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Abstract

During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very
active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we
combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf)
mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN
(SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling
endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We
demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing
a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because
they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads
to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of
secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/
Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.
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Introduction

Oogenesis prepares the egg to start the development of a new

organism. During their development, oocytes actively import and

secrete proteins using the basic cellular mechanism of vesicle

transport [1–3]. As a consequence, oocytes contributed substan-

tially to our understanding of vesicle trafficking e.g. Clathrin-coated

vesicles were first described in mosquito oocytes [4]. Moreover, a

plethora of novel regulators were discovered by exploiting the

genetics of the Caenorhabditis elegans oocyte [5–9]. In zebrafish,

oogenesis starts with a burst of secretory vesicle formation, which

are called cortical granules [10,11]. Shortly afterwards, oocytes

endocytose enormous amounts of the yolk precursor protein

Vitellogenin (Vtg) by receptor-mediated endocytosis increasing its

volume about 3000-fold within ten days [12,reviewed in 13].

Hence, the zebrafish oocyte provides the opportunity to integrate

vertebrate genetics to visualize active trafficking of abundant and

large vesicles in one big cell.

In humans, defects in vesicle trafficking lead to neurodegener-

ative diseases [14–16]. The disorder Hereditary Spastic Paraplegia

(HSP) is characterized by progressive loss of lower limb motility

[17–19]. At the cellular level, this spasticity is caused by the axonal

degeneration of neurons in the corticospinal tracts, which are

considered the longest axons in the human body. However, the

cellular analysis of the dying neurons is hampered by the adult

onset of the disease and the complexity of the nervous system.

Therefore, the precise cellular mechanism for most HSP genes is

currently controversial.

One of the HSP genes with multiple cellular roles is SPG15,

which encodes SPASTIZIN aka ZFYVE26 or FYVE-CENT

[20,21]. In a cell culture RNAi screen, SPASTIZIN was shown to

be necessary for cytokinesis, but this defect is not observed in

human and murine mutants [21,22]. This cell culture study found

that the endogenous protein localizes to centrosomes and the

midbody during cytokinesis of human fibroblasts. In neuronal

tissue culture, SPASTIZIN was shown to localize to microtubules,

ER, mitochondria and endosomal vesicles [22,23]. In additional

tissue culture reports, SPASTIZIN interacted with the UVRAG

complex during DNA repair [24] and autophagosome maturation

[25]. Furthermore, SPASTIZIN binds to the recently discovered

adaptor protein complex 5 (AP5) regulating multivesicular body

(MVB) formation [26,27]. Although these localization data in
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different tissue culture cells are not mutually exclusive, it is difficult

to reconcile the described cellular functions of SPASTIZIN in

fibroblasts into an underlying cellular defect causing neurodegen-

eration in neuronal cells.

Mutants provide an essential tool to determine the endogenous

role of a gene. Previously, we used a mutagenesis screen in

zebrafish to discover vertebrate regulators of egg development and

early embryogenesis, which isolated the souffle (suf) mutation

named after its defect during oogenesis [28]. Here, we positionally

cloned suf and show that it encodes the homolog of SPASTIZIN.

In suf mutants, we show that oocytes expand a Rab11b-positive

compartment, but correctly transport the recycling cargo Trans-

ferrin. Moreover, Suf colocalizes with Rab11b on secretory

vesicles called cortical granules in the oocyte. We demonstrate

genetically that Suf/Spastizin is essential for the formation of

cortical granules. Importantly, our subcellular analysis indicates

that loss of Suf/Spastizin inhibits vesicle maturation, probably

during sorting, which is necessary to complete the formation of

Clathrin-coated buds and eventually to pinch-off vesicles. Finally,

blocking vesicle scission with the pharmacological Dynamin-

inhibitor Dynasore mimics the mutant phenotype supporting the

hypothesis that Suf is required for vesicle fission, which is critical

for the maturation of secretory granules in the egg. Collectively,

these results identify Suf/Spastizin as a novel key gene controlling

the maturation of cortical granules in zebrafish oocytes, which

may also bring us closer to understand the cellular etiology of

HSP.

Results

Souffle encodes the zebrafish homolog of SPASTIZIN
Contrary to transparent eggs of wild-type (wt) mothers,

maternal suf mutants spawn opaque eggs, which fail to proteolyt-

ically cleave yolk proteins [28]. In addition, mutant stage V eggs

did not elevate their chorion after activation as observed in wt

(Figure 1A, B). With this early defect the suf mutation rather causes

a female-sterile than a maternal-effect phenotype. To characterize

the molecular mechanism of the defect, we positionally cloned the

disrupted gene in suf mutants. We previously located the suf

mutation on chromosome 13 of the zebrafish genome. Genotyping

1183 females identified 5 recombinants with the SSLP marker

z25580/G47633 and another 5 recombinants with z21403/

G41743 restricting the critical interval with the suf mutation to

1.22 Mb (Figure 1C). Generating novel SSLP markers AL13-10

and AL13-13, we reduced the interval to 270 kb. Within this

genomic region, we sequenced the cDNAs of arginase, vti1b (t-snare),

rdh12 (retinol dehydrogenase 12), zfyve26 (spastizin), galectin and

pleckstrin2 (Figure 1D). The zfyve26 gene consists of 41 exons and

encodes a predicted mRNA of 7798 bp (Figure 1E). Comparing

the zfyve26 cDNA-sequence between wild type and the p96re allele

of suf mutants showed a 25 bp deletion at the 39-end of exon 35

(Figure 1G). However, the genomic sequence revealed a single

point mutation in a splice donor, which probably results in cryptic

splice donor selection 25 bp upstream of the wt splice site

(Figure 1F). The deletion of 25 bp results in a frameshift, which

creates a termination codon after six aberrant amino acids

(Figure 1G). The premature STOP deletes 282 of the 2552 amino

acids in the predicted Zfyve26 protein resulting in a shortened

protein of 2270 amino acids (Figures 1H). Searching for protein

motifs with the Prosite database [29] and MyHits [30] revealed a

bipartite nuclear localization signal (amino acid 714–730), a

serine-rich domain (aa 1251–1342) and a zinc finger FYVE

domain (aa 1807–1865). FYVE domains bind to the lipid

phospatidylinositol-3-phosphate (PI3P) predominantly present on

endosomes [31–34]. Phylogenetic analysis detected one homolog

in most metazoan genomes and a similar gene in Drosophila

melanogaster (CG5270), albeit no homolog in the C. elegans genome

(Figure 1I). Remarkably, although teleosts underwent an addi-

tional genome duplication compared to tetrapods [35], all ten

teleost genomes available at the Ensembl-database (http://www.

ensembl.org) contain a single paralog of Suf/Spastizin, which we

confirmed for zebrafish by BLAST searches with full-length Suf

(data not shown). Alignment of the vertebrate protein sequences

discovered a highly conserved C-terminus, which we termed Suf-

domain. Scanning the zebrafish genome with the Suf-domain did

not detect other proteins with a similar amino acid motif. This

motif is also conserved in plants, but the protein does not contain a

FYVE-domain (data not shown). In human tissue culture cells, this

domain in SPASTIZIN interacts with BECLIN1, KIF13A and

TTC19 [21,36] and is predicted to form alpha-helical solenoids as

found in Clathrin heavy chain [27]. Since the Suf domain is

deleted in the p96re allele, it is essential for Suf function during

zebrafish oogenesis. Together, these data identified souffle as the

zebrafish homolog of SPASTIZIN [20].

Souffle/spastizin is maternally expressed
HSP patients require SPASTIZIN in the nervous system [20]

and similarly, a recent mouse k.o. shows an adult onset

neurodegeneration but not an embryological defect [22]. In

zebrafish, inhibiting Spastizin by injection of morpholino-oligo-

nucleotides (MO) leads to embryogenesis defects such as a twisted

tails [37]. A fraction of these embryos without morphological

changes show motor axon outgrowth failure leading to reduced

motility, but are not paralyzed. Unexpectedly, we did not detect a

neurological phenotype in zygotic zebrafish suf 2/2 embryos such

as a touch response defect or a failure in motor axon outgrowth

(data not shown). However, upon MO-injection, we confirmed the

previously reported severe phenotypes (Figure S1).

Hence, we investigated whether the suf/spastizin gene is

expressed at the appropriate time to control oogenesis in zebrafish.

Real-time PCR analysis of isolated follicles at selected stages

showed that suf/spastizin mRNA is expressed during oogenesis with

Author Summary

Oocytes of egg laying animals frequently represent the
biggest cell type of a species. The size of the egg is a
consequence of active transport processes, e.g. the import
of yolk proteins, which results in the massive storage of
vesicles. In addition, secretory vesicles termed cortical
granules are stored in the oocyte to be discharged right
after fertilization during cortical reaction, which also occurs
in mammals. Their secretion leads to chorion expansion,
which prevents the lethal entry of additional sperm and
protects the developing embryo against physical damage.
Mutants with a defect in membrane transport are
successful tools to discover genes regulating vesicle
formation. We molecularly identify the disrupted gene in
the recessive maternal-effect mutation souffle, which
encodes a homolog of human SPASTIZIN. SPASTIZIN was
previously implicated in endocytosis, but our cellular
analysis of mutant oocytes connects this gene also with
the regulation of cortical granule exocytosis. More
precisely, we show that Suf/Spastizin is crucial for the
maturation of cortical granules into secretion competent
vesicles describing a novel role for this protein. Since
SPASITIZN causes the disease Hereditary Spastic Paraplegia
in humans, our results will help to decipher the patho-
genesis of this neurodegenerative disorder.
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a slight increase at the onset of vitellogenesis (stage II, for staging

see Figure 1A) and another increase after ovulation (stage V)

(Figure 2A). This expression profile is consistent with a role of suf/

spastizin during zebrafish oogenesis.

During embryogenesis, suf/spastizin mRNA decreased after

4 hpf (hours post fertilization) similar to other maternal genes

(Figure 2B). At 30 hpf suf/spastizin showed a small peak of

expression. Later during larval stages, the expression steadily

increases consistent with microarray data in the Espresso database

(http://zf-espresso.tuebingen.mpg.de; Unigene ID: Dr.21642). To

analyze sex-specific expression of suf/spastizin, we compared

mRNA levels in whole females, females without ovaries and

males. Contrary to its specific phenotype in the oocyte, suf/spastizin

was strongly expressed in males and even outside the female

germline suggesting that it also acts in somatic cells (Figure 2C).

The higher expression of Suf in males can be explained by two

non-exclusive reasons. A simple explanation might be technical,

i.e. the genes gapdh and odc1, which we used to normalize mRNA

levels, may be differentially expressed between males and females

as reported for ef1a [38]. Alternatively, Suf is indeed higher

expressed in males, possibly in one of the non-reproductive organs

with sex-specific gene expression such as the brain or the liver

[39]. However, the p96re allele clearly demonstrates that Suf is

required in the oocyte, but does not exclude that it has a critical

role in other organs, which we did not notice.

Since we did not observe a mutant phenotype outside the

germline, we addressed whether the p96re mutation causes a

complete loss-of-function null-allele or forms a hypomorph.

Comparison of suf/spastizin mRNA levels between +/+, +/2

and 2/2 ovaries showed a strong reduction after loss of one suf/

spastizin copy in heterozygous adults, but no phenotype (Figure 2D).

By contrast, 2/2 mutant females showed only a minor reduction

of mRNA compared to +/2 heterozygotes, but eggs displayed the

mutant phenotype. To examine whether an alternatively spliced

suf/spastizin mRNA hides a potential zygotic mutant phenotype in

other tissues or in males, we analyzed the expression of exon 35

carrying the mutation during zebrafish embryogenesis and

oogenesis. We did not observe a shorter transcript lacking exon

35, which would generate a 413 bp product (Figures 2E and S2A).

However, in hetero- or homozygotes we detected the predicted

25 bp shorter transcript consistent with the mutant splice donor.

Since suf/spastizin expression at the mRNA level was not

completely eliminated, the residual protein might have sufficient

activity to compensate for Suf/Spastizin requirement in somatic

cells. To analyze Suf/Spastizin protein expression, we generated

an antibody against the zebrafish protein (Figure S2B) and

compared mutant and wt oocytes in whole-mount immuno-

stainings. Although mRNA levels were strongly reduced in mutant

ovaries, Suf/Spastizin protein still sufficiently accumulated during

oogenesis and localized to the membrane and cytoplasmic vesicles

in wt as well as mutant oocytes (Figure 2F). Taken together, Suf/

Spastizin was expressed during zebrafish oogenesis, but was also

present outside of the germline.

souffle/spastizin mutants accumulate Rab11b-positive
vesicles

In tissue culture cells, the FYVE domain of Suf/Spastizin

interacts with the endosomal lipid PI3P indicating a role in

endosomal trafficking [21]. Moreover, in human and mouse cells

Spastizin binds to the novel AP5 complex regulating endosomal

transport [22,26,27,40]. To examine genetically in zebrafish

oocytes, whether Suf/Spastizin is involved in endocytosis during

oogenesis, we compared endosomal compartments between wt

and mutant. The gross morphology of oocyte vesicles showed no

difference in early endosomes (Rab5) or late endosomes (Rab7)

(Figure 3A) [41,42]. In contrast, Rab11b-positive recycling

endosomes showed a remarkable transformation of their tubular

shape in wt to patches accumulating below the nuclei of the

surrounding follicle cells in mutant oocytes (Figure 3A) [43].

To quantify the defect in suf/spastizin mutants, we counted Rab

positive foci in optical sections in deeper layers of the oocyte

cytoplasm about 50 mm below the cortex, where single, small

vesicles are easier to discriminate than the large compartments at

the cortex (Figure 3B, C). Rab5 (early endosomes) showed no

significant change (1.09 fold; p = 0.35; Figures 3C and S3A),

whereas Rab7 positive endosomes increased moderately (1.78 fold;

p = 0.0001; Figures 3C and S3B). However, Rab11 staining

increased dramatically (3.82 fold; p = 0.0001; Figures 3C and S3C)

confirming the initial observation that Suf/Spastizin controls

trafficking of recycling endosomes in zebrafish oocytes. Consistent

with previous reports in cell culture and mouse mutants [22,25],

we also discovered in zebrafish that smaller lysosomes accumulat-

ed in suf/spastizin oocytes, possibly preventing yolk proteolysis in

the egg and causing the opaque cytoplasm phenotype (Figure 3B).

To functionally analyze during oogenesis whether the observed

accumulation of the compartment-specific Rab proteins reflects a

defect in the corresponding transport route as described for tissue

culture cells, we established cargo trafficking assays in the zebrafish

oocyte. LDL follows the degradative transport route to lysosomes

and the yolk-receptor belongs to the LDL-receptor superfamily

Figure 1. Molecular identification of the suf locus. (A) Diagram of zebrafish oogenesis represented as a composite of wedges displaying a
single stage [11]. Oocytes are not drawn to scale and in the ovary, stages are mixed. Ia: 7–20 mm diameter of the oocyte; oocytes are still connected
forming oogonia after the last mitosis. Ib: 20–140 mm, oocytes are separated by a layer of follicle cells (dashed red-yellow line) and several nucleoli
appear in the nucleus (grey). II: 140–340 mm, formation of cortical granules is initiated (white vesicles). III: 340–690 mm, massive accumulation of yolk
globules (brown vesicles) during vitellogenesis covering the germinal vesicle (oocyte nucleus). IV: 690–730 mm, oocytes are transformed into a
fertilizable egg by meiotic maturation inducing germinal-vesicle-break-down. Simultaneously, the cytoplasm becomes transparent by yolk protein
cleavage. V: 730–750 mm, eggs are released from the follicle layer of the ovary during ovulation into the oviduct. (B) Stage V oocytes 10 min after
activation from heterozygous wild-type (wt; left panel) and mutant mothers (suf; right panel) showing the opaque cytoplasm and the chorion
elevation defect in the mutant. Scale bar: 100 mm. (C) Genetic map of the suf-locus on chromosome 13. Meiotic mapping located the mutation
between the markers z25580/G47633 (0.4 cM, centiMorgan; 5 recombinants/1183 females) and z21403/G41743 (0.4 cM) corresponding to a physical
interval of 1.22 Mb (megabases). Fine mapping of the suf-locus identified markers AL13-10 (0.08 cM) and AL13-13 (0.2 cM), which physically
represents 280 kB. (D) Among other genes, this interval contains the ArgII, vti1b, rdh12, galectin and pleckstrin2 genes, whose cDNA sequence did
not display mutations in comparison to the database genome (http://www.ensembl.org/Danio_rerio/Info/Index). (E) Exon-intron structure of the suf
gene. (F) The p96re allele carries a G-A transition at the genomic level destroying a splice donor site in the transcribed RNA. (G) The selection of an
alternative, upstream splice donor leads to a deletion of 25 nucleotides causing a frameshift in the cDNA encoding six aberrant amino acids and
eventually creating a premature STOP-codon (asterisk). (H) The mutant protein is predicted to lack 282 amino acids at the C-terminus including the
conserved SUF domain from amino acid 2375 to 2552. (I) Phylogenetic diagram displaying the conservation of Souffle proteins among vertebrates.
The Anopheles and Drosophila proteins were used to root the tree. Numbers indicate bootstrap-values and the scale the number of substitutions per
amino acid residue.
doi:10.1371/journal.pgen.1004449.g001
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[44,45]. Adding fluorescent LDL to the culture medium labeled

yolk globules in zebrafish oocytes, which correspond to lysosomes

of somatic cells [46]. However, we observed no difference in the

LDL transport to wt or mutant lysosomes, which were also

identified by a characteristic black halo after fixation (Figure 3D,

also visible in Figure 3B) suggesting that transport along the

degradative pathway is not disrupted.

Transferrin follows the recycling route [47–49]. The zebrafish

Transferrin-receptor is maternally expressed and the Transferrin

recycling assay was previously also applied to Xenopus oocytes

Figure 2. Suf/Spastizin expression analysis. (A) Real-time PCR of suf/spastizin (red) and gdf9 (grey) mRNA during oogenesis relative to
expression in the one-cell embryo normalized to gapdh and odc1 mRNA. Gdf9 is exclusively expressed in germ cells, which acts as a positive control
for the purification of oocytes particularly in stage Ib oocytes, which are frequently contaminated with somatic follicle cells [111]. (B) suf/spastizin
mRNA levels during embryogenesis, (C) in sexually mature adults, (D) and ovaries of different genotypes. (E) Conventional RT-PCR showing the
expression of exon 34–36 (610 bp) of suf/spastizin mRNA at selected stages (h: hours post fertilization; d: days post fertilization). A lack of exon 35 is
predicted to amplify a 413 bp product, which is not observed at any stage of oogenesis or embryogenesis. A longer run of this gel highlighting the
25 bp shorter transcript caused by the change of the splice donor in the mutant controls is shown in Figure S2. (F) Confocal section of wild-type (wt)
and mutant (suf) stage III oocytes labeled with Suf/Spastizin antibody (green) and counterstained with lysotracker (red). Scale bar: 50 mm. Inset in wt
panel shows the architecture of the oocyte cortex with the cytoplasm of the oocyte (yellow) forming microvilli crossing the acellular chorion
membrane (CM; grey). The oocyte is surrounded by a layer of follicle cells (FC; green) [modified after 94].
doi:10.1371/journal.pgen.1004449.g002
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[50,51]. Notably, contrary to the accumulation of Rab11 vesicles,

fluorescent Transferrin did not accumulate in suf/spastizin oocytes

(Figure 3D). More interestingly, we found rare overlap of

Transferrin with Rab11 suggesting that the Rab11b antibody

and Transferrin label different compartments in zebrafish oocytes.

To analyze whether Suf/Spastizin directly controls the traffick-

ing of endosomes or whether the accumulation of Rab11b-positive

vesicles is a secondary defect, we investigated Suf/Spastizin and

Rab colocalization in the oocyte. Although early endosomes did

not show a defect in suf/spastizin mutants, we also discovered

colocalization of Suf/Spastizin with Rab5 as shown in the mouse

[22], but not with Rab7 (Figures 3E, S4A and S4B). Although

Rab11b and Suf/Spastizin mostly overlapped in their localization,

some Rab11b vesicles were negative for Suf/Spastizin (Figures 3E

and S4C). This finding suggests that Suf/Spastizin might not be

involved in all processes regulated by Rab11b in the zebrafish

oocyte. In summary, the loss of Suf leads to an accumulation of

Rab11b positive vesicles, which in zebrafish oocytes are not

involved in Transferrin recycling.

Suf/Spastizin is not required during meiosis, but during
mitosis

Since recycling was not disrupted in suf oocytes, we examined

additional processes requiring recycling endosomes during oogen-

esis. Endosomal recycling is involved in meiotic maturation in C.

elegans [52] and Xenopus laevis [50], which in teleost oocytes is

induced by the progestin 17a,20b-dihydroxy-4-pregnen-3-one

(DHP) [53–55]. Staining of the germinal vesicle with fluorescent

phalloidin revealed that suf/spastizin oocytes underwent GVBD

(germinal vesicle breakdown) in response to DHP (93%, n = 28)

similar to wild-type oocytes (82%, n = 17), whereas ethanol-treated

control-oocytes retained their germinal vesicle (suf: 64%, n = 11;

wt: 57%, n = 28) (Figure 4A, B). This finding was also confirmed

by following the dynamics of GVBD in vivo with a transgenic H2A-

GFP (Histone2A-GFP) reporter line [56] (Figure 4C). We also

examined polar body extrusion (Figure 4D) and spindle formation

(Figure 4E) during oocyte maturation, but observed no difference

between wt and mutant. These results show that Suf is not

required for meiotic maturation in the zebrafish oocyte.

In eukaryotes, recycling vesicles and Rab11 are involved in

cytokinesis during mitosis [reviewed in 57,58–60]. Consistently,

after RNAi depletion of the Suf-homolog FYVE-Cent in HeLa

cells, a cytokinesis defect was observed [21]. To analyze cytokinesis

in embryonic cells with defective maternal Suf protein, we

examined embryos from suf mutant mothers. We labeled the cell

cortex of 32-cell embryos with Phalloidin and their nuclei with

DAPI (Figure 4F). Whereas embryos from wt mothers showed one

nucleus per cell, age-matched embryos from suf mutants exhibited

multinucleated cells. This result suggests that the maternally

controlled cell cycles require Suf/Spastizin similar to the

cytokinesis defect discovered in HeLa cells. However, these results

did not conclusively provide evidence for a role of Suf in

endosomal recycling of zebrafish oocytes.

Rab11 and Souffle/Spastizin colocalize in oocytes on
cortical granules

Cell culture studies implicate Rab11 endosomes in additional

transport processes besides recycling [reviewed in 61] e.g. Rab11

localizes on secretory vesicles of mammalian cells [62]. Yeast,

tissue culture cells and C. elegans oocytes require Rab11 for

exocytosis of secretory vesicles [63–67], which are also labeled by

Rab11b [43]. Moreover in epithelial cells, Rab11a and 211b

localize to distinct compartments [68].

In oocytes of many organisms including humans, secretory

vesicles are also designated cortical granules [reviewed in 69,70].

They are most similar to large, dense-core vesicles found in

secretory cells in humans, e.g. neurons or pancreatic b-cells [71–

73]. The most prominent cargoes of cortical granules are

carbohydrates, which after secretion increase their volume by

hydration leading to chorion elevation and thereby create the

perivitelline space between oocyte and chorion. As in mammals,

cortical granules are secreted after fertilization during a process

termed ‘‘cortical reaction’’ and the induced chorion elevation is

important to inhibit lethal polyspermy and mechanical damage to

the embryo [reviewed in 69,70].

To determine in fish oocytes, whether Rab11b marks secretory

granules in fish oocytes, we double-labeled them with the cortical

granule marker MPA-lectin [74]. Rab11b colocalized with MPA-

lectin identifying the Rab11 vesicles of the zebrafish oocyte as

secretory, cortical granules (Figure 5A, A9). Moreover, Suf/

Spastizin protein also colocalized with MPA on cortical granules

(Figure 5B, B9). Since not all MPA-vesicles were positive for

Rab11b or Suf, we hypothesized that colabeling is only observed

at the vesicle surface. In contrast, if the optical section is more

central in the vesicle, the green Rab11b or Suf-signal was

encompassing the luminal MPA-positive cargo. Since Suf was

highly enriched in the cortex and hence, colocalization might be

caused by protein abundance, we analyzed optical sections in

deeper layers of the oocyte with less Suf signal (Figure 5C–E).

Indeed, Rab11b and Suf mostly localized outside the granule-

lumen (Figure 5C, D). Higher magnifications showed that Rab11

in general stains the entire surface of the vesicle (Figure 5E, upper

row), whereas Suf was also found to be restricted to extraluminal

microdomains (Figure 5E, lower row). Taken together, the

colocalization of Suf with Rab11b and MPA-lectin supports a

role of Suf/Spastizin in the formation of cortical granules during

zebrafish oogenesis.

Souffle/Spastizin controls cortical granule maturation
during oogenesis

To analyze the role of Suf/Spastizin in cortical granule

formation during oogenesis, we compared wt and mutant oocytes

using electron microscopy. More cortical granules were visible in

suf/spastizin oocytes (Figures 6A and S5A). Interestingly, their

electron dense core was not visible, which is a remarkably strong

phenotype compared to other factors involved in dense-core

vesicle maturation [75]. We also noted more and smaller

lysosomes consistent with the results of the lysotracker staining.

To verify an increase in cortical granules, we stained oocytes with

MPA-lectin [74]. Wild-type zebrafish oocytes showed a few, large

cortical granules in the cytoplasm and numerous, smaller vesicles

at the cortex (Figures 6B and S5B). Conversely, mutant oocytes

appeared filled with MPA-lectin indicating that Suf/Spastizin is

involved in cortical granule formation during oogenesis.

The observed additional granules in zebrafish mutants could be

generated by two alternative mechanisms. Either Suf/Spastizin

could suppress the formation of granules, which in the mutant

leads to an increase of mature, fusogenic vesicles. Alternatively,

Suf/Spastizin could regulate the sorting of the MPA epitope,

which in the mutant oocyte leads to an increased number of MPA-

positive vesicles. At egg activation, cortical granules released their

contents during exocytosis leading to chorion elevation (Figure 6C)

[76]. Therefore, the first alternative would lead to a stronger

chorion-elevation after exocytosis. However, after triggering

exocytosis in wt and suf/spastizin stage V eggs by H2O exposure,

we observed no chorion elevation 10 min after egg activation in

mutants (Figure 1B). Furthermore, in 30 mpf (min post
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fertilization) embryos from mutant mothers the chorion was

weakly elevated (Figure 6E), although the regular exocytosis

process is completed within six minutes after sperm entry [77].

We quantified chorion and embryo diameters to exclude growth

defects during oogenesis as a cause for the size differences.

Embryo size in wt and mutants were similar, while chorion

diameters were reduced in embryos from mutant mothers,

which was also apparent in eggs activated without sperm,

supporting the idea that chorion elevation is impaired (Figure

S5C–G).

Figure 3. Comparison of endosomal compartments in wild-type and suf/spastizin mutant oocytes. Small icon next to figures indicates the
level of the optical section (black line) in the oocyte (blue circle). (A) Surface view of immuno-labeled stage III oocytes showing Rab5, Rab7 and Rab11
(green). The nuclei of the surrounding follicle cells are labeled with DAPI (blue). Note that Rab11-positive staining accumulates in patches below the
layer of follicle cell nuclei. Scale bar: 50 mm. (B) Optical section of stage III oocytes showing no change in the number of Rab5, a slight increase of Rab7
and a strong increase of Rab11 positive vesicles. The oocyte cytoplasm was counterstained with the lysosomal marker Lysotracker (red) labeling yolk
globules. Scale bar: 50 mm. (C) Summary of the results of panel B quantified in Figure S3. The bars display the ratio of Rab-positive foci in mutant
oocytes to wild-type. Equal numbers correspond to one fold (baseline). (D) Functional analysis of the endosomal trafficking routes by cargo assay.
LDL (red) as a marker for the degradative route accumulates within 10 min in fragmented lysosomes. Transferrin (Tfn; red) as a recycling cargo shows
no difference between wt and mutant oocytes after 35 (middle) or 55 min (lower panel) pulse/chase. Note that Transferrin accumulates in a Rab11b-
negative compartment. Scale bar: 50 mm. (E) In wt oocytes, Rab5 (green; upper panel) colocalizes with Suf/Spastizin (red), but Rab7 does not overlap
(middle panel). Suf/Spastizin (red) and Rab11b (green) colocalize predominantly, but independent localization of Rab11 and Suf is also observed
(lower panel). Scale bar: 50 mm.
doi:10.1371/journal.pgen.1004449.g003
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Figure 4. Suf is not essential for meiosis, but mitosis. (A) Steps of meiotic maturation. Zebrafish oocytes are arrested in prophase I (PI) of the
first meiotic cell cycle indicated by the huge germinal vesicle (red). Maturation initiates with germinal vesicle breakdown (GVBD) and the first meiosis
leads to the formation of a polar body (red circle). The egg arrests again in metaphase of the second meiotic cell cycle (MII), ready to be fertilized. (B)
Stage III oocytes treated with carrier (EtOH) or maturation-inducing hormone (DHP). The germinal vesicle is highlighted with Phalloidin (green)
showing no difference between wt and mutant. Scale bar: 100 mm. (C) Living stage III oocytes from wt and suf/spastizin mothers treated with carrier
or DHP. The chromatin is highlighted by a Histon2A-GFP transgene (green) showing that GVBD occurs at the same time in mutant oocytes as in wt,
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These results indicate that Suf/Spastizin controls the sorting of

MPA-positive cargo, whose failure leads to the accumulation of

immature vesicles in the mutant egg. This hypothesis predicts that

immature cortical granules in the mutant egg do not secrete their

cargo. Indeed, after activation, mutant eggs still contained

numerous cortical granules, whereas wt lost their vesicles close

to the cortex with a few left in the inner cytoplasm (compare

Figures 6B and 6D).

To directly visualize the fusion of the vesicles, we analyzed the

kinetics of exocytosis by labeling cortical actin [74]: 60 s after

activation fusing cortical granules generate negatively stained

crypts in the wt actin meshwork, whereas suf mutants show no

vesicle exocytosis (Figure 6F); and 180 s after activation the

collapsing crypts form scars of accumulating f-actin in wt oocytes,

while the cortex of suf mutants did not change. These experiments

demonstrate that cortical granules of suf mutants are not fusogenic

and thus, support the hypothesis that their maturation is controlled

by Suf.

In cell culture, immature secretory granules remove specific

SNARE proteins from their cytoplasmic surface to acquire the

competence to fuse with the plasma membrane [78–80]. For

instance, depletion of GGA3 in neuroendocrine cells inhibits

sorting of VAMP4 away from neuroendocrine secretory granules,

which needs to be removed to permit vesicle fusion with the

membrane [81]. When we analyzed VAMP4 in zebrafish oocytes,

suf/spastizin mutants accumulated this SNARE protein compared

to wt (Figure 6G). These results show that in zebrafish oocytes

Suf/Spastizin is essential for the maturation of fusion-competent

cortical granules.

Since chorion elevation provided a sensitive read-out for Suf

functionality in zebrafish oocytes, we determined whether wt suf

rescues the mutant phenotype. However, the length of the suf gene

with almost 8 kb made it problematic to obtain sufficient in vitro

transcribed RNA for injection and hence, we injected plasmid

DNA into oocytes [82–84]. Furthermore, we used stage III

oocytes, since they can be incubated for longer periods to allow for

protein expression than matured stage V eggs. Moreover,

zebrafish stage III oocytes also show spontaneous chorion

expansion [82]. After 12 h, the majority of wt oocytes elevated

their chorion (84.3%66.9), whereas suf mutant oocytes rarely

showed a perivitelline space (7.3%62.9) (Figures 6H and S6A) also

after injection of control plasmid (Figure S6B). Wt Suf plasmid

partially rescued chorion expansion in mutant oocytes

(58.5%619.0), but the chorion was not elevated to the same

extend as in wt (Figures 6I and S6A). Interestingly, when we

overexpressed the p96re allele, we also observed partial rescue, but

at a lower rate (40.0%613.4) (Figures 6I and S6A). To confirm the

rescue with molecular markers, we stained injected oocytes with

MPA-lectin and VAMP4. Both markers were reduced in mutant

oocytes after injection of plasmid encoding wt Suf or Sufp96re, but

not after injection of control plasmid (Figure S6B). This result

confirms our previous hypothesis that the zebrafish p96re allele

encodes a hypomorph with reduced activity. Taken together these

data demonstrate that Suf controls secretory vesicle maturation

probably via sorting during zebrafish oogenesis.

Suf/Spastizin regulates vesicle fission in zebrafish oocytes
In cell culture experiments, VAMP4 is removed from

immature secretory granules after it is sorted into Clathrin-

coated buds, which finally pinch off [78,85,86]. The localization

of Suf to compartmental microdomains also supports a role for

Suf in sorting. Consistent with our results, tissue culture

experiments previously proposed a role for Suf in sorting [27],

which is also a prerequisite for vesicle abscission. To analyze in

zebrafish oocytes whether suf/spastizin mutants show a defect in

vesicle abscission, we returned to the EM analysis and

investigated mutants at higher magnification. Interestingly,

close to the cortex of mutant oocytes we discovered compart-

ments covered with Clathrin-coated buds, which appeared to

not complete budding and abscission (Figures 7A (white

arrowheads) and S7A). In wt oocytes these prominent compart-

ments with Clathrin-buds were never observed suggesting that

Suf/Spastizin controls a step such as sorting to initiate vesicle

budding and fission. To confirm that Clathrin-coated buds

accumulate, we compared the localization of Clathrin in wt and

mutant oocytes. Clathrin accumulated in mutants corroborating

the EM data (Figures 7B, D and S7B, D). The compartments

accumulating Clathrin in mutant oocytes looked similar to

cisternae formed in the temperature-sensitive Dynamin mutant

shibire in Drosophila [87]. Dynamin exerts the ultimate step after

sorting and budding during the fission process [88–90]. Indeed,

we observed an accumulation of Dynamin on cortical granules

in zebrafish suf/spastizin mutants suggesting that Suf/Spastizin

controls a molecular step, which permits Dynamin mediated

fission in oocytes (Figures 7C, D and S7C, D). If fission by

Dynamin is essential for cortical granule maturation, treatment

of zebrafish oocytes with the Dynamin-specific inhibitor

Dynasore should mimic the mutant phenotype as long as Suf

is required genetically upstream of vesicle fission [91]. Interest-

ingly, wt oocytes accumulated the cortical granule marker MPA

similar to mutants after Dynasore treatment (Figures 7E, F and

S8A–F). However, we also noted differences such as mature

cortical granules in Dynasore-treated wt oocytes, which prob-

ably formed during oogenesis before the drug treatment (Figure

S8F). Although Dynamin is involved in additional processes as

revealed by the Dynasore inhibition, these data confirm that

Dynamin mediated fission is required during maturation of

secretory granules in the zebrafish egg.

Cortical granule formation was previously considered to be an

ongoing process during oogenesis, but whether it continued after

ovulation remained unclear [70]. To analyze whether cortical

granule maturation still continues in ovulated, fully matured stage

V eggs, we treated them for 5, 15 and 30 min with Dynasore and

examined chorion elevation. Indeed, the level of chorion elevation

corresponded well with the duration of Dynasore treatment

(Figures 7G and S8G). Remarkably, the 30 min treatment with

Dynasore inhibited chorion elevation completely. Most impor-

tantly, Dynasore also reverted the transparency of the egg

cytoplasm back to opaqueness similar to suf mutant eggs, which

we confirmed by MPA-Lectin and VAMP4 staining (Figures 7G

and S8H). The transparency of the egg cytoplasm is caused by

whereas the cytoplasm stays opaque in suf/spastizin oocytes. Scale bar: 100 mm (D) suf/spastizin oocytes form a polar body. In vitro matured oocytes
from wt and mutants stained with DAPI (blue) to highlight the nuclei and f-actin (green) to mark the polar body. Scale bar: 25 mm. (E) suf/spastizin
oocytes arrest in metaphase II. Confocal images of b-tubulin (green) highlight the spindle in wt and mutant oocytes, which is located in the lower left
corner, whereas the polar body is in the upper right corner. Scale bar: 25 mm. (F) Suf/Spastizin is required for cytokinesis. Embryos at 32-cell stage
from heterozygous wt (top panel) or homozygous (bottom panel) suf/spastizin mothers with labeled nuclei (DAPI; blue) and plasma membranes
(Phalloidin; green). In contrast to wt, few eggs from mutant mothers initiate cell division after fertilization, but then show cells with multiple nuclei
(arrowhead).
doi:10.1371/journal.pgen.1004449.g004
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Figure 5. Suf/Spastizin and Rab11b colocalize on cortical granules. Optical sections of stage III oocytes showing the localization of (A, A9)
Rab11b (green) or (B, B9) Suf/Spastizin (green) on cortical granules (CG) labeled with MPA-lectin (red). Scale bar: 50 mm. Stippled boxes in A, B
highlight magnified area in A9, B9. (C–E) Rab11b and Suf/Spastizin colocalize in central, optical sections on cortical granules. Confocal section showing
colocalization of Rab11b (green) (C) or Suf/Spastizin (green) (D) on cortical granules (red) in wild-type oocytes. (E) Upper row: Single channels of
Rab11b (green; left panel) and MPA-lectin (red; center panel) showing localization of Rab11b on cortical granules (yellow; right panel). Lower row:
Single channels of Suf/Spastizin (green) on cortical granules (red) forming a polarized microdomain on the granule membrane (yellow). Scale bar:
20 mm.
doi:10.1371/journal.pgen.1004449.g005
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changes in the crystal structure of yolk globules, which are

considered dormant lysosomes [92–94]. Theses intriguing results

suggest that cortical granule maturation is critical for the function

of lysosomal yolk globules during all stages of oogenesis. In

summary, our results show that Suf/Spastizin is a key regulator of

secretory vesicle maturation during zebrafish oogenesis probably

before the fission of Clathrin-coated buds through Dynamin

(Figure 7H).

Figure 6. Suf/Spastizin controls cortical granule maturation. (A) Electron micrographs of high-pressure frozen stage III oocytes. Lysosomes
(white arrows) are fragmented in suf/spastizin mutants. Cortical granules (white arrowheads) show a dense-core (dashed circle), which is lost in
mutant oocytes. Note, that we consistently generated wrinkles visible as black lines in mutant cortical granules, which indicate sectioning artifacts,
but suggest a different composition. Scale bar: 10 mm. (B) Optical section of stage III oocytes showing the accumulation of cortical granules stained
with MPA-lectin (red) in suf/spastizin mutant mothers. Scale bar: 50 mm. (C) Scheme visualizing the exocytosis of cortical granules (red arrowheads,
left panel) after egg activation, which leads to chorion elevation (blue arrowheads, right panel) at the beginning of embryogenesis. (D) Cortical
granules labeled with MPA-lectin (red) are released after activation in wt, but not in mutants. Scale bar: 50 mm. (E) Fertilized embryos 30 mpf (min
post fertilization) from +/2 (left panel) and 2/2 suf/spastizin mutants (right panel). Note the decreased elevation of the chorion in mutants. Scale bar:
100 mm. (F) Actin cortex of stage V eggs stained with phalloidin (green) at 0, 60 and 180 s after activation. Note the fusion of vesicles in wt eggs after
60 s, visible as black holes in the actin meshwork, and the formation of actin patches at 180 s after exocytosis completion. Scale bar: 50 mm. (G)
VAMP4 (green) labels immature secretory granules and accumulates in suf/spastizin mutant oocytes. Scale bar 50 mm. (H) Stage III oocytes from +/2
(wt) or 2/2 suf/spastizin mutants (mut) after 12–16 h incubation in L-15 medium. Scale bar: 50 mm (I) Stage III oocytes from 2/2 suf/spastizin
mutants after injection of plasmid encoding wt or mutant Suf (p96re allele). Note that the mutant Sufp96re injected oocytes also show chorion
elevation similar to wt Suf injected oocytes.
doi:10.1371/journal.pgen.1004449.g006
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Discussion

Here we take advantage of zebrafish genetics and its oocytes

with their high vesicle trafficking activity to describe a novel role

for the SPASTIZIN homolog Souffle. We show that during

zebrafish oogenesis Suf/Spastizin is essential for the maturation of

secretory granules. Suf/Spastizin colocalizes with Rab11b to an

intermediate compartment during the formation of dense-core

vesicles. During this process, Suf/Spastizin is necessary for fission

from immature secretory granules in zebrafish oocytes.

A striking phenotype in suf oocytes is the accumulation of

Rab11b positive vesicles. However, in fibroblasts it is unusual that

Transferrin does not colocalize with Rab11b and consistently,

none of the other phenotypes besides the defect in cytokinesis

supports a role for Suf/Spastizin in endosomal recycling.

Interestingly, in certain human cell types, secretory cargoes also

pass through Rab11-positive endosomes [reviewed in 61].

Moreover, polarized tissue culture cells spatially and functionally

separate Rab11a/Transferrin and Rab11b [68,95]. This remark-

able separation of Rab11a and 211b is mostly observed in

polarized epithelial cells, which form the Rab11-positive subapical

compartment (SAC) or common endosome as a central sorting

hub for recycling [reviewed in 96]. Although the zebrafish oocyte

is highly polarized along the animal-vegetal axis, polarity at the

level of vesicle transport has not been previously described.

Therefore, the Rab11b positive compartment in the zebrafish

oocyte requires further analysis to confirm its homology to the

subapical compartment of human epithelial cells.

Another study performed in rat neuroendocrine PC12 cells

implicated Rab11b in the formation of dense-core vesicles [64].

This report showed that Rab11b, but not Rab11a and Rab25 of

the Rab11 protein family, are involved in secretion. Moreover,

Rab11b was suggested to control the sorting of secretory cargo in

neuroendocrine cells. This result in rat tissue culture also provides

a molecular mechanism for Suf/Spastizin function most consistent

with our results in the zebrafish oocyte. Interestingly, when they

repeated their experiments in unpolarized human fibroblasts, e.g.

HeLa cells, Rab11b showed different effects [64]. This cell-type

dependent role of Rab11b in mammals might also explain why the

Spastizin homolog was not implicated in regulated secretion before

our study, since it was mostly analyzed in unpolarized human

fibroblasts [21,26,27]. It remains to be determined to which

degree our results in zebrafish oocytes are comparable to those in

mammalian tissue culture experiments.

The data from human fibroblasts showed that Suf/Spastizin

interacts with the novel AP5 complex during the formation of

multivesicular-bodies (MVB) and that knock-down of AP5

generates empty MVBs [26,27]. Consistently, the mouse k.o.

demonstrates genetically that Spastizin is critical in vivo during this

process, which leads to the formation of lysosomes. In zebrafish,

we also detected fragmented lysosomes in suf/spastizin mutant

oocytes. Moreover, mutations in AP5 and SPASTIZIN cause HSP

in humans confirming genetically that both proteins are involved

in the same process [20,24]. In addition, Suf/Spastizin also binds

to Kif13a [21], which was implicated by tissue culture overex-

pression experiments to regulate secretion [97]. Since all these

studies are carried out in different organisms and different tissues,

it is difficult to extract the precise function of Suf/Spastizin.

A major question arising from our study is how the various

observed phenotypes could be reconciled. Two alternative

scenarios integrate all results: Suf/Spastizin primarily acts in

MVB/lysosomes and the maturation defect of secretory vesicles is

secondary e.g. through retrograde transport to the Trans-Golgi-

Network [reviewed in 98] or alternatively, Suf/Spastizin primarily

acts in immature secretory granules and the lysosomal defect is

secondary e.g. through sorting of the mannose-6-phosphate

receptors transporting hydrolytic enzymes into lysosomes [re-

viewed in 71,99]. Currently, we favor the second model, which is

supported by proteins such as AP-3, which play a role in dense

core vesicle formation [100] and lysosomal maturation [re-

viewed in 101]. By contrast, defects in retrograde transport were

hitherto not reported to affect the formation of the dense core in

secretory granules as in the suf mutant, but rather lead to

missorting of lysosomal enzymes [reviewed in 98]. This model

would also predict that cargo sorted away in immature secretory

granules is necessary for homotypic lysosome fusion (Figure 7H)

as described in other cells [102]. These open questions make

clear that additional studies are necessary to determine the

precise role of Suf/Spastizin and whether a defect in lysosome

formation or secretion can lead to neuronal degeneration in

HSP patients.

In humans, Suf/Spastizin encodes one of the more than 50 loci

involved in the neurodegenerative disorder HSP controlling

diverse cellular processes [18]. However, regulated secretion was

so far not considered. Interestingly, defects in regulated secretion

as observed in the zebrafish oocyte may explain some of the HSP

symptoms. Cortical granules in the zebrafish oocyte appear

identical to large dense-core vesicles (DCV) in neurons [71–

73,103], which store neurotrophic factors at the synapse [104].

Neurotrophic factors are responsible for the dynamics and

maintenance of synaptic connections during long-term potenti-

ation [105,106]. In contrast to neurotransmitter vesicles, DCVs

need to be transported from the cell body to the synapse. This

transport model would resolve why in HSP preferentially the

longest axons degenerate from their synapse. In addition, a

defect in long-term potentiation would explain why HSP

neurons are not maintained and the symptoms become apparent

in juveniles and adults, but not in embryos. Investigating the

molecular network regulated by Suf/Spastizin in zebrafish

oocytes as well as transferring these results to the nervous

system as described for Atlastin (SPG3A) in zebrafish [42] and

Drosophila [107] could provide novel insights into the biochemical

etiology of HSP and bring us closer to a therapeutic treatment

for patients.

Materials and Methods

Ethics statement
Fish were maintained as described [108] in accordance with

regulations of the Georg-August University Goettingen, Germany.

Oocyte and embryo methods
Oocytes were dissected and cultured as previously described

[83] and their stage indicated with Roman numerals as published

[11]. For in vitro maturation and plasmid injection, stage III

oocytes were manually dissected and incubated for 1 hr in 60% L-

15 medium. After removing damaged oocytes, meiosis resumption

was induced by a 90 min-exposure to 1 mg/ml DHP or EtOH as

carrier control.

For plasmid injection, stage III oocytes were injected with 1 ng

of pCS2+wt-suf or pCS2+mut-suf encoding the p96re allele as

described [84]. After injection oocytes were incubated for 12 h at

28uC in 90% L-15 medium (0.5% BSA; 100 mg/ml Gentamycin)

and then scored for chorion elevation [82].

Suf/Spastizin morpholino injections were performed as previ-

ously described [37].

For the trafficking assay, stage III oocytes were incubated with

125 mg/ml Transferrin- Alexa594 (Molecular Probes) in OR2
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Figure 7. Suf/Spastizin regulates vesicle fission. (A) Electron micrographs of high-pressure frozen stage III oocytes. Cisternae with Clathrin
coated buds accumulate in suf/spastizin oocytes (white arrowheads). Scale bar: 0.5 mm. (B–D) Stage III oocytes labeled with Clathrin (green; B, D)
Dynamin (green; C, D) or MPA lectin (red; D). Clathrin and Dynamin localize to a subset of cortical granules. Note the accumulation of Dynamin on
vesicles at the cortex in suf/spastizin oocytes (C). (E, F) Dynasore partially mimics the suf defect. Wt oocytes accumulate the cortical granule marker
MPA-lectin (red) after treatment with Dynasore (E) similar to suf mutant oocytes (F). The huge compartment in the center of the Dynasore treated wt
oocyte in panel E shows the germinal vesicle (oocyte nucleus). (G) Cortical granules continuously mature after ovulation. Stage V eggs were
incubated with carrier (Co: upper row) or Dynasore (Dyn.; lower row) for 5, 15 or 30 min and then activated with H2O. The degree of chorion
expansion correlates with Dynasore treatment duration. Note that the complete block of exocytosis also leads to opaque cytoplasm similar to suf
mutants. (H) Working model for Souffle (red) function on immature secretory granules (ISG). Suf/Spastizin is necessary for the abscission of Clathrin-
coated buds. Whereas the compartment matured into secretory, cortical granules (CG) with a dense-core, the Clathrin-coated vesicles enter the
endolysosomal transport route probably to lysosomes.
doi:10.1371/journal.pgen.1004449.g007
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buffer [108] for 10 and 25 min followed by 30 min of chasing in

Transferrin-free OR2 buffer (recycling) or with 10 mg/ml of LDL

Dil (Molecular Probes) in OR2 buffer for 10 min (degradation).

Then, oocytes were fixed with MEMFA (1 M MOPS pH 7.4,

20 mM EGTA, 10 mM MgSO4, 3.7% formaldehyde) after

washing twice with OR2 and twice with PBT and stained with

antibodies or fluorescent dyes.

For the chorion elevation assay, ovulated stage V eggs were

squeezed from gravid females. Eggs were activated by adding E3-

medium [108] and imaged at 30 min [108] after activation. Images

were used to measure chorion elevation using Fiji software [109].

For Dynasore treatment, live oocytes were collected in OR2

buffer and incubated with 500 mg/ml of Dynasore (Sigma) or the

carrier DMSO as control for 1 hr at room temperature. Then,

oocytes were washed thrice and processed for immunofluorescence

staining.

Quantitative Real-Time PCR
qRT-PCR on selected stages of oogenesis and embryogenesis

was performed as previously described [83].

Meiotic mapping and genotyping
The described mapping position of the suf mutation on

chromosome 13 [28] was used for fine mapping as previously

published for the bucky ball locus [83]. The closest polymorphic

markers flanking the mutation are: AL13-10-fw: 59-GTT-

CCCACTCAGAGAAACAA-39, AL13-10-rev: 59-GTAATGGT-

GGGGTTTAATGA-39, AL13-13-fw: 59-TGCTTAAATTG-

CAGTTACAATAA-39, AL13-13-rev: 59-TGAGATGCGTCTT-

TAAGTTG-39. The cDNA sequence of wt and mut souffle were

submitted to gene bank with the accession numbers KC707919

and KC707920. The souffle mutation is registered in the zebrafish

Zfin-database (zfin.org) with the ZFIN-ID: ZDB-GENE-070117-

691, the gene as: ZDB-GENE-030131-3286 and in the zebrafish

genome database at Ensembl (www.ensembl.org) under the gene

id: ENSDARG00000040131.

Phylogenetic analysis
Alignments were performed with CulstalW and the similarity

was quantified with vector NTI (Invitrogen). The phylogenic tree

was constructed as described [83] with 1000 iterations.

Tissue culture and western blot
SW480 cells were transfected with 5 mg plasmid using

Lipofectamine 2000 (Invitrogen). Cell lysates were separated on

a 6% PAA-gel and blotted for 24 h at 40 V on PVDF-membranes

in blotting buffer (5% MeOH, 15% western salts). Suf antibody

(1:200) was detected with anti-rabbit HRP.

Immunofluorescence
Oocytes were dissected from gravid female and fixed with

MEMFA buffer for 1 h at room temperature after proteinase K

(50 mg/ml) treatment for 3 min. Oocytes were washed thrice with

PBT and blocked with PBT containing 2% BSA and 2% Horse

serum for 2 h at room temperature. Subsequently, oocytes were

incubated with primary antibody: Rab5 (1:200 SCBT), Rab7

(1:1000 abcam) [42], Rab11b (1:500 GeneTex), Suf (1:200),

Dynamin2 (1:200 GeneTex), Clathrin (1:200 abcam) and VAMP4

(1:200 SySy, Goettingen, Germany) in blocking solution overnight

at 4uC. Secondary antibodies were added at 1:200 (Alexa 488 or

594; Molecular probes) in blocking solution overnight at 4uC. For

double labeling, oocytes were incubated with Suf-antibody directly

labeled with ATTO590 (SySy, Goettingen, Germany) for 2 h at

room temperature. The Suf antibody was generated by immuniz-

ing two rabbits each with two peptides TEQVKVPAKDRNRE

(aa 187–200) and LNKTSTNKGMSKTD (aa 1007–1020) and

then purified by affinity-chromatography (Biogenes, Berlin

Germany). DNA was stained with 1 mM of Hoechst 33342.

Cortical granules were stained with 50 mg/ml MPA Lectin Texas

Red (EY Labs Inc.) and lysosomes with 70 nM Lysotracker DND-

99 Red (Molecular Probes). Phalloidin staining was performed as

described [74].

Confocal microscopy
Images were captured at room temperature using a LSM780

confocal microscope (Carl Zeiss) with a Plan Apochromat 636/

1.4 NA and 256/0.8 NA oil-immersion and a digital microscope

camera (M27; Carl Zeiss). After washing the oocytes with PBT,

yolk was cleared with Murray’s solution (Benzylbenzoate (66%)/

Benzylalcohol (33%)) during imaging. A multiple wavelength laser

was used to visualize red (561) fluorescence, green (488, 405) and

blue (405) and images were acquired and processed using ZEN

2011 software (Carl Zeiss).

Electron microscopy
For high-pressure freezing EM, living oocytes were placed in

aluminum platelets of 150 mm depth containing 1-hexadecen

[110]. The platelets were frozen using a Leica Em HPM100 high-

pressure freezer (Leica Mikrosysteme Vertrieb GmbH, Wetzlar,

Germany). The frozen oocytes were transferred to an automatic

Freeze Substitution Unit Leica EM AFS2. The samples were

substituted at 290uC in a solution containing anhydrous acetone,

0.1% tannic acid for 24 h and in anhydrous acetone, 2% OsO4,

0.5% anhydrous glutaraldehyde (EMS Electron Microscopical

Science, Ft. Washington, USA) for additional 8 h. After a further

incubation over 20 h at 220uC, samples were warmed up to 4uC
and washed with anhydrous acetone subsequently. The samples

were embedded at room temperature in Agar 100 (Epon 812

equivalent) at 60uC over 24 h. Images were taken in a Philips

CM120 electron microscope (Philips Inc.) using a TemCam 224A

slow scan CCD camera (TVIPS, Gauting, Germany).

Statistics
In all experiments, error bars indicate the standard deviation (at

least three independent experiments). The statistical significance

(p-value) of two groups of values was calculated using a two-tailed,

two-sample unequal variance t-test calculated in MS-Excel or

www.graphpad.com.

Supporting Information

Figure S1 Phenotype of embryos after Suf/Spastizin morpho-

lino-injection. Lateral views of embryos 48 h post fertilization

(hpf), anterior to the left, after injection of control-morpholino (A)

or a Suf/Spastizin specific translation block morpholino (B). The

Suf-morpholino causes a twisted tail in 43% of the embryos (left

panel), whereas 35% of the embryos show no morphological

abnormalities. (C) Quantification of phenotypes.

(TIF)

Figure S2 Suf expression. (A) Expression analysis of exon 35 of

suf mRNA during oogenesis and embryogenesis. Scheme showing

the genomic locus of Suf. Exons 34–36 (orange arrows) and the

p96re point mutation (red bar) are indicated. Black numbers

represent the nucleotide position in the mRNA, green numbers

and arrows indicate the position of the primers used to perform

RT-PCR, also shown in Figure 2. Primer sequence: exon34-fw 59-
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ACGATGGATGAGGATATCCTGG-39, exon36-rev 59-CTGGAGACAT-

CAGTGGAGCTCATTTTC-39. RT-PCR amplifying exon 34–36

(610 bp). Longer run of gel in Figure 2E showing the 25 bp

shorter transcript (white arrow) in +/2 and 2/2 ovaries. h: hours

post fertilization; d: days post fertilization. EF1-a serves as a

loading control. (B) Specificity of polyclonal Suf antibody. Human

SW 480 cells were transfected with zebrafish wt Suf and mut

Sufp96re and the protein detected by western blotting. To increase

the size difference, wt Suf was tagged by a GFP fusion. The

antibody recognizes the predicted 314 kD for wt Suf (black

arrowhead; Suf: 280 kD + GFP: 34 kD), whereas the mutant

Sufp96re shows a band at the predicted size of 250 kD (red

arrowhead). Labels on the right indicate the position of the

molecular weight markers.

(TIF)

Figure S3 Quantification of Rab staining. (A) Rab5-positive

puncta in immuno-labeled stage III oocytes were counted using

Image J software. Diagram showing the quantification from wt

(left bar) and suf/spastizin mutant oocytes (right bar). (WT n = 17;

suf n = 26; P = 0.3511 NS-not significant). (B) Quantification of

Rab7-positive puncta (WT n = 17; suf n = 20; ***, P = 0.0001). (C)

Quantification of Rab11 puncta (WT n = 18, suf n = 19,

P = 0.0001). Error bars represent standard deviation.

(TIF)

Figure S4 Single channels of Suf and Rab colocalization. Partial

colocalization of Suf/Spastizin (red) with Rab-GTPases. (A) Rab5

(green) shows some colocalization with Suf. Venn diagram

quantifying Rab5 and Suf costaining. Counting red, green and

yellow foci of oocytes (n = 10) reveals that 83625% Rab5 spots are

negative for Suf and 68616% Suf spots are negative for Rab5.

Hence, 17% of the Rab5 positive vesicles contain Suf and 32% of

the Suf positive vesicles Rab5. (B) Rab7 shows almost no

colocalization with Suf, whereas Suf colocalizes with Rab11

vesicles more frequently (C). Scale bar: 50 mm. Small icon next to

figures indicates the level of the optical section (black line) in the

oocyte (blue circle).

(TIF)

Figure S5 Suf/Spastizin controls cortical granule maturation.

(A) Electron micrographs showing yolk globules and mature

cortical granules in wt oocytes (top row). Note the darker dense

core in the center of mature cortical granules. Suf/Spastizin

mutant oocytes (bottom row) show immature cortical granules

without dense core. Image frame: 2 mm (top, right panel)

10 mm (other panels). (B) Suf/Spastizin mutants accumulate

cortical granules. Confocal sections comparing cortical gran-

ules labeled with MPA-Lectin (red) of wt (top) and suf mutants

(bottom). Small icon next to figures indicates the level of the

optical section (black line) in the oocyte (blue circle). Scale bar:

50 mm. (C–G) Quantification of chorion elevation defect in

suf/spastizin mutant embryos and eggs. (C) Small icon indicates

distances quantified in bar diagrams of panel D (blue; whole

embryo diameter including chorion), E (green; distance

between embryo and chorion) and F (red; embryo diameter

minus chorion). (D) Quantification of whole embryo size

including chorion from +/+ (blue), +/2 (red) and 2/2 (green)

mothers at 30 mpf (+/+ n = 37; +/2 n = 23; 2/2 n = 37). (E)

Chorion elevation (distance between embryo and chorion). (F)

Embryo diameter minus chorion. (G) Diameter of wt (blue) and

mutant eggs (red) 30 min after activation in water. Error bars

represent standard deviation. Sample size (n-value) is identical

for panel D, E and F.

(TIF)

Figure S6 Rescue of chorion elevation defect. (A) Quantifica-

tion of plasmid injection experiments in Figure 6 H and I

showing the number of oocytes with elevated chorions. Error

bars represent standard deviation. (B) Morphological phenotype

(upper row) of chorion elevation in activated wt (wt + co

plasmid) (100%; n = 55), but not in mut oocytes after injection

with control DNA (suf + Co plasmid) (0%; n = 56). Mutant

oocytes injected with plasmid encoding wt Suf (mut + wt Suf)

(87.5%; n = 56) or mut Sufp96re (mut + mut Sufp96re) (67.9%;

n = 53) show chorion elevation. Rescue of MPA-lectin (middle

row) and VAMP4 (lower row) accumulation on immature

secretory granules after injection of plasmid encoding wt Suf

(mut + wt Suf) or mut Sufp96re (mut + mut Sufp96re) into mutant

oocytes. Scale bars: 50 mm.

(TIF)

Figure S7 Suf/Spastizin is essential for vesicle fission. (A)

Accumulation of Clathrin-coated cisternae in suf/spastizin mu-

tants. Electron micrographs showing cellular compartments from

wt (top row) and suf/spastizin mutants (lower row). The cortex

region is marked by the fenestrated area in some panels, which

represents the zona radiata forming the chorion membrane after

fertilization. Bottom panels show vesicular compartments accu-

mulating Clathrin buds on their membrane in suf/spastizin

mutants. Picture frame: 1 mm (left column) 2 mm (middle and

right column). (B–D) Dynamin and Clathrin accumulation on

cortical granules of suf/spastizin mutants. (B) Confocal sections

comparing Clathrin localization (green) in wt and suf/spastizin

mutants. (C) Confocal sections comparing Dynamin localization

(green) in wt and suf/spastizin mutant oocytes. Left column shows

optical section in the oocyte center. Middle column: optical

section of cortex region. Right panel: Cortical section showing

the accumulation of Dynamin (green) in mutants. (D) Coloca-

lization of Clathrin (green) or Dynamin (green) on cortical

granules (red). Left panel of Clathrin staining shows the cortex

region and right panel shows the center of the oocyte. Dynamin

panel shows cortex region. Scale bar: 50 mm. Small icon next to

figures indicates the level of the optical section (black line) in the

oocyte (blue circle).

(TIF)

Figure S8 The Dynamin inhibitor Dynasore mimics the suf/

spastizin phenotype. Cortical granules stained with MPA-Lectin

(red) in wild type (A, B) or suf/spastizin mutants (C, D) after

treatment with the carrier DMSO (A, C) or with Dynasore (B,

D). The dashed square in panel C indicates the magnification in

panel E. (E) In untreated, suf/spastizin mutants MPA-Lectin (red)

foci accumulated on the surface of MPA-negative vesicles

similar to the cisternae discovered by EM suggesting that MPA-

Lectin cargo is sorted, but not pinched off the compartment. (F)

Cortex region of suf/spastizin oocyte before and after Dynasore

treatment. Remarkably, suf mutants treated with Dynasore

showed cortical granules with weak MPA-Lectin background

(white arrowheads), which suggested that Dynasore inhibited

sorting and removal of the MPA-Lectin cargo into buds. Small

icon next to figures indicates the level of the optical section

(black line) in the oocyte (blue circle). Scale bar: 50 mm. (G)

Quantification of total egg size shown in Figure 7G. Note the

significant size reduction of chorion elevation after 15 min.

Error bars represent standard deviation. (H) Cellular marker

analysis of ovulated stage V eggs. A 30 min treatment with

Dynasore of ovulated eggs leads to an accumulation of MPA-

lectin (red) and VAMP4 (green) similar to suf mutants. Scale bar:

50 mm.

(TIF)
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