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Abstract

Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions
independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major
PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis
imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and
post-translational modifications, we generated Ppib2/2 mice that recapitulate the OI phenotype. Knock-out (KO) mice are
small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical
properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial
osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl
3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-
limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the
potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting
collagen lysyl hydroxylase (LH1) activity. Ppib2/2 fibroblast and osteoblast collagen has normal total lysyl hydroxylation,
while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone
and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly
reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent
crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to
lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix
in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of
the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and
fibrillogenesis, which contribute to maintaining bone mechanical properties.
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Introduction

Type I collagen, the most abundant protein component of the

extracellular matrix of skin, tendon and bone, is a heterotrimer

consisting of two a1(I) and one a2(I) chains encoded by the

COL1A1 and COL1A2 genes, respectively. The pro-alpha chains of

type I collagen contain an uninterrupted helical region consisting

of 338 repeats of the Gly-Xaa-Yaa triplet. Biosynthesis of

procollagen is a complex process that requires several co- and

post-translational modifications within the endoplasmic reticulum,

including formation of disulfide bonds within the propeptide

extensions, isomerization of peptidyl-prolyl bonds, hydroxylation

of Yaa lysyl and prolyl residues, and glycosylation of hydroxyly-

sines [1]. The post-translational modifications occur before, and to

a major extent stabilize, collagen helical folding. After secretion

into the pericellular space and processing of propeptide extensions,

the mature collagen heterotrimer is incorporated into heterotypic

collagen fibrils. The fibrils are then stabilized by intermolecular

aldehyde-derived crosslinks formed from specific collagen lysyl and

hydroxylysyl residues by lysyl oxidases (LOX) [2,3].
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Dominant mutations in COL1A1 or COL1A2 cause classical

osteogenesis imperfecta (OI), with susceptibility to fractures from

minimal trauma and growth deficiency [4]. Glycine substitutions

in the collagen alpha chains delay folding and increase exposure to

modifying enzymes, resulting in collagen overmodification. Some

OI cases (<10%) have recessive inheritance, caused by deficiency

of proteins that interact with collagen for folding or post-

translational modification [5]. Most commonly, recessive OI

involves the collagen prolyl 3-hydroxylation complex, consisting of

prolyl 3-hydroxylase 1 (P3H1, encoded by LEPRE1, leucine- and

proline-enriched proteoglycan 1), cartilage-associated protein

(CRTAP) and cyclophilin B (CyPB, encoded by PPIB, peptidyl-

prolyl cis-trans isomerase B). This complex is responsible for 3-

hydroxylation of the Xaa position a1(I) P986 residue in types I and

II collagen [6–8]. Loss of individual components abrogates

collagen P986 3-hydroxylation [8–11]. CRTAP and P3H1 are

mutually supportive in the complex; deficiency of either compo-

nent causes severe to lethal OI with rhizomelia, classified as OI

types VII and VIII, respectively [12]. However, loss of the

CRTAP/P3H1 complex does not decrease the level of CyPB, and,

conversely, the CRTAP/P3H1 complex is only partially decreased

in the absence of CyPB.

CyPB is an ER-localized member of the immunophilin family of

proteins with peptidyl-prolyl cis-trans isomerase (PPIase) activity

[13,14]. CyPB plays a key role as a member of several foldase and

chaperone complexes, including BiP, GRP94, PDI and calreticu-

lin, for example, to facilitate folding of multiple substrates within

the ER [15,16]. Cis-trans isomerization of peptidyl-prolyl bonds is

especially important for type I collagen folding because prolines

constitute approximately one-fifth of its primary sequence. Studies

published over twenty years ago demonstrated that exposure of

cells to the cyclophilin inhibitor cyclosporin A (CsA) slows the rate

of collagen folding and results in overmodification of lysyl residues

[17]. Thus, CyPB is thought to be the major, and possibly unique,

collagen peptidyl-prolyl cis-trans isomerase [18]. However, collagen

biochemical data from the few reported patients with CyPB

deficiency is inconsistent. Two patients with PPIB mutations

causing moderate OI have normal levels of collagen prolyl

3-hydroxylation [19,20], while in two lethal OI cases of CyPB

deficiency, a1(I) P986 3-hydroxylation decreases to 30% of normal

[11,20]. Overall collagen overmodification was detected in both

lethal cases, but in only one moderately severe patient.

In an attempt to clarify the inconsistencies among the human

cases of PPIB/CyPB deficiency, we generated a Ppib knockout

mouse model. We demonstrate a major, but not unique, role for

CyPB in collagen folding and extend the previously reported role

of CyPB in lysyl hydroxylation [21]. Biochemical studies reveal

novel cell- and tissue-specific dysregulation of collagen helical lysyl

hydroxylation and glycosylation in the absence of CyPB,

independent of impaired collagen folding. Furthermore, reduced

hydroxylation of specific collagen helical lysine residues led to a

shift in the pattern of intermolecular crosslinks in bone tissue, and

reduced collagen deposition into matrix. These studies establish

novel functions for CyPB in regulating collagen biosynthesis and

post-translational modification.

Results

Generation and phenotype of Ppib-null mice
Ppib-null mice were produced from an ES cell line carrying a

gene trap insertion in intron 1 of Ppib. Two ESC lines, RST059

and RST139, were screened by real-time RT-PCR. Expression of

Ppib in RST059 and RST139 was decreased to 7665% and

5463%, respectively, of wild-type levels (Figure S1A). Because

RST139 ES cells were more likely to have one null Ppib allele, we

proceeded with generation of a mouse line in the C57BL/6

background using these cells.

Genomic DNA from homozygous mutant mice was amplified

by heminested PCR (Figure 1A) and sequenced to demonstrate

insertion of the gene trap vector 123 bp from the 59-end of

the1066 bp Ppib intron 1. The insertional mutation interrupts

transcription of Ppib in cells and tissues isolated from Ppib2/2

mice. Expression of Ppib in primary fibroblast (FB) and osteoblast

(OB) cultures from newborn mice, as well as in dermal and

femoral tissues of 8 week-old mice, was reduced in cells and tissues

heterozygous for the gene-trapped allele, and completely absent

from homozygous cells and tissues (Figure 1B). Thus, Ppib

expression is completely blocked in the gene trap mutant allele.

Heterozygous mice were bred into the C57BL/6 line. In

surviving homozygous offspring of F5 matings, growth deficiency

became apparent soon after weaning. Knockout mice weighed

about 25% less than wild-type and heterozygous littermates from 3

to 24 weeks of age (Figure 1D). At 8 weeks of age, Ppib2/2 femoral

and tibial lengths were reduced 7% and 10% versus wild-type

mice and heterozygotes (p,0.00004 and p,0.02, respectively)

(Figure 1C). However, in contrast to Crtap and P3H1 null mice

[8,22], Ppib2/2 mice do not have rhizomelia. The ratio of femoral

to tibial length is comparable to wild-type (0.88660.020 vs

0.86160.035, p = 0.07).

Ppib is required for bone development
Skeletal abnormalities of Ppib2/2 mice include decreased

mineralization and abnormal shape of calvaria, shortened limbs

and a deformed and flared rib cage (Figure 2A); these features are

accentuated in lethal null pups. The genotype distribution among

offspring of F4 and F5 het x het crosses deviated from the

Mendelian ratio, with 30 and 50% lethality of homozygous pups

from F4 and F5 matings, respectively, likely due to respiratory

insufficiency from abnormal rib cage structure (Figure 2A).

Heterozygous mice are essentially normal. At 2 months of age,

the rib cage of both heterozygous and homozygous mice has a

narrow apex and drooping ribs at the base, providing limited space

Author Summary

Osteogenesis imperfecta (OI), or brittle bone disease, is
characterized by susceptibility to fractures from minimal
trauma and growth deficiency. Deficiency of components
of the collagen prolyl 3-hydroxylation complex, CRTAP,
P3H1 and CyPB, cause recessive types VII, VIII and IX OI,
respectively. We have previously shown that mutual
protection within the endoplasmic reticulum accounts
for the overlapping severe phenotype of patients with
CRTAP and P3H1 mutations. However, the bone dysplasia
in patients with CyPB deficiency is distinct in terms of
phenotype and type I collagen biochemistry. Using a
knock-out mouse model of type IX OI, we have demon-
strated that CyPB is the major, although not unique,
peptidyl prolyl cis-trans isomerase that catalyzes the rate-
limiting step in collagen folding. CyPB is also required for
activity of the collagen prolyl 3-hydroxylation complex;
collagen a1(I) P986 modification is lost in the absence of
CyPB. Unexpectedly, CyPB was found to also influence
collagen helical lysyl hydroxylation in a tissue-, cell- and
residue-specific manner. Thus CyPB facilitates collagen
folding directly, but also indirectly regulates collagen
hydroxylation, glycosylation, crosslinking and fibrillogene-
sis through its interactions with other collagen modifying
enzymes in the endoplasmic reticulum.

Cyclophilin B KO Mouse Model of Recessive OI
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under the ribs for abdominal contents, which puff out the

abdomen (Figure 2B). Homozygous mice also have kyphosis.

Adult knockout mice are osteoporotic; they have decreased

aBMD of femora (p = 0.001) and vertebrae (p = 0.02) (Figure 2C).

Femora of 2-month male Ppib2/2 mice display altered cortical and

trabecular structure on mCT analysis (Figure 3A; Table S1). Their

trabecular bone volume is half of wild-type, with reduction of both

trabecular number and thickness. Femoral cortical bone is thinner,

with decreased cortical area and a modestly enlarged marrow space.

Femora were mechanically tested to assess fragility. Ppib2/2

femora have reduced stiffness, yield load, and ultimate load,

requiring 48% less total energy to fracture than wild-type controls

(Figure 3B). Femoral post-yield displacement and plastic energy

were reduced 77% and 89% respectively, demonstrating a more

brittle phenotype characteristic of OI. Importantly, while stiffness

was reduced 37% in Ppib2/2 mice (p,0.01), cortical bending

moment of inertia, as measured by microCT, was only modestly

reduced (211%, p = 0.14) suggesting there may be significant

Figure 1. Generation of a murine model of Cyclophilin B deficiency. (A) Left, Diagram of knock-out allele containing b-geo reporter construct
inserted into intron 1 of Ppib gene. Hemi-nested primers (arrows) for PCR-based genotyping selectively amplify the wild-type allele (255 bp) or the
gene-trapped allele (364 bp). Right, Genotypes in offspring of matings between mice heterozygous for the gene-trapped allele are noted as wild-type
(+/+), heterozygous (+/2) or homozygous (2/2). (B) Verification of Ppib expression by Real-time RT-PCR using total RNA isolated from primary
cultures and tissues from newborns and 8-week mice, respectively. Values represent the average of two independent fibroblast and osteoblast
cultures, and five independent dermal and femoral samples. (C) Lengths of femora and tibiae from 8 week-old wild-type (+/+), heterozygous (+/2)
and homozygous (2/2) knock-out mice. Rhizomelia was not detected. (D) Growth curves of male and female mice from weaning (4 weeks) to 24
weeks of age.
doi:10.1371/journal.pgen.1004465.g001
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changes in bone material properties at levels unaccounted for by

changes in cortical geometry.

CyPB contributes to prolyl 3-hydroxylation complex
structure and function

We examined the components of the collagen 3-hydroxylation

complex in CyPB-deficient cells. In Ppib2/2 OB but not FB,

complete absence of CyPB was associated with a 40–55%

reduction in P3H1 (Figure 4A). CRTAP levels were not altered

in either cell type. Although CyPB was decreased in heterozygous

cells, P3H1 and CRTAP were unchanged. Despite the persistence

of P3H1 and CRTAP in Ppib2/2 cells, 3-hydroxylation of a1(I)

P986 residues was severely reduced. In Ppib2/2 mice, only 5–11%

of OB and FB and 1–2% of dermal and bone tissue collagen a1(I)

P986 residues were modified, in contrast to wild type and

heterozygous cultures and tissues in which there is nearly complete

collagen 3-hydroxylation (Table 1). The secondary prolyl 3-

hydroxylation site was also undermodified; Ppib-null OB and

femora have half the a2(I) P707 3-hydroxylation of wild-type and

heterozygous samples.

CyPB role in collagen folding and helical modification
Type I collagen alpha chains from Ppib2/2 FB and OB have

delayed and broadened gel migration, consistent with delayed

folding and overmodification of lysyl residues (Figure 4B).

Collagen overmodification in the absence of a structural defect is

expected to increase thermal stability [10,23]. However, type I

collagen secreted by wild-type, heterozygous and homozygous null

cells had equivalent melting temperatures (Tm) by differential

scanning calorimetry (Figure 4C). In agreement with Tm results,

amino acid analysis of type I collagen secreted by Ppib2/2 FB and

OB revealed normal proportions of hydroxylated lysine and

proline residues (Table 1).

To resolve these apparent discrepancies, we utilized a direct

intracellular collagen folding assay. Accumulation of intracellular

protease-resistant collagen was slower in Ppib-null FB than in wild-

Figure 2. Absence of Ppib expression affects bone development. (A) Staining of newborn skeletons with Alizarin red (bone) and Alcian blue
(cartilage) reveals undermineralization of calvaria and ribs. Homozygous mice have smaller size of whole skeleton and long bones, and a deformed rib
cage. (B) X-rays of 8 week-old mice. (C) DXA analysis of 8 week-old mice (n = 10/genotype).
doi:10.1371/journal.pgen.1004465.g002

Cyclophilin B KO Mouse Model of Recessive OI
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type cells (Figure 5A), with a greater percent of folded trimers in

wild-type cells throughout the independent time course experi-

ments. In Ppib2/2 OB, the delay in type I collagen folding

compared to wild-type was nearly double that in FB (Figure 5B).

Notably, addition of the inhibitor CsA to both fibroblasts and

osteoblasts further delayed the rate of collagen folding in Ppib2/2

as well as wild-type cells. These data suggest that, although CyPB

is the primary PPIase involved in catalyzing folding of the type I

collagen helix, other PPIases may also be capable of supporting

this function. Furthermore, since collagen folds more slowly in

Ppib2/2 than wild-type cells both with and without CsA treatment,

two PPIases and/or a CyPB-dependent protein may be involved in

collagen folding.

CyPB role in site-specific regulation of collagen post-
translational modifications

The apparent discrepancy between slower folding rate and

normal total lysyl hydroxylation of collagen from Ppib2/2 mice led

to a more detailed analysis of collagen hydroxylation and

subsequent glycosylation in null cells and tissues. Biochemical

analysis of Ppib2/2 skin tissue showed a substantial decrease in

lysyl hydroxylation (18% of wild-type) (Figure 6A) and glycosyl-

ation (40–50% of wild-type) (Figure 6B) in collagen. A site-specific

analysis of skin and fibroblast lysine modification and crosslink

patterns will be presented elsewhere. Decreased modification of

skin-derived type I collagen resulted in slightly faster gel migration

Figure 3. Whole bone structural and mechanical properties. (A) Structural parameters of wild-type (+/+) and homozygous (2/2) femora at 8
weeks of age characterize reduced bone formation in CyPB-deficient mice (n = 9/genotype). Left, 3D reconstructions illustrate reduced trabecular and
cortical bone volumes. Right, Trabecular parameters are decreased in homozygous (2/2) femora, including reduced bone volume (Tb BV/TV,
p = 0.01), thickness (Tb Th, p = 0.04) and number (Tb N, p = 0.01). Cortical bone parameters of CyPB-deficient mice are also reduced, with reductions in
cortical thickness (Ct Th, p = 0.003) and area (Ct Ar, p = 0.02). (B) Left, Representative load-displacement curve demonstrating differences between
samples selected for median post-yield displacement. Right, CyPB-deficient femora are weaker in yield (Yd Load, p = 1.961026), ultimate (Ult Load,
p = 8.961027) and failure loads (p = 2.161025), with reduced stiffness (p = 0.001). Ppib2/2 femora are also more brittle than wild-type femora, as
demonstrated by decreased post-yield displacement (PYD, p = 0.001). Reduced toughness of Ppib2/2 femora is evident by decreases in the elastic and
plastic energy (E) values (p = 0.001 and 0.0003, respectively).
doi:10.1371/journal.pgen.1004465.g003

Cyclophilin B KO Mouse Model of Recessive OI
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(Figure 6C). However, Ppib2/2 bone collagen lysyl hydroxylation

was slightly increased in heterozygous (p = 0.0002) and homozy-

gous (p = 0.005) mice (Figure 6D), with a significant increase in

galactosylhydroxylysine (p,0.001) in homozygous mice (Figure 6E)

and subtly broadened electrophoretic mobility (Figure 6F). In

addition, Ppib2/2 bone extracts show a substantial decrease in

type V collagen alpha chains.

Detailed characterization of lysine residues in collagen from OB

cultures and bone tissue showed site-specific changes in lysine

hydroxylation and glycosylation, and differences between cultured

cells and tissues (Table 2; Figure 7). In Ppib2/2 OB collagen, only

a1(I) K87, a2(I) K87 and K174 are underhydroxylated, with

about 20% of K87 residues in Ppib2/2 collagen unhydroxylated

versus ,1% of wild-type. However, hydroxylation of other helical

lysines from Ppib2/2 OB collagen was normal or subtly increased,

i.e. a1(I) K603 and K756 hydroxylation were increased 14% and

9%, respectively (Table 2). Bone tissue collagen from Ppib2/2 mice

has an even more striking increase in the proportion of lysine

residues involved in crosslink formation that are unhydroxylated.

Hydroxylation of a2(I) and a1(I) K87 residues is decreased 30–

40%, respectively, and a2(I) K933 hydroxylysine content is

decreased 38%, compared to wild-type bone (Table 2). Decreased

hydroxylation is also evident at a2(I) K174, but other residues do

not have significant changes.

Glycosylation patterns are also altered in Ppib2/2 collagen. In

wild-type OB collagen, a major helical cross-linking residue, a1(I)

K87, has the highest proportion of diglycosylation, while a2(I)

K87 is mainly non-glycosylated (Table 2 and Figure 7), as we

previously reported [24,25]. In Ppib2/2 collagen, mono- and di-

glycosylation of a1(I) K87 is decreased in tissue and OB culture

collagen, and a2(I) K87 di-glycosylation is only slightly increased

in OB culture collagen, despite slow helical folding (Figure 7). In

OB and bone-derived Ppib2/2 collagen, all other lysine residues

assayed have substantial increases in glycosylation, corresponding

with delayed intracellular collagen folding. We observed increased

glycosylation at a1(I) K174, K564, K603, K756 and a2(I) K219 in

Ppib2/2 OB collagen, and to a lesser extent in Ppib2/2 bone-

derived collagen, (Table 2), in agreement with the increased total

lysyl hydroxylation and broad gel migration (Figure 6D–F).

Collagen helical lysine modifications are catalyzed primarily by

lysyl hydroxylase 1 (LH1) for hydroxylation, GLT25D1, for

galactosylation of hydroxylysine [26], and LH3, which harbors

both lysyl hydroxylase and glucosyltransferase activities [24,27–

29]. By real-time RT-PCR, we found a modest increase in

transcript levels for all three enzymes in Ppib2/2 FB cultures, but

not in skin, OB or femoral tissue (Figure 8A–C). Importantly, the

protein levels of these enzymes were normal on western blots of FB

and OB lysates (Figure 8D). These data verify that expression

levels of the modifying enzymes do not account for the alterations

in lysine modification demonstrated in collagen from Ppib2/2 cells

and tissues.

Absence of CyPB affects collagen synthesis and secretion
The combined effects of CyPB absence, slower collagen folding

and abnormal modification, impact procollagen synthesis. Pulse-

chase experiments show increased (nearly double) total collagen

Figure 4. Synthesis of type I collagen. (A) Western blots of cell lysates with antibodies to collagen 3-hydroxylation complex components. Lysates
are derived from two independent cultures for each genotype. (B) SDS-Urea PAGE analysis of steady-state labeled type I collagen from wild-type
(+/+), heterozygous (+/2) and homozygous (2/2) fibroblasts (FB) and osteoblasts (OB). (C) Differential scanning calorimetry (DSC) analysis reveals no
differences in thermal stability (Tm) of type I collagen secreted by fibroblast cultures.
doi:10.1371/journal.pgen.1004465.g004

Cyclophilin B KO Mouse Model of Recessive OI
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Figure 5. Cyclophilin B catalyzes folding of type I collagen. (A) Assay for intracellular folding of type I collagen in fibroblast cultures. (B) Assay
for intracellular folding of type I collagen in calvarial osteoblast cultures. Data represents the average from two independent cell lines for each
genotype.
doi:10.1371/journal.pgen.1004465.g005

Table 1. Type I collagen post-translational hydroxylation.

Hyl/(Hyl+Lys) 4-Hyp/(Hyp+Pro)
% a2(I)
P707 3-Hyp

% a1(I)
P986 3-Hyp

% Telo Hyl
(NH2, COOH)

+/+

fibroblast 20.061.5 49.561.3 ,10 97 ND

skin 12.961.2 40.262.2 6–10 80 ND

osteoblast 46.461.8 50.961.5 24 97 ND

femur ND ND 13–21 98 85, 85

humerus 24.863.2 45.461.2 ND ND ND

+/2

fibroblast 21.760.8 48.560.9 ,10 .89 ND

skin 12.860.3 39.860.8 6–11 80 ND

osteoblast ND ND 24 97 ND

femur ND ND 10–12 98 ND

humerus 30.160.2 46.161.4 ND ND ND

2/2

fibroblast 20.161.0 51.261.2 ,10 11 ND

skin 2.561.9 41.961.4 1–2 2 ND

osteoblast 43.760.8 52.761.5 13 5 ND

femur ND ND 5–7 2 95, 83

humerus 30.863.4 45.161.1 ND ND ND

ND, Not determined.
doi:10.1371/journal.pgen.1004465.t001

Cyclophilin B KO Mouse Model of Recessive OI
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synthesis per cell by CyPB-deficient OB, while fibroblasts produce

about half the amount of collagen per cell as wild-type cells

(Figure 9, upper). However, the kinetics of collagen secretion is

only slightly delayed for Ppib2/2 FB and OB, (Figure 9, lower), but

of uncertain physiological significance, since nearly the entire pulse

of labeled collagen is secreted in the same timeframe as wild-type

cells. This finding is similar to our previous report on FB with null

mutations in LEPRE1 [10], but distinct from the reported

increased rate of collagen secretion in FB with null mutations in

CRTAP [8].

Absence of CyPB affects collagen matrix deposition and
crosslinking

To determine the consequences of altered collagen post-

translational modification on extracellular matrix, we analyzed

collagen deposition into matrix in culture. Sequential extraction of

the incorporated labeled collagen revealed that collagen deposited

into insoluble matrix by OB (Figure 10A, left) and FB (Figure S1B)

was decreased 80% and 70%, respectively, compared to wild-type

cultures. Raman spectroscopy of OB-derived matrix corroborated

the biochemical analysis (Figure 10A, right), indicating a two-

thirds reduction in matrix collagen content compared to wild-type.

Consistent with the marked reduction in hydroxylation of the

helical crosslinking lysine in bone in the absence of CyPB, there

was a significant difference in the crosslinking pattern. For divalent

crosslinks, there was a nearly three-fold increase in the helical

lysine-involved crosslink, hydroxylysinonorleucine (HLNL), in

homozygous humeral bone (p = 1.961028), while the helical

hydroxylysine-involved dihydroxylysinonorleucine (DHLNL) is

comparable to wild-type bone (Figure 10C). The increase in

HLNL crosslinks decreases the DHLNL/HLNL ratio in Ppib2/2

humeri (p = 0.0004). For the trivalent mature crosslinks, hydro-

xylysylpyridinoline (HP) crosslinks were unchanged in Ppib2/2

bone relative to wild-type. However, the helical lysine-involved

crosslink, lysylpyridinoline (LP), was markedly increased by four to

five-fold in Ppib2/2 humerii (p = 2.861029) and femoral tissue

(p = 0.0001), respectively (Figure 10D). The resulting HP/LP ratio

in CyPB-deficient bone is decreased 4.25-fold in humeral

(p = 0.00004) and 5.6-fold in femoral bone tissue (p = 0.003). It is

also quite noteworthy, in the context of both the reduced collagen

deposition into Ppib2/2 osteoblast matrix and the increase in non-

hydroxylated forms of crosslinks in tissue, that total bone collagen

crosslinks were increased in null mice versus wild-type at 2 months

of age (DHLNL+HLNL, p = 0.002; HP+LP, p = 0.00004 and

0.003 for humerus and femora, respectively).

The abnormal collagen modification and crosslinking affects the

structure and organization of collagen fibrils. In dermal fibrils of

Ppib2/2 mice, we noted the presence of disorganized aggregate

forms, as well as a 25% increase in the average fibril diameter

(p = 1.7610215), and a broader distribution of fibril diameters

(p = 4.061028) (Figure 10B). In contrast to dermal fibrils, collagen

fibrils from femoral tissue were less densely packed and had visibly

Figure 6. Post-translational modification of type I collagen from tissues. (A) Total lysyl hydroxylation of type I collagen is dramatically
reduced in dermal tissue from Ppib2/2 mice (p,0.001 vs wild-type). (B) Post-translational hydroxylation and glycosylation of type I collagen lysyl
residues in dermal tissue from Ppib2/2 mice. (C) SDS-Urea PAGE analysis of pepsin extracts from dermal tissue demonstrates increased
electrophoretic migration of Ppib2/2 type I collagen alpha chains compared to wild-type. Arrows indicate faster migrating alpha chains. (D) Total lysyl
hydroxylation of type I collagen extracted from bone tissue of heterozygous (+/2) and homozygous (2/2) Ppib-null mice compared to wild-type
(+/+) bone collagen. Both Ppib+/2 and Ppib2/2 bone collagen show increased Hyl compared to wild-type (p = 0.0002 and 0.005, respectively). (E)
Analysis of post-translational lysine hydroxylation and glycosylation in Ppib2/2 bone-derived type I collagen demonstrates increased galactosyl-
hydroxylysine (G-HYL) content compared to wild-type (p,0.001). (F) Type I collagen extracted from bone tissue displays backstreaking of a1(I) chains
on SDS-Urea, indicated by arrow, and is consistent with post-translational overmodification. Arrowhead indicates a truncated form of a1(V) chains
due to pepsin sensitivity.
doi:10.1371/journal.pgen.1004465.g006
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decreased diameters compared to wild-type. Bone fibril diameters

were not quantitated because multiple bundle orientations in each

field does not allow a clear analysis of fibril cross-sections.

Discussion

To investigate the role of CyPB/PPIB in post-translational

modification and folding of type I collagen, we generated a CyPB

knockout mouse using a Ppib gene-trapped ES cell line. We

confirmed complete absence of Ppib transcripts in cultured cells, as

well as dermal and bone tissue of homozygous null mice.

Furthermore, CyPB was undetectable in immunoblots of both

fibroblast and osteoblast cultures. The resulting murine phenotype

reproduces the clinical findings in patients with PPIB deficiency,

including growth deficiency with bone deformities, reduced bone

mineral density, decreased bone volume and strength. Interest-

ingly, the impairment of mechanical properties of Ppib2/2 femora

exceeded the extent expected from bone structural parameters,

suggesting that bone material properties have also declined.

This study recapitulates some features previously reported in a

CyPB-deficient mouse, including a moderately severe skeletal

phenotype with reduced bone geometry, absence of a1(I) P986 3-

hydroxylation and delayed collagen migration on gel electropho-

resis. The prior study focused on the role of CyPB in the P3H

complex, while we investigated CyPB’s function in collagen

synthesis, folding and helical modification. We found that collagen

folding is delayed in Ppib2/2 cells, and further folding delay by

CsA inhibition provides support for an additional collagen PPIase.

Furthermore we identified striking differences in the pattern of

collagen post-translational modification in cells versus tissues.

Unexpectedly, CyPB deficiency also results in tissue- and site-

specific alterations of post-translational hydroxylation and glyco-

sylation of type I collagen, which consequently affect fibril

assembly, crosslinking in matrix, and bone mineralization. Thus

our study offers novel mechanisms with the potential to explain the

unique features of CyPB deficiency in humans, compared to the

consequences of P3H1/CRTAP defects.

In our Ppib KO mice, a1(I) P986 3-hydroxylation is nearly

absent from dermal and bone collagen, demonstrating that CyPB

is required in vivo for 3-hydroxylation complex activity in tissues.

This is consistent with the 3-hydroxylation status previously

reported in murine Ppib-null bone and skin collagen, as well as

with ,1% modification of P986 residues in a1(I), a1(II) and a2(V)

chains from bone, skin and cartilage of Crtap-null mice [8,30,31].

P986 3-hydroxylation of type I collagen was also absent in tail

tendon, bone and skin of P3H1-null mice [22,32]. At the A2 site

(a2(I) P707), we observed a 50% reduction of 3-hydroxylation in

collagen from skin and bone, suggesting that P3H1 or other P3H

isoforms can modify this site without requiring CyPB for activity.

For other sites and/or collagen alpha chains, the requirement for

CyPB may be quite stringent. Delayed electrophoretic migration

of collagen alpha chain, caused by increased post-translational

modification, is considered to be a reliable surrogate assay for

slower helix folding. Steady-state collagen from Ppib2/2 cultured

fibroblasts and osteoblasts has delayed gel mobility, consistent with

the significant delay in helical folding of type I collagen

demonstrated in direct intracellular folding assays in both cell

types. Collagen folding in Ppib2/2 fibroblasts and osteoblasts was

delayed 5 to 8 minutes, respectively. By comparison, fibroblast cell

lines from OI patients harboring typical structural defects in type I

Figure 7. Altered post-translational modification of specific type I collagen lysine residues in the absence of Ppib. Quantitation of
type I collagen modifications at a1(I) and a2(I) K87 residues, which are important for crosslinking of type I collagen heterotypic fibrils in tissue. Results
were obtained from collagen secreted in culture by primary osteoblasts, or from 3–5 independent tissue samples for each genotype. K, lysine; OH,
hydroxylysine; G, galactosylhydroxylysine; GG, glucosylgalactosylhydroxylysine.
doi:10.1371/journal.pgen.1004465.g007
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collagen demonstrated 5 to 60 minutes delay in formation of the

collagen helix versus control cells, depending on the glycine

substitution [33].

Treatment of control fibroblast and osteoblast cultures with

cyclosporin A (CsA), a non-specific cyclophilin inhibitor, resulted

in a 10–12 minute delay in collagen folding, similar to published

experiments [17,34]. Unexpectedly, CsA treatment of CyPB-

deficient cells further increased the collagen folding delay by 6–

8 minutes beyond that seen in untreated cells. These data suggest

that another CsA-sensitive PPIase is capable of partial compen-

sation for CyPB deficiency, and may be involved in collagen

folding under normal conditions. Furthermore, even in CsA

treated cells, folding remains slower in Ppib2/2 than WT cells,

suggesting that a CyPB-dependent, CsA-resistant function may

also be supporting collagen folding. We previously reported a type

IX OI patient with total absence of CyPB due to a start codon

substitution [19]. Fibroblast collagen from this patient had normal

helical modification suggestive of normal collagen folding,

Table 2. Post-translational modification of type I collagen lysine residues.

BONE OB

+/+ +/2 2/2 +/+ 2/2

a1(I) K87 Lys 2.061.0 2.060.4 43.066.0*# 0.160.1 21.266.4*

Hyl 6.062.0 13.065.0 7.061.0# 13.464.8 10.164.7

G-Hyl 24.063.0 22.067.0 6.066.0*# 0.960.3 0.860.1

GG-Hyl 68.064.0 63.0611.0 44.0612.0*# 85.664.6 67.761.8*

a1(I) K174 Lys 18.061.0 19.063.0 15.062.0 15.562.7 9.361.9*

Hyl 67.062.0 66.062.0 56.061.0*# 54.264.2 33.461.4*

G-Hyl 12.062.0 13.061.0 19.061.0*# 9.763.4 8.962.9

GG-Hyl 2.060.0 2.060.0 10.062.0*# 20.563.5 48.362.9*

a1(I) K564 Lys 0.0 0.360.2 0.0 11.065.6 9.862.4

Hyl 76.064.0 79.063.0 45.065.0*# 56.361.3 44.964.9*

G-Hyl 21.064.0 17.062.0 31.063.0# 13.762.5 13.462.6

GG-Hyl 3.061.0 4.061.0 24.064.0*# 18.963.0 31.964.7*

a1(I) K603 Lys 42.063.0 40.061.0 37.062.0 42.064.6 28.264.3*

Hyl 57.063.0 59.061.0 58.062.0 49.165.4 48.064.8

G-Hyl 0.660.1 0.660.0 2.060.0* 1.960.1 4.160.6*

GG-Hyl 0.260.1 0.460.0 2.061.0*# 7.061.4 19.662.1*

a1(I) K756 Lys 40.062.0 41.061.0 41.065.0 40.566.8 31.563.4

Hyl 59.563.0 58.560.8 57.066.0 54.566.9 57.161.9

G-Hyl 0.461.0 0.560.2 1.561.0 1.260.1 2.360.3*

GG-Hyl 0.160.1 0.160.1 0.660.5 3.760.2 10.860.9*

a2(I) K87 Lys 23.065.0 20.064.0 55.064.0*# 0.660.1 21.363.1*

Hyl 77.065.0 80.064.0 45.064.0*# 88.960.7 61.663.0*

G-Hyl 0.0 0.0 0.0 0.360.1 0.360.1

GG-Hyl 0.0 0.0 0.0 10.260.6 16.860.4*

a2(I) K174 Lys 25.063.0 20.068.0 38.066.0*# 24.163.0 42.062.4*

Hyl 19.063.0 20.062.0 8.063.0*# 15.362.1 4.160.6*

G-Hyl 51.063.0 53.066.0 38.064.0*# 23.462.3 8.960.6*

GG-Hyl 5.063.0 7.062.0 16.062.0*# 37.362.3 45.062.1*

a2(I) K219 Lys 9.062.0 8.062.0 8.062.0 13.360.6 7.860.6*

Hyl 86.061.0 86.062.0 75.063.0*# 73.665.8 50.961.0*

G-Hyl 4.061.0 4.061.0 5.061.0 0.860.3 1.260.3

GG-Hyl 1.060.6 2.060.0 12.064.0*# 12.365.9 40.161.6*

a2(I) K933 Lys 0.0 0.0 38.063.0*# 2.960.2 0.0*

Hyl 100.0 100.0 62.063.0*# 92.062.8 91.261.9

G-Hyl 0.0 0.0 0.0 1.060.4 0.960.2

GG-Hyl 0.0 0.0 0.0 4.062.4 7.961.7

*p,0.05 between +/+ and 2/2;
#p,0.05 between +/2 and 2/2;
no significant difference between +/+ and +/2 in bone.
doi:10.1371/journal.pgen.1004465.t002
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Figure 8. Expression of ER resident collagen helical lysine modification enzymes. (A–C) Real-time RT-PCR of total RNA from two
independent cell cultures of newborn fibroblasts (FB) and calvarial osteoblasts (OB), and 5 independent skin and femoral samples for each genotype
at 8 weeks of age. (D) Western blots of cell lysates probing for lysyl hydroxylase 1 (LH1/PLOD1), lysyl hydroxylase 3 (LH3/PLOD3), glycosyltransferase
25 domain containing 1 (GLT25D1), and b-actin in wild-type (+/+), heterozygous (+/2) and homozygous (2/2) Ppib-null cells and tissues.
doi:10.1371/journal.pgen.1004465.g008

Figure 9. Pulse-chase analysis of type I collagen secretion. There is a minimal delay in secretion of collagen by cyclophilin B-deficient
fibroblasts and osteoblasts in culture.
doi:10.1371/journal.pgen.1004465.g009
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prompting us to propose redundancy of collagen cis-trans

isomerases. The identity of this PPIase is open to speculation.

Only one cyclophilin, but at least six FK506 binding proteins

(FKBPs), occur in the rER [13,14]. Until recently, FKBP65, which

binds gelatin and is partially inhibited by CsA in vitro, was an

attractive candidate [35]. However, addition of FK506 to cell

cultures delays collagen folding only slightly [34], and absence of

FKBP65 in patients with OI, Bruck syndrome and Kuskokwim

disease has negligible effects on collagen helical folding [36–38],

limiting FKBP65 to at most a compensatory role in the absence of

CyPB. Similarly, mutations in FKBP14, which encodes FKBP22,

were identified in an Ehlers-Danlos like-syndrome similar to the

kyphoscoliotic type of EDS (EDS VIA) caused by LH1 deficiency,

but their types I, III and V collagens showed normal electropho-

retic migration [39].

One of the striking findings of this study was the difference in

post-translational modification in collagen isolated from cell

cultures versus dermis and bone. Ppib2/2 fibroblast and osteoblast

steady-state type I collagen has significant electrophoretic delay,

but normal total hydroxylysine content, which suggested that

increased glycosylation delayed gel mobility. In contrast, collagen

extracted from dermal tissue of CyPB-deficient mice has an 80%

decrease in total helical hydroxylysine content, leading to more

rapid gel migration of alpha chains than collagen from wild-type

skin. The decreased hydroxylation of collagen in dermal tissue of

the Ppib2/2 mouse is similar to the dermal tissue data from

American quarter horses with hyperelastosis cutis caused by a

homozygous Ppib missense mutation that does not impair its

isomerase function in vitro. The significantly decreased hydroxy-

lysine content of dermal collagen in the horse is proposed to result

from loss of a CyPB-LH1 interaction required for LH1 activity

[21].

Type I collagen extracted from humeri of Ppib2/2 mice had

different post-translational modification than both osteoblasts and

dermal tissue. Bone-derived collagen alpha chains demonstrated

subtle broadening and backstreaking on PAGE analysis, consistent

with the increased global hydroxylation and glycosylation of lysyl

residues determined by amino acid analysis. However, detailed

mass spectrometric analysis revealed site-specific alterations in

lysine post-translational modification of bone tissue collagen. We

found dramatic underhydroxylation of lysine residues involved in

the formation of intermolecular crosslinks in tissue, specifically at

a1(I) K87 (57% Hyl in null vs 98% in WT), a2(I) K87 (45% Hyl in

null vs 77% in WT), and a2(I) K933 (62% Hyl in null vs 100% in

WT). Significant decreases in hydroxylation of these residues are

also seen in CyPB-deficient osteoblast collagen. It is generally

Figure 10. Dysregulation of collagen deposition and fibril assembly. (A) Left, Deposition of type I collagen by osteoblasts into extracellular
matrix in culture. Post-confluent cultures were pulsed for 24 hr, followed by serial extraction of incorporated collagens from the media (M), neutral
salt (NS), acid soluble (AA, immaturely crosslinked) and pepsin soluble (P, maturely crosslinked) fractions of the matrix. Right, Matrix collagen to cell
organics ratio from Raman micro-spectroscopy shows decreased collagen content in matrix deposited by homozygous Ppib-null (2/2) versus wild-
type (+/+) osteoblasts in culture (p = 0.002). (B) Transmission electron micrographs of femoral and dermal collagen fibrils from 8 week-old wild-type
(+/+) and CyPB-deficient mice (2/2). Diameters of 200 dermal fibrils were measured for each sample and plotted, right. (C) Quantitation of divalent
crosslinks in murine humeri reveals increased HLNL (hydroxylysinonorleucine) crosslinks, which require helical lysine residues, but no change in
DHLNL (dihydroxylysinonorleucine) crosslinks, which involve helical hydroxylysine residues. (D) Quantitation of trivalent crosslinks in murine humeri
and femora. Total pyridinoline crosslinks are increased due to an increase in lysyl pyridinoline (LP), but not hydroxylysyl pyridinoline (HP) crosslinks in
bone.
doi:10.1371/journal.pgen.1004465.g010
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accepted that hydroxylation of helical lysine residues is catalyzed

by LH1. However, LH1 stability does not appear to be affected in

Ppib2/2 tissues based on western blot analysis (Figure 8D).

Whether CyPB contributes to LH1 folding, or stabilizes its activity

by binding, are among the possibilities to be investigated. Thus

absence of CyPB from bone has critical direct and indirect effects

on collagen, affecting both collagen folding and the activity of a

major collagen-modifying enzyme, respectively. This gives CyPB a

pivotal role in determining the structure of secreted collagen.

The site-specific changes in lysine hydroxylation seen in CyPB-

deficient cells and tissues raises the possibility of an additional

regulatory mechanism in bone, where there is apparent functional

redundancy of LH activity directed at helical lysines not involved

in crosslinking. Primary LH1 and LH2 deficiency demonstrated

that LH1 hydroxylates lysines in the collagen triple helix while

LH2 functions as the telopeptidyl lysyl hydroxylase [40–43].

However, collagen demonstrated variable decreases in Hyl content

in bone from Ehlers-Danlos Type VIA patients (10–43% of

normal) and a Plod1 KO mouse (75% of wild-type), although

specific helical lysines involved in crosslinks were always under-

hydroxylated based on decreased HP/LP crosslink ratios [44–46].

Thus, although LH1 appears to be required as the primary

hydroxylase for helical domain crosslinking lysines in bone

collagen, the relative roles of LH1, LH2 and LH3 at other helical

sites and in other tissues is less well understood. LH3, which has

LH, galactosyltransferase and glucosyltransferase activity in vitro

and in culture [24,27,47,48], could be the source of helical Hyl

and even increased lysine glycosylation, in Ppib2/2 bone [49].

Both a KO murine model for LH3 and a mouse with inactivated

LH3 hydroxylation have faster gel migration of fibroblast type I

collagen [50]. In the single human case of LH3 deficiency

reported, the disaccharide derivative of pyridinoline crosslinks was

absent in the patient’s urine [28].

The intracellular hydroxylation of collagen helical K87, K930/

933 and telopeptidyl lysine residues determines the collagen

crosslink pathway. Crosslinks between collagen molecules in

extracellular matrix are crucial to skeletal function because they

contribute to matrix stability, bone strength and ductility. In both

dominant OI caused by primary collagen defects and recessive OI

caused by CRTAP and P3H1 deficiency, the overhydroxylation of

collagen helical lysines leads to increased divalent DHLNL/

HLNL and trivalent HP/LP collagen crosslink ratios [51–55]. In

contrast, in Ppib2/2 mice the underhydroxylation of K87 residues

in tissue collagen results in substantial decreases in DHLNL/

HLNL and HP/LP ratios in bone. Notably, these changes are

similar to findings in primary LH1 deficiency, in which bone-

derived urinary peptides reflect decreased hydroxylation of

collagen lysine residues involved in crosslink formation [40], and

decreased HP/LP ratios and increased total pyridinoline crosslinks

were observed [40,56,57]. The cause of increased total crosslinks

seen in Ppib2/2 bone collagen is not clear. Possibly, decreased

K87 hydroxylation and glycosylation may favor binding or activity

of lysyl oxidase at this site [25,58,59].

Eyre and colleagues proposed that the collagen prolyl 3-

hydroxylation modification supports matrix supramolecular as-

sembly by fine-tuning the intermolecular alignment of collagen

molecules to facilitate crosslink formation [55]. Our finding of

severe reduction in collagen deposition into matrix is consistent

with this hypothesis. However, we now understand that collagen

secreted by CyPB-deficient osteoblasts has site-specific alterations

in hydroxylation and glycosylation as well as absent P986 3-

hydroxylation, which could also alter matrix assembly in addition

to changes in collagen crosslinking and fibril structure. Further-

more, although this investigation focused on type I collagen,

extracts from Ppib2/2 bone show a substantial decrease in the

quantity of type V collagen alpha chains (Figure 6F).

The effect of altered collagen crosslinking in Ppib2/2 bone on

mineralization remains to be explored. Bone from OI caused by

collagen structural defects or CRTAP deficiency, whose crosslink

pattern is opposite to this Ppib2/2 mouse, is paradoxically

hypermineralized. Collagen crosslinking and bone mineral crys-

tallinity were strongly correlated in long bones of several congenic

mouse strains [60]. On the other hand, increased HP/LP ratios

correlate with the ultimate compressive strength of trabecular

bone, but are independent of BMD [61,62]. Comparison of

mineralization in Ppib2/2 and classical OI bone will provide

insight into the interaction of bone crosslinks and mineralization,

and could point to collagen modification as an intracellular

pathway by which osteoblasts can actively influence bone

mineralization.

Our initial goal in generating this mouse model of CyPB

deficiency was to address the inconsistent findings of type I

collagen lysyl and P986 hydroxylation among patients with type

IX OI. Our analysis has revealed features of collagen biochemistry

that have yet to be addressed in patients with type IX OI, in which

all four sets of analyses were limited to collagen from fibroblast

cultures. First, the extent and distribution of collagen helical

modification in murine Ppib2/2 samples differed between cells and

tissues, with the overmodification of type I collagen from cultured

cells due to increased glycosylation of a normal number of

hydroxylysine resides. Future site-specific examination of tissue

samples from type IX OI will be required to determine whether

LH1 function is compromised and whether compensatory

hydroxylation occurs. Second, type I collagen 3-hydroxylation

differs between humans and mice with CyPB deficiency. In

cultured cells of type IX OI patients, a1(I) P986 3-hydroxylation is

normal in two moderately severe cases and reduced to about 30%

in two lethal infants, while tissues and cells from both murine

models have totally abolished P986 3-hydroxylation. Thus, our

data suggests that the redundancy for CyPB’s role in collagen

folding may not apply to its role in 3-hydroxylation of the A1 site

of type I collagen in mice. Tissue studies of type IX OI probands

will be critical to determine whether the role of CyPB in 3-

hydroxylation by the CRTAP/P3H1 complex is fully rescued by

redundancy in human cells with total absence of CyPB, but only

partially rescued in the presence of truncated CyPB.

Materials and Methods

Generation of Ppib-null mice
ES cell gene trap lines with a b-geo reporter construct inserted

in intron 1 of the Ppib gene were produced by BayGenomics

(UCSF, CA) and obtained from the Mutant Mouse Regional

Resource Center (Davis, CA) [63]. The gene trap construct

contains intron 1 and a portion of exon 2 to include splice acceptor

sequence from the mouse En2 gene, followed by a b-galactosidase/

neomycin (b-geo) reporter-selection cassette and SV40 polyade-

nylation signal. Cells were expanded for isolation of mRNA and

quantitation of Ppib expression. A heterozygous clone from cell line

RST139 was shown to have half-normal Ppib expression by real-

time RT-PCR, and was injected into C57BL/6 blastocysts.

Founders were generated by mating chimeric males with 129/

P2/OlaHsd females to retain the 129 background of the ES cell

line. A second line was generated for experiments by backcrossing

F1 mice into C57BL/6 for 5 generations.

Genomic DNA for genotyping was isolated using the Red

Extract-n-Amp tissue PCR kit (Sigma) and amplified by hemi-

nested PCR using a sense primer located in Ppib exon 1

Cyclophilin B KO Mouse Model of Recessive OI
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(59-TGCCCGGAC CCTCCGTGGCCAACGATAAGA-39), an

antisense primer corresponding to intron 1 of En2 (59-

GGCATCTCCCCTTCAGTCTTCCTGTCCAGG-39), and an

antisense primer downstream of the inserted construct internal to

Ppib intron 1 (59-GGGGGGCTGGGGGAGTCTGGGTTAT-

TCTCT-39). Complete absence of Ppib transcripts was verified by

real-time RT-PCR of mRNA isolated from femoral tissue and skin

of F2 Ppib homozygous knock-out mice. Animal care and

experiments were performed in accordance with a protocol

approved by the NICHD ACUC committee.

Skeletal staining, growth curves, X-ray, DXA analysis
For skeletal staining, skin and viscera were removed from dead

P1 newborn pups. Pups were fixed in 95% ethanol for 7 days and

stained with 0.3% Alcian Blue 8GS and 0.1% Alizarin Red S [64].

Excess stain was removed with 1% KOH and increasing

concentrations of glycerol. For growth curves, mice were fed

regular rodent chow and weighed weekly from 3 to 24 weeks of

age. Skeletal characteristics of F6 wild-type, heterozygous and

homozygous Ppib-null littermates were analyzed at age 8 weeks.

Radiographs were performed by Faxitron (30 kV for 1 min). Areal

bone mineral density (aBMD) scans of mouse femurs were

acquired using a GE Lunar PIXImus2 (GE Healthcare) and

internal calibration standards. To determine femoral length,

femora were dissected and cleaned of soft tissue, leaving the

epiphyses intact. Femurs were measured from the proximal head

to the distal end of the medial and lateral condyles with a digital

caliper.

Micro-computed tomography, mechanical testing
Left femora of 8 week-old mice were analyzed by mQCT for

both structural and mineral parameters using a SkyScan1174

compact micro-CT scanner (MicroPhotonics) operating at 50 kV

with an X-ray source current of 800 mA, according to manufac-

turer directions. BMD was calibrated with hydroxyapatite

phantoms. Morphometric analyses of trabecular and cortical

regions was performed using CTAn software (v.1.13) and 3D

images were generated using CTvol software (v.2.2). The

trabecular region of interest (ROI) was located just proximal to

the distal femoral growth plate and extended 10% total femoral

length. The diaphyseal cortical ROI centered on the femur

midpoint, spanning 15% total femoral length.

Femora were loaded to failure in four-point bending as

previously described [65]. Femora were loaded to failure in four-

point bending at 0.5 mm/s in the anterior-posterior direction with

the posterior surface under tension using a servohydraulic testing

device (MTS 858; MiniBionix; MTS Systems Corporation). Force

was recorded by a 50lb load cell (Sensotec) and vertical

displacement by an external linear variable differential transducer

(Lucas Schavitts) at 2000 Hz. Load-displacement curves were used

to calculate stiffness, yield load, yield displacement, ultimate load,

failure displacement, post-yield displacement, and energy to

failure.

Cell culture
Primary fibroblast (FB) and calvarial osteoblast (OB) cultures

were derived from 3-day old pups by standard procedures [66].

Cells from digestions 3–5 were plated at a density of 5,000 cells/

cm2 and cultured in aMEM with 10% FBS, 2 mM glutamine, 1%

pen-strep and 8% CO2. FB cultures were derived from dermal

tissue dissected from the abdomens of newborn pups. FB were

allowed to grow out from dermal samples for 2 weeks, released by

trypsin digestion and cultured in DMEM containing 10% fetal

bovine serum, 2 mM glutamine, 1% pen-strep and 5% CO2.

Analysis of gene expression
Total RNA was extracted from cell cultures or tissues dissected

from F6 mice using TriReagent (Molecular Research Center)

according to the manufacturer’s protocol. Total RNA was treated

with DNA-free (Life Technologies), then reverse-transcribed using a

High Capacity cDNA Archive Kit (Life Technologies). Real-time

RT-PCR was performed using Taqman Assays on Demand (Life

Technologies, Ppib, Mm00478295_m1; Plod1, Mm01255760_m1;

Plod3, Mm00478798_m1; Glt25d1, Mm00600638_m1; Glt25d2,

Mm01290012_m1; Gapdh, Mm99999915_g1). Relative expression

of genes of interest was measured in triplicate, normalized to Gapdh

transcripts, and quantified relative to wild-type calvarial OB.

Western blot analysis
Two independent fibroblast (FB) and osteoblast (OB) cultures

for each genotype were lysed in RIPA buffer (150 mM NaCl, 1%

NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 50 mM Tris, pH 7.4)

supplemented with protease inhibitor cocktail (Sigma). Protein

concentration was determined using the BCA Protein Assay Kit

(Thermo Scientific). Samples (15 mg protein) were subjected to

SDS-PAGE on 10% acrylamide gels under denaturing conditions

and electroblotted onto nitrocellulose membranes. The mem-

branes were blocked overnight in 5% non-fat milk in TBST. After

washing in TBST, membranes were incubated overnight at 4uC in

TBST containing 2.5% non-fat milk and primary antibody

(diluted 1:1000). After washing in 16 TBST, membranes were

incubated with the corresponding IRDye infrared secondary

antibody (diluted 1:10,000) (LI-COR Biosciences). Proteins were

visualized using an Odyssey Infrared Imaging System (LI-COR

Biosciences). Quantitation of proteins was performed using the

Odyssey 3.0.30 software with normalization to Actin levels. The

analysis was repeated to ensure reproducibility. The primary

antibodies used include anti-P3H1 (Abnova), rabbit anti-actin

(Santa Cruz Biotechnology), rabbit anti-CyPB (Abnova), rabbit

anti-PLOD1 (Santa Cruz Biotechnology), rabbit anti-PLOD3

(Proteintech), and goat anti-GLT25D1 (Santa Cruz Biotechnolo-

gy). Anti-mouse CRTAP antibody was a generous gift from Dr

Brendan Lee, Baylor College of Medicine.

Biochemical analysis of type I collagen
Steady-state collagen analysis was performed as previously

described [67]. Collagens were prepared by pepsin digestion

(50 mg/ml) of procollagen samples, separated on 6% SDS-urea-

polyacrylamide gels and visualized by autoradiography.

For analysis of collagen modification in cell culture, confluent

FB and OB were stimulated for collagen synthesis in DMEM or

aMEM containing 0.1% FBS and 100 mg/ml ascorbate for three

days, with daily collection. Collected medium was buffered with

100 mM Tris-HCl, pH 7.4, and cooled to 4uC. Protease inhibitors

were added to the following final concentrations: 25 mM EDTA,

0.02% NaN3, 1 mM phenylmethylsulfonylfluoride, 5 mM benza-

midine, and 10 mM N-ethylmaleimide. Procollagens were pre-

cipitated from media with ammonium sulfate overnight at 4uC.

Procollagen was collected by centrifugation, resuspended in 0.5 M

acetic acid and digested with 0.1 mg/ml pepsin at 4uC overnight.

Selective salt precipitation of collagen with 0.9 M NaCl in 0.5 M

acetic acid was performed twice. Purified collagen samples were

resuspended in 0.5 M acetic acid, dialyzed against 5 mM acetic

acid overnight and lyophilized before further analyses.

Differential Scanning Calorimetry (DSC) scans were performed

as previously described [68]. Thermograms were recorded in

0.2 M sodium phosphate, 0.5 M glycerol, pH 7.4, from 10 to

50uC at 0.125 and 1uC/min heating rates in a Nano III DSC

instrument (Calorimetry Sciences Corporation).
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Analysis of tissue-derived collagens was performed using skin,

femora and humeri from 2 month old mice (n = 5). After marrow

was flushed with cold PBS, bone samples were pulverized in liquid

N2, demineralized with EDTA at 4uC for 2 weeks, and lyophilized.

Skin dissected from the backs of mice was minced and lyophilized

after removal of hair, fat and muscle. Two mg of the dried samples

were then reduced with standardized NaB3H4, hydrolyzed with

6N HCl and subjected to amino acid and cross-link analyses as

previously described [69–71]. The extent of Lys hydroxylation in

collagen was calculated as hydroxylysine (Hyl)/hydroxyproline

(Hyp)6300 (i.e. ,300 residues of Hyp/collagen). The cross-link

precursor aldehydes and reducible cross-links were measured as

their reduced forms and all cross-links were quantified as moles/

mole of collagen.

Characterization of collagen post-translational
modifications

Collagen 3-hydroxylation was analyzed by in-gel tryptic

digestion of SDS-PAGE-purified type I collagen alpha chains.

Electrospray mass spectrometry was performed on the tryptic

peptides using an LCQ Deca XP ion-trap mass spectrometer

equipped with in-line liquid chromatography (Thermo Finnigan)

using a C8 capillary column (300 mm6150 mm; Grace Vydac

208MS5.315) eluted at 4.5 ml per min.

Site-specific modification of lysyl residues was determined by

LC/MS/MS on a Waters Q-Tof Premier mass spectrometer

coupled to a nanoACQUITY UPLC system (Waters Corporation)

as reported [25]. Tryptic peptides containing Lys residues, their

hydroxylated and/or glycosylated forms were identified from the

LC/MS/MS analyses using manual interpretation of the MS/MS

spectra. Relative quantitation of lysine (Lys), hydroxylysine (Hyl),

galactosyl-Hyl (G-Hyl) and glucosylgalactosyl-Hyl (GG-Hyl) at a

specific glycosylation site was performed by dividing the total ion

abundance determined for each species by the sum of the ion

abundances of all observed species containing that particular site.

Collagen folding assays
An intracellular collagen folding assay was performed as

described [17]. Confluent cells were stimulated overnight in

media with 10% FBS and 100 mg/ml ascorbic acid, and then

incubated in serum free media containing 100 mg/ml ascorbic acid

for 2 hr. Cells were pulsed with 1.4 mCi/ml 14C-proline for

15 min to label procollagen chains, followed by collection of the

cell layer every 5 min. Each sample was digested for 2 min at

20uC with 0.2% Triton X-100, 100 mg/ml trypsin, and 250 mg/ml

chymotrypsin in PBS (Sigma). Digestions were stopped by addition

of 1 mg/ml soybean trypsin inhibitor (Sigma). Samples were

precipitated overnight, collected by centrifugation, electropho-

resed on 3–8% Tris-acetate gels (Life Technologies) and quanti-

tated by densitometry of autoradiograms. Assays were performed

in duplicate on two independent cultures for each genotype.

Collagen synthesis and secretion kinetics
For pulse-chase assays, performed as described [72], wild-type

and homozygous Ppib-null FB were grown to confluence. For each

cell line, two wells were used for cell counts. Procollagens were

harvested at the indicated times, digested with pepsin and

precipitated. Samples were loaded for equivalent cell number on

3–8% Tris-acetate gels. Collagen alpha chains were quantitated by

densitometry and expressed as the percent secreted at each time

point, as determined by (media)/(cell + media)6100.

Collagen matrix deposition
Wild-type and homozygous Ppib-null FB and OB were grown to

confluence and stimulated every other day for 14 days with fresh

DMEM (fibroblasts) or aMEM (osteoblasts) containing 10% FBS

and 100 mg/ml ascorbic acid, as described [73]. Matrix collagens

were sequentially extracted at 4uC, with neutral salt for newly

incorporated collagen, then acetic acid for collagens with acid-

labile cross-links, and, finally, by pepsin digestion for collagens

with mature cross-links [74]. All fractions were electrophoresed on

6% polyacrylamide-urea-SDS gels. Samples were loaded for

equivalent densitometry signal; the total signal for each fraction

was calculated by adjusting the gel signal by the total volume of

that fraction. In separate experiments, quantitation of matrix

deposited in culture was performed using Raman microspectros-

copy. Cultures were fixed in 1% paraformaldehyde and analyzed

as previously described [36]. Matrix collagen:cell organics ratios

were evaluated from decomposition of corrected spectra of

collagen-free cytoplasm and purified collagen in the amide III

spectral region.

TEM analysis of murine dermal collagen fibrils
A dermal biopsy was obtained from abdominal skin of wild-type

and homozygous null mice, then processed as described [75].

Representative areas of the stained grids were photographed in a

Zeiss EM10 CA transmission electron microscope (JFE Enterpris-

es).

Supporting Information

Figure S1 (A) Quantitation of Ppib expression in gene-trapped

ES cells by real-time RT-PCR. Knockout founders were generated

from cell line RST139. (B) Deposition of type I collagen by

fibroblasts into extracellular matrix in culture. Post-confluent

cultures were pulsed for 24 hr, followed by serial extraction of

incorporated collagens from the media (M), neutral salt (NS), acid

soluble (AA, immaturely crosslinked) and pepsin soluble (P,

maturely crosslinked) fractions of the matrix. Samples were loaded

for equivalent signal, and fractions were quantitated by densitom-

etry of autoradiograms following PAGE analysis.

(TIF)

Table S1 Micro-CT analysis of mouse femora. Femora of 2-

month male Ppib2/2 mice display altered structural parameters of

trabecular and cortical bone compared to wild-type mice.

(DOC)
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