pepper patterns randomly dispersed throughout

the brain, then fused Lasso and GraphNet are well very positioned to uncover these patchy

discriminative signatures. In addition, the spatial coherence promoted by these spatially-

informed regularizers helps decrease model complexity and facilitates interpretation.

4.2. Simulation study and interpretability of results

The analytic intuitions discussed above were confirmed in our simulation study. Here, we

imposed “patchiness” in the ground truth by introducing clusters of anomalous nodes in the

synthetic functional connectomes that represent the patient group (see Section 2.4). For

comparison, we learned SVM classifiers from the training data using the hinge-loss and one

of the following regularizers: Lasso, Elastic-net, GraphNet, and fused Lasso. Our results

indicate that fused Lasso and GraphNet not only improved classification accuracy, but also
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exhibited superior performance in recovering the discriminatory edges with respect to their

non-spatially informed counterparts, Lasso and Elastic-net.

4.3. Application: classifying healthy controls vs. schizophrenic subjects

Our results indicate that at similar sparsity level, the classification accuracy with Elastic-net,

GraphNet, and fused Lasso are comparable. However, studying the structure of the learned

weight vectors reveals the key advantage of GraphNet and fused Lasso: they facilitate

interpretation by promoting sparsity patterns that are spatially contiguous in the connectome

space. Fused Lasso recovers highly systematic sparsity patterns with multiple spatially

contiguous clusters, including nodes with diffuse connectivity profiles, which is one

manifestation of the “patchiness assumption” discussed earlier. On the other hand, the

smooth sparsity structure that GraphNet recovers is biologically more sensible than the salt-

and-pepper like structure yielded by the Elastic-net. These decreases in model complexity

come without sacrificing prediction accuracy, which fits well with the principle of Occam’s

razor – given multiple equally predictive models, the simplest choice should be selected.

Finally, additional evidence that fused Lasso recovered more interpretable discriminative

features for the schizophrenia dataset comes from comparing visualizations of the respective

weight vectors from the three regularizers (see Fig. 10). The map of the fused Lasso support

shows more prominent and clearly localized alterations in connectivity involving

frontoparietal network, default network, and cerebellum, among other regions. These

networks also exhibited increased node degree, indicating diffuse connectivity alterations

with other networks. Interestingly, these networks are among the most commonly implicated

in schizophrenia. Frontoparietal network, which has multiple important hubs in prefrontal

cortex, is involved in executive processing and cognitive control (Cole et al., 2013), and has

been shown to exhibit abnormal activation (see Minzenberg et al. (2009) for a quantitative

meta-analysis) and connectivity (Repovs et al. (2011); Tu et al. (2013); see Fornito et al.

(2012) for a review) in schizophrenia. Fused Lasso also recovered altered connectivity

between frontoparietal network and default mode network, an important brain network

involved in autobiographical memory and internally generated mental simulations (Buckner

et al., 2008; Raichle et al., 2001). The weight vectors shown in Fig. 10 and the 3-D brains

shown in Fig. 11 evidence a substantial number of aberrant connections between

frontoparietal network and default network, with a predominance of reduced connectivity in

schizophrenia. Frontoparietal network and default network become more interconnected

throughout childhood and adolescence (Anderson et al., 2011; Fair et al., 2007), which

might reflect development of top-down cognitive control by frontoparietal regions over

default network. Reduced connectivity between these two networks is among the most

commonly observed findings in connectivity research in schizophrenia (Jafri et al., 2008;

Repovs et al., 2011; Woodward et al., 2011; Zhou et al., 2007a,b), and has been proposed to

reflect disruptions and/or delays in normal trajectories of maturation (Repovs et al., 2011). It

is also noteworthy that a sizable portion of the aberrant connection within frontoparietal

cortex and between frontoparietal network and default network involved dorsal lateral

prefrontal cortex (see results in Sec. 3.2). This region is perhaps the most frequently

described as being abnormal in schizophrenia (Bunney and Bunney, 2000; Callicott et al.,

2000; Zhou et al., 2007a). A third network highlighted by fused Lasso is cerebellum, which
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is featured in the influential ‘cognitive dysmetria’ hypothesis of schizophrenia (Andreasen et

al., 1998). Abnormalities in cerebellum have been found in post-mortem (Weinberger et al.,

1980), structural (Wassink et al., 1999), and functional connectivity studies (Mamah et al.,

2013).

Fused Lasso also tended to generate more sparsity in regions of the connectome that are not

associated with schizophrenia pathology. For example, connectivity abnormalities in

somatomotor network, and in particular its interconnections with attention network and

frontoparietal network, have as far as we know not been described in previous schizophrenia

connectivity studies. The same is true of the nodes that fell outside the Yeo parcellation

augmented with subcortical regions and cerebellum. These too have not been associated

with schizophrenia pathology and tended to be sparser with fused Lasso. Overall, fused

Lasso appeared to identify regions known from prior research to be involved in

schizophrenia and appeared to generate more sparsity outside of these regions, providing

some corroboration for the interpretability of fused Lasso findings.

4.4. Future Directions

While the spatially-informed disease prediction framework we introduced is capable of

yielding predictive and highly interpretable results, there are several open questions that

remain for future investigation. For example, with little modification, the variable splitting

and the data augmentation procedure we introduced should be applicable to the isotropic TV

penalty, which also promotes spatial contiguity (Wang et al., 2008b). This is important

because on one hand, fused Lasso lacks the rotational invariance property of the isotropic

TV penalty, whereas on the other hand, isotropic TV penalty is known to introduce artifacts

at corner structured regions (Birkholz, 2011; Grasmair and Lenzen, 2010). Therefore, fused

Lasso and isotropic TV penalty can both potentially be problematic for connectomic

investigations, and a thorough comparison between these two penalties with our functional

connectome data would be an important direction for future investigation. In addition, there

are multiple works that have introduced a framework for achieving structured sparsity by

coupling the isotropic TV penalty with the differentiable logistic loss function (Baldassarre

et al., 2012; Gramfort et al., 2013; Michel et al., 2011). Although our method has the

advantage that it can handle non-differentiable loss functions and hence the SVM, the

algorithm employed in the above works enjoy a faster rate of convergence than the ADMM

algorithm we employ (Beck and Teboulle, 2009; He and Yuan, 2012). Investigating ways to

accelerate our proposed ADMM algorithm will be important for future work (Deng and Yin,

2012; Goldstein et al., 2012).

There are several other interesting extensions that remain for future research as well. First,

functional and anatomical parcellations (which lack a grid structure and hence the BCCB

structure) are often used in connectomic investigations. Future work should extend our

methodology so the ADMM subproblems can be solved efficiently in analytic form even

when a irregularly structured parcellation scheme is used (although the ADMM algorithm

proposed by Ye and Xie (2011) is applicable in this setup, their approach requires an

iterative update to be used to numerically solve one of the ADMM subproblems).

Furthermore, with the emergence of various data sharing projects in the neuroimaging
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community such as Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al.,

2013), ADHD-200 (The ADHD-200 Consortium, 2012), 1000 Functional Connectomes

Project, and the International Neuroimaging Data-sharing Initiative (INDI) (Mennes et al.,

2013), there is a need for a principled framework to handle the heterogeneity introduced by

aggregating the data from multiple imaging centers. Toward this end, we are seeking ways

to combine the currently presented spatial regularization scheme and multi-task learning

(Caruana, 1997), where the tasks correspond to the imaging centers from which the resting

state scans originate. One particular approach we have in mind for this is to replace the ℓ1-

regularizer in the objective function (5) with the ℓ1/ℓ2 mixed-norm regularizer (Gramfort et

al., 2012; Lounici et al., 2009), which encourages the weight vectors across the different

tasks to share similar sparsity patterns (a structure often referred to as block-sparsity). Our

proposed ADMM algorithm can easily be modified to handle this change, as this simply

amounts to replacing the scalar soft-threshold operator for the υ2 update (25) with the vector

soft-threshold operator (see Gramfort et al. (2012)). Finally, a more sophisticated approach

for parameter tuning is needed, ideally a model selection strategy that provides statistical

guarantees (Cawley and Talbot, 2010). Resampling-based approaches (Bach, 2008;

Varoquaux et al., 2012) such as stability selection (Meinshausen and Bühlmann, 2010) may

be considered, albeit these methods can be computationally demanding in high dimension.

5. Conclusions

In this work, we introduced a regularized ERM framework that explicitly accounts for the 6-

D spatial structure in the connectome via the fused Lasso and the GraphNet regularizer. We

demonstrate that our method recovers sparse and highly interpretable patterns across the

connectome while maintaining predictive power, and thus could generate new insights into

how psychiatric disorders impact brain networks.

Acknowledgments

T. Watanabe and C. Scott’s research was supported by NIH grant P01CA087634 and by NSF Grant CCF 1217880.
C. Sripada’s research was supported by NIH grant K23-AA-020297, Center for Computational Medicine Pilot
Grant, and the John Templeton Foundation. The authors would like to thank A. Hero and J. Fessler, University of
Michigan, for the valuable discussions and their insightful feedbacks. The authors would also like to thank Robert
C. Welsh, University of Michigan, for providing us with ConnTool, a functional connectivity analysis package.

Appendix A. Details on the data augmentation scheme

As discussed in Sec. 2.3.2, the augmentation matrix A ∈ ℝp̃×p aims to rectify the

irregularities in the Laplacian matrix CT C. To gain a better understanding about A, it is best

to think of it as a concatenation of two matrices, A = A2A1. We refer to A1 ∈ ℝp*× p and A2

∈ ℝp̃×p* as the first level and the second level augmentation matrix respectively.

Role of A1

The first source of irregularities is that the nodes defining the functional connectome x ∈ ℝp

are placed only on the brain, not the entire rectangular FOV. As a consequence, x only

contains edges among the nodes placed on the support of the brain (represented by the green

nodes in Fig. A.1). To fix these irregularities, A1 pads extra zero entries on x to create an
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intermediate augmented connectome x* = A1x, where x* ∈ ℝp*. Here, x* can be treated as

if the nodes were placed throughout the entire rectangular FOV; the red nodes in Fig. A.1

represent a set of ghost nodes that were not originally present. The coordinates of x* contain

all possible edges between the ghost nodes and the original set of nodes, where the edges

connected with the ghost nodes have zero values.

Role of A2

The second source of irregularities is that x (and x*) lack a complete 6-D representation

since it only contains the lower-triangular part of the cross-correlation matrix. Consequently,

the coordinates of x* lack symmetry, as their entries only contain edges for the following set

of 6-D coordinate points: {(rj, rk) ∣ j > k}, where rj = (xj, yj, zj) and rk = (xk, yk, zk) are the 3-

D locations of the node-pairs defining the edges. Matrix A2 fixes this asymmetry by padding

zero entries to fill in for the 6-D coordinate points {(rj, rk) ∣ j ≤ k}, which correspond to the

diagonal and the upper-triangular entries in the cross-correlation matrix that were disposed

due to redundancy (see Fig. A.2). Applying A2 on x* = A1x provides the desired augmented

functional connectome x̃ = A2x* = Ax, and similarly the augmented weight vector w̃ = Aw.

Here, x̃ and w̃ contain the full set of 6-D coordinate points {(rj, rk) ∣ j, k ∈ [d]}, where d is

the total number of nodes on the rectangular FOV including the ghost nodes (i.e., both the

green and the red nodes in Fig. A.1). Note that dimension p̃ of the augmented functional

connectome is p̃ = d2, and the total number of adjacent coordinates ẽ in this augmented 6-D

connectome space is ẽ = 6p̃.

Figure A.1.
The effect of the first level augmentation matrix A1. Left: the original functional

connectome x only contains edges between the nodes placed on the support of the brain

(represented by the green nodes). Right: A1 pads extra zero entries on x to create the

intermediate augmented connectome x*. Here, x* can be treated as if the nodes were placed

throughout the entire rectangular FOV (the red bubbles represent nodes that are outside the
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brain support), as its entries contain all possible edges between the green and red nodes; the

edges that connect with the red nodes all have zero values.

Figure A.2.
The effect of the second level augmentation matrix A2. The entries of x* represent edges

localized by 6-D coordinate points {(rj, rk) ∣ j > k}, where rj = (xj, yj, zj) and rk = (xk, yk, zk)

are the 3-D locations of the node pairs defining the edges. A2 fixes the asymmetry in the

coordinates of x* by padding zero entries to accommodate for the 6-D coordinate points {(rj,

rk) ∣ j ≤ k}; these are the diagonal and the upper-triangular entries in the cross-correlation

matrix that were disposed for redundancy.

Appendix B. ADMM updates for Elastic-net

The unconstrained formulation of the Elastic-net regularized ERM problem reads

which can be converted into the following equivalent constrained formulation:

(B.1)

With this variable splitting scheme, the correspondence with the ADMM formulation (6) is

and the ADMM updates for x̄ (7) and ȳ (8) decomposes into subproblems
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The update for w is

which can be solved efficiently via inversion Lemma (20). The update for υ1 and υ2 is

identical to (16) and (17) described in Sec. 2.3.3, which can be solved via coordinate-wise

proximal operators (24) and (25). The dual variable update (9) is a trivial matrix-vector

multiplication.
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Highlights

• We develop a support vector machine based on spatially-informed regularizers

• The classifier leverages 6-D spatial structure of functional connectomes

• We introduce a novel optimization algorithm based on alternating direction

method

• Method tested on simulated data and large real-world schizophrenia dataset

• Our method is more neuroscientifically informative and preserves predictive

power
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Figure 1.
Coronal, sagittal, and axial slices depicting the coverage of our brain parcellation scheme

along with 3-D rendering of one pseudo-sphereical node. Each contiguous green region

represents a pseudo-spherical node representing an ROI containing 33-voxels. Overall, there

are 347 non-overlapping nodes placed throughout the entire brain. These nodes are placed

on a grid with 18 mm spacing between node centers in the X, Y, and Z dimensions.
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Figure 2.
Illustration of the neighborhood structure of the connectome when the nodes reside in 2-D

space. The red edge represents coordinate j = {(2, 4), (6, 2)} in 4-D connectome space, and

its neighborhood set Nj is represented by the blue and green edges. This idea extends

directly to 6-D connectomes generated from 3-D resting state volumes.
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Figure 3.
Laplacian matrix corresponding to the original data CT C and the augmented data C̃T C̃,

where the rows and columns of these matrices represent the coordinates of the original and

augmented functional connectome. Note that the irregularities in the original Laplacian

matrix are rectified by data augmentation. The augmented Laplacian matrix has a special

structure known as block-circulant with circulant-blocks (BCCB), which has important

computational advantages that will be exploited in this work.
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Figure 4.
Plots of scalar convex loss functions that are relevant in this work, along with their

associated proximal operators. Table 1 provides the closed form expression for these

functions. Parameter values of τ = 2 and δ = 0.5 are used in the plot for the proximal

operator and the huberized hinge-loss respectively.
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Figure 5.
Schematic representations of the synthetic 4-D functional connectome data generated for the

simulation experiments (best viewed in color). (a) Node orientation representing the “control

class” connectome, where the blue nodes indicate the normal nodes. (b) Node orientation

representing the “patient class” connectome, where there are 25 anomalous edges shared

among the two anomalous node clusters indicated in red (this subfigure is split into two

side-by-side figures to improve visibility of the impacted edges). (c) Binary support matrix

indicating the locations of the anomalous edges in the connectome space.
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Figure 6.
Simulation experiment result: training set consists of n = 100 samples with 50 patients and

50 controls (best viewed in color). (a)-(d) Weight vectors (reshaped into symmetric

matrices) estimated from solving the regularized ERM problem (1) using the hinge-loss and

four different regularizers. Regularization parameters were tuned via 5-fold cross-validation

on the training set, and classification accuracies were evaluated on a testing set consisting of

500 samples with 250 patients and 250 controls. (e) Support matrix indicating the locations

of the anomalous edges. (f) ROC curve representing the anomalous edge identification

accuracy (not classification accuracy) of the four regularizers.
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Figure 7.
Grid search result for the simulation experiment (best viewed in color). All classifiers were

learned using 100 training samples consisting of 50 patients and 50 controls. Top row:

classification accuracy as a function of the regularization parameters {λ, γ} (evaluated from

500 testing samples consisting of 250 patients and 250 controls). Bottom row: the number

of features selected as a function of the regularization parameters {λ, γ}.
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Figure 8.
The testing classification accuracy of the different regularizers as a function as a number of

training samples n in the simulation experiment. Regularization parameters were tuned via

5-fold cross-validation on the training set. The testing set consists of 500 samples with 250

patients and 250 controls. Table 3 reports the actual numbers.
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Figure 9.
Grid search result for the real resting state data (best viewed in color). Top row: the

classification accuracy evaluated from 10-fold cross-validation. Bottom row: the average

number of features selected across the cross-validation folds. The (x, y)-axis corresponds to

the two regularization parameters λ and γ.
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Figure 10.
Weight vectors (reshaped into symmetric matrices) generated by computing the elementwise

median of the estimated weight vectors across the cross-validation folds (best viewed in

color). The rows and columns of these matrices are grouped according to the network

parcellation scheme proposed by Yeo et al. (2011), which is reported in Table 4. The top

row displays the heatmap of the estimated weight vectors, whereas the bottom row displays

their support structures, with red, blue, and white indicating positive, negative, and zero

entries respectively. In order to highlight the structure of the estimated weight vectors, the

bottom row further plots the degree of the nodes, i.e., the number of connections a node

makes with the rest of the network.
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Figure 11.
Nonzero edge values of the median weight vector generated from the fused Lasso

regularized SVM. For three sets of network-to-network connections, we rendered abnormal

connections separately on anterior, sagittal, and axial views of a canonical brain. Notice the

prominent involvement of lateral prefrontal regions in connections within frontoparietal

network and in connections between frontoparietal network and default network.
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Table 1

Examples of scalar convex loss functions that are relevant for this work, along with their corresponding

proximal operators in closed form.

ℓ(t) Proxτℓ (t)

Hinge max(0, 1, −t)

Truncated least squares {max(0, 1, −t)}2

Huberized hinge (Wang et al., 2008a)

Absolute loss |t| (from ℓ1-regularization)

Neuroimage. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Watanabe et al. Page 50

T
ab

le
 2

D
em

og
ra

ph
ic

 c
ha

ra
ct

er
is

tic
s 

of
 th

e 
pa

rt
ic

ip
an

ts
 b

ef
or

e 
an

d 
af

te
r 

sa
m

pl
e 

ex
cl

us
io

n 
cr

ite
ri

a 
is

 a
pp

lie
d 

(R
H

 =
 r

ig
ht

-h
an

de
d)

.

H
ea

lt
hy

 C
on

tr
ol

s
Sc

hi
zo

ph
re

ni
a

n
A

ge
#m

al
e

#R
H

n
A

ge
#m

al
e

#R
H

Pr
e-

ex
cl

us
io

n
74

35
.8

 ±
 1

1.
6

51
71

71
38

.1
 ±

 1
4.

0
57

59

Po
st

-e
xc

lu
si

on
67

35
.2

 ±
 1

1.
7

46
66

54
35

.5
 ±

 1
3.

1
48

46

Neuroimage. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Watanabe et al. Page 51

T
ab

le
 3

T
he

 te
st

in
g 

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy
 o

f 
th

e 
di

ff
er

en
t r

eg
ul

ar
iz

er
s 

as
 a

 f
un

ct
io

n 
as

 a
 n

um
be

r 
of

 tr
ai

ni
ng

 s
am

pl
es

 n
 in

 th
e 

si
m

ul
at

io
n 

ex
pe

ri
m

en
t (

th
e 

be
st

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy
 f

or
 e

ac
h 

n 
is

 d
en

ot
ed

 in
 b

ol
d 

fo
nt

).
 S

ee
 F

ig
. 8

 f
or

 a
 p

lo
t o

f 
th

is
 r

es
ul

t.

T
es

ti
ng

 C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (
n 

= 
tr

ai
ni

ng
 s

am
pl

e 
si

ze
, 5

00
 =

 t
es

t 
si

ze
)

R
eg

ul
ar

iz
er

n=
20

n=
40

n=
60

n=
80

n=
10

0
n=

12
0

n=
14

0
n=

16
0

n=
18

0
n=

20
0

L
as

so
60

.0
%

68
.4

%
65

.4
%

72
.4

%
77

.0
%

83
.0

%
82

.8
%

82
.4

%
84

.4
%

85
.8

%

E
la

st
ic

-n
et

59
.7

%
68

.2
%

73
.2

%
70

.6
%

77
.0

%
80

.4
%

83
.2

%
82

.4
%

85
.2

%
87

.0
%

G
ra

ph
N

et
62

.6
%

68
.6

%
75

.0
%

76
.6

%
85

.6
%

86
.8

%
85

.6
%

87
.4

%
88

.2
%

89
.8

%

F
us

ed
 L

as
so

62
.4

%
68

.6
%

77
.8

%
77

.4
%

88
.2

%
89

.4
%

88
.2

%
89

.6
%

90
.8

%
90

.6
%

Neuroimage. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Watanabe et al. Page 52

Table 4

Network parcellation of the brain proposed by Yeo et al. (2011). In our real resting state fMRI study, the

indices of the estimated weight vectors are grouped according to this parcellation scheme; see Fig. 10.

Network Membership Table (× is “unlabeled”)

1. Visual 2. Somatomotor 3. Dorsal Attention 4. Ventral Attention

5. Limbic 6. Frontoparietal 7. Default 8. Striatum

9. Amygdala 10. Hippocampus 11. Thalamus 12. Cerebellum

Neuroimage. Author manuscript; available in PMC 2015 August 01.


