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Abstract

Background: Respiratory syncytial virus (RSV) is a major cause of paediatric morbidity. Mathematical models can be used to
characterise annual RSV seasonal epidemics and are a valuable tool to assess the impact of future vaccines.

Objectives: Construct a mathematical model of seasonal epidemics of RSV and by fitting to a population-level RSV dataset,
obtain a better understanding of RSV transmission dynamics.

Methods: We obtained an extensive dataset of weekly RSV testing data in children aged less than 2 years, 2000–2005, for a
birth cohort of 245,249 children through linkage of laboratory and birth record datasets. We constructed a seasonally forced
compartmental age-structured Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) mathematical model to fit to
the seasonal curves of positive RSV detections using the Nelder-Mead method.

Results: From 15,830 specimens, 3,394 were positive for RSV. RSV detections exhibited a distinct biennial seasonal pattern
with alternating sized peaks in winter months. Our SEIRS model accurately mimicked the observed data with alternating
sized peaks using disease parameter values that remained constant across the 6 years of data. Variations in the duration of
immunity and recovery periods were explored. The best fit to the data minimising the residual sum of errors was a model
using estimates based on previous models in the literature for the infectious period and a slightly lower estimate for the
immunity period.

Conclusions: Our age-structured model based on routinely collected population laboratory data accurately captures the
observed seasonal epidemic curves. The compartmental SEIRS model, based on several assumptions, now provides a
validated base model. Ranges for the disease parameters in the model that could replicate the patterns in the data were
identified. Areas for future model developments include fitting climatic variables to the seasonal parameter, allowing
parameters to vary according to age and implementing a newborn vaccination program to predict the effect on RSV
incidence.
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Introduction

Respiratory syncytial virus (RSV) is the most common cause of

acute lower respiratory infections (ALRI) in children, especially

those aged less than two years. While RSV is not a notifiable

disease, the health and economic burden for young children

surpasses that of influenza in Australia, with an estimated

incidence ranging from 435–869/1000 infant population [1]. In

the United Kingdom RSV mortality rates in those aged less than

15 years have been shown to be on par with those of influenza [2].

RSV follows a distinct seasonality in most geographical areas with

peaks during winter months associated with cooler temperatures

and increased rainfall, [3–6] however RSV incidence can be

highly variable within countries and between regions within a

country depending on the level of seasonal forcing [7].

Mathematical models have been used in epidemiology to

characterise annual epidemics of respiratory infections and

measure the likely impact of intervention programs [8,9]. Models

can also determine the optimum timing of interventions and the

proportion of the population that need to be vaccinated in order to

reach the herd immunity threshold. There is currently no licenced

vaccine for RSV, but immunoprophylaxis with RSV-specific

monoclonal antibodies is effective in reducing RSV-related severe

disease [10]. Furthermore, an attenuated intranasal RSV/parain-

fluenza virus type 3 vaccine (MEDI-534) and a live attenuated

intranasal RSV vaccine (MEDI-559) have recently undergone

Phase 1 clinical trials in infants and young children [11,12].

Mathematical models are likely to be useful in assessing the impact

of such vaccines. However, to improve the accuracy of these

models, real population data are needed to fit the model
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parameters. Unlike notifiable diseases where positive detections

are reported nationally, RSV models rely on hospitalisations or

routinely collected laboratory data. To date, variations of simple

compartmental models for RSV have been constructed using

hospitalisation data from The Gambia, Singapore, Florida (USA)

and Finland [13] and Spain [14]. A further model has since been

developed using RSV testing data from a major children’s hospital

in Utah (USA) [15]. These models have shown that they can

reliably mimic the distinctive seasonal characteristics of RSV.

However, due to the differences in climate between these regions,

which result in different levels of seasonal forcing, RSV models

need to be developed and fitted to specific geographical areas.

We have access to total population-based linked data including

state-wide routinely collected laboratory data through the Western

Australian Data Linkage System (WADLS). Demographic, clinical

and laboratory data are linked following a best practice protocol

[16] in which personal identifiers are separated from health and

laboratory data and linked by a separate linkage team to produce a

project-specific child identifier key. De-identified data for each of

the datasets are then given to the approved research team for

analysis. In this study, we establish a compartmental model of

RSV transmission based on positive detections of RSV in

metropolitan Western Australian children, obtained through

population-based data linkage. Secondly, we explore variations

in the model fit with changes in the disease parameters of the

latency and infectious periods, and the reduction in the

susceptibility and infectiousness for older children and adults due

to reinfection and ageing.

Methods

Population and Setting
Western Australia covers approximately 2.5 million square

kilometres and has a population of 2.2 million [17]. The Western

Australian Department of Health classifies residential postcodes

into three major geographical regions: metropolitan (the capital

city, Perth, and its surrounds), rural (South West and North

Eastern areas outside of the metropolitan region) and remote (the

far East and far North Western Australia). The state crosses several

climatic zones with a temperate climate in the metropolitan and

southern regions and a tropical climate in the northern regions.

Approximately three-quarters of Western Australia’s population

reside in the metropolitan area. There is one dedicated tertiary

level paediatric teaching hospital, Princess Margaret Hospital for

Children (PMH) located in the state capital, Perth. At PMH, it is

standard practice to collect nasopharyngeal aspirates (NPA) for

respiratory virus detection on all children admitted to hospital with

ALRI [18]. A recommendation for respiratory pathogen testing is

in place at other smaller metropolitan and non-metropolitan

hospitals across Western Australia.

Population-based data
Previously we have extracted data from WADLS on 245, 249

singleton live births (7.1% of which are Aboriginal) in Western

Australia between 1996 and 2005 from the Midwives’ Notification

System, Birth and Death Register and the Hospital Morbidity

Database System. Details of data cleaning are provided elsewhere

[19,20]. In brief, our linked dataset contains information on birth

details, demographics and hospitalisation episodes for ALRI

between 1996 and 2005.

We have also extracted data from the PathWest Laboratory

Database concerning routine detections of respiratory viruses and

bacteria. PathWest Laboratory Medicine Western Australia (Path-

West) is the government-funded public laboratory service and

consists of all public pathology laboratories in Western Australia

and carries out a full range of diagnostic testing for infectious

diseases. Details of the component datasets within the PathWest

Laboratory Database are given elsewhere [21]. Laboratory data

were available from 2000 to 2005 for all children in the birth

cohort for ages 0–9 years. Respiratory samples received at

PathWest for viral testing are routinely investigated for RSV,

influenza viruses A and B, adenoviruses and parainfluenza virus

types 1–3. RSV was detected by either immunofluorescent antigen

detection, polymerase chain reaction (PCR) and/or viral culture.

Testing methods for RSV did not change between 2000 and 2005.

We used the residential postcode of the mother at the time of

her child’s birth as recorded on the Midwives’ Notification System

to classify laboratory detections to either the metropolitan, rural

and remote regions of Western Australia. To establish a model of

metropolitan RSV transmission in a temperate climate, we

restricted our data to RSV testing and positive detections in

children born in metropolitan areas. Ethical approval for this study

was granted by Princess Margaret Hospital for Children Ethics

Committee and the Department of Health Western Australia

Human Research Ethics Committee. Access to the population-

based data was approved by the Western Australian Data Linkage

Branch.

Model structure
We adapted the RSV compartmental transmission models used

by others [13,15,22] and constructed a Susceptible (S) – Exposed

(E) – Infectious (I) – Recovered (R) – Susceptible (S) model with

two age classes. S1, E1, I1 and R1 represented those individuals

aged less than 2 years and S2, E2, I2, and R2 represented those

individuals aged 2 years and over. Our SEIRS model was defined

by a series of differential equations:

dS1

dt
~m{bS1(I1zaI2){g1S1znR1

dE1

dt
~bS1 I1zaI2ð Þ{g1E1{sE1

dI1

dt
~sE1{g1I1{cI1

dR1

dt
~cI1{g1R1{nR1

dS2

dt
~g1S1{dbS2 I1zaI2ð Þ{g2S2znR2

dE2

dt
~g1E1zdbS2 I1zaI2ð Þ{g2E2{sE2

dI2

dt
~g1I1zsE2{g2I2{cI2

dR2

dt
~g1R1zcI2{g2R2{nR2
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where: m is the birth rate, b is the disease transmission rate, g1 is

the ageing rate from (SEIR)1 to (SEIR)2, g2 is the ageing rate of

leaving (SEIR)2 which is related to birth/death rate, 1/s is the

average latency period, 1/c is the average infectious period and 1/

n is the average duration of immunity. The scaling parameters a
and d represent the reductions in infectivity and susceptibility

respectively for the older age group compared to those aged less

than 2 years. Each model class represents the proportion of the

total population. A schematic representation of the model is shown

in Figure 1.

Parameters
The parameters were based either on real data from our

previous population-based data linkage studies, estimates from the

literature or were estimated during the model fitting process. Data

were aggregated at the weekly level so the time period of interest is

a week and all rates are quoted as per week for consistency.

Birth rate (m) and ageing rates (g1 and g2). Age class 1

represented those aged less than 2 years and age class 2

represented those aged 2 years or more. Therefore, the weekly

ageing rate was assumed to be 1/(2*52) for moving from (SEIR)1
to (SEIR)2. We assumed an overall stable population with a life

expectancy of 80 years and that deaths in those aged less than 2

years are insignificant to the older age group following Keeling

and Rohani [22]. Therefore the rate of entering the model, or the

birth/death rate, was assumed to be equal to the ageing rate for

leaving (SEIR)2 and was calculated as 1/(78*52).

Latency period (1/s). The latency period is defined as the

time between being infected and becoming infectious. Based on

previous literature [13], this was initially assumed to be an average

of 4 days (0.57 of a week). Values between 2 and 6 days were later

tested to determine the effect on the model fit.

Infectious period (1/c). The infectious period estimates the

time an individual remains infectious. Previous RSV models have

assumed this to be 10 days [13–15]. This estimate has been based

on a previous analysis of 23 infants where the average duration of

shedding of RSV was 6.7 days with a range from 1–21 days [23].

In order to be consistent with the literature, our initial model

assumed an average infectious period of 10 days (1.4 weeks).

Values between 7 and 12 days for this parameter were later tested

to determine the effect on the model fit.

Duration of immunity (1/n). The duration of immunity is

defined as the time between entering the recovery state to

becoming susceptible again for a subsequent RSV infection. In

previous literature [13] the duration of immunity has been

estimated to be 200 days (25.6 weeks). In a more recent RSV

model, the duration of immunity that produced the best fit to the

data was a yearly rate of 1.59 which approximately translates to

230 days (32.9 weeks) [14]. Due to the seasonal nature of RSV

epidemics the duration of immunity is difficult to measure from

observational data as the risk of reinfection depends on the time of

year of the first infection. An infection late in an epidemic season

has a lower risk of reinfection that season than an earlier infection

and is more likely to be reinfected in the following season. This

effect greatly biases the calculation of the duration of immunity

and probably leads to an overestimate. Due to the great

uncertainty in this parameter and its impact on the outcome in

the model we elected to make the duration of immunity a variable

to be fitted rather than estimated from the literature.

Transmission parameter (b). To account for the distinct

seasonality of RSV, the disease transmission parameter was

calculated as follows:

b~b0 1zb1 cos
2pt

52
zw

� �� �

This is based on harmonic analysis that we have previously

shown to accurately model RSV seasonality in metropolitan

Western Australia [3]. This seasonality function allowing for

varying amplitude over an annual cycle with a horizontal shift is

common in modelling seasonal outbreaks and has been used in

previous RSV transmission models [13,14,22]. The component

parameters b0, b1 and Q (phase shift) were estimated through the

model fitting process with t representing time in weeks. Here b0 is
the average transmission rate and b1 is the degree of seasonality

which is defined over the range [0,1] with higher values more

appropriate for regions with stronger seasonal drivers.

Scaled susceptibility (d). To account for less reported

infections in those aged 2 years or more, we included a scaling

parameter to reduce the susceptibility of the older age class being

infected by both infectious age classes. Based on reinfection studies

[24,25] initially the scaling parameter was set to 0.65 and later a

range from 0.5 to 0.8 was considered.

Scaled infectiousness (a). To account for reduced trans-

mission in those aged 2 years or more, we included a scaling

parameter to reduce the transmission from the infected population

in the older age class, to the susceptible population in both age

classes. The literature on the level of transmission from older

children and adults to younger children is scarce, thus as a starting

point in the model we set the scaled infectiousness to be the same

Figure 1. Schematic representation of RSV SEIRS model with two age groups. (SEIRS)1 represents those aged less than 2 years and (SEIRS)2
represents those aged 2 years or more.
doi:10.1371/journal.pone.0100422.g001
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as the scaled susceptibility, at 0.65 with a range from 0.5 to 0.8

considered.

Model fitting
The SEIRS model was developed in Cran R statistical package

[26], using the deSolve function to numerically solve the differential

equations and verified in MATLAB. The model was used to fit the

components of the seasonal transmission parameter, b0, b1 and Q,
and the inverse of the immunity period n. The model was fitted to

data regarding positive RSV detections in children aged less than 2

years between 2000 and 2005 in metropolitan Western Australia.

Since the model is a population wide model based on proportions

in each class and the data are for reported RSV cases from

population-based linked data, the model results were scaled to

represent this proportion of the total community cases. This

scaling was done by ensuring the total number of cases over the 6

years of the study and the model agreed. After using a set of initial

conditions for b0, b1, Q and n, we used the Nelder-Mead method

in Cran R with the neldermead package [27] to fit the model to our

actual RSV data. The weekly cumulative number of cases in the

first age class (children aged less than 2 years) from the model and

the real data was used in the model fitting process. The fit statistic

that was minimised during the model fitting process was defined

as:

F~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i~1

datai{SEIRSið Þ2
s

where datai and SEIRSi are the weekly number of cases aged less

than 2 years in the data and SEIRS model outcome and i is the

index for all weeks from the beginning of 2000 until the end of

2005. In contrast to Leecaster and colleagues [15] the fit statistic is

not scaled by the model value as this gives a poorer fit due to the

long periods over the summer months with very small case

numbers.

In addition to fitting the components of the transmission

parameter and the immunity parameter, we explored the variation

in the fitted value of these four parameters and the model fit

statistic by varying the duration of the latency period (2 to 6 days),

the recovery period (7 to 12 days), and the scaled infectiousness

and susceptibility parameters (0.5 to 0.8). The variations used were

based on a literature search and the epidemiology of RSV

detections and hospitalisations using our Western Australian data.

Results

RSV detections
There were 15,830 specimens collected in metropolitan children

aged less than 2 years between 2000 and 2005 that were tested for

RSV with 21% (n= 3394) being positive for RSV by direct

immunofluorescence, viral culture or PCR. Of the positive RSV

detections, 89.7% were identified from specimens collected from

hospitalised children, 9.4% were identified from specimens

collected from non-hospital patients, that is patients attending

emergency departments or hospital associated out-patient clinics,

and the remaining 0.9% were collected in children from private

laboratories associated with general practices. There were 4813

specimens in those aged 2–8 years that were tested and from those

11% (n= 534) were positive for RSV. Specimens tested and found

positive for RSV followed a clear seasonal pattern with peaks in

the winter months of June to August and very few cases during the

summer months of December to February (Figure 2). There was

also a distinct biennial seasonal pattern in both testing and positive

detections with alternating peaks. The average maximum number

of weekly detections in the higher peaks for years 2000, 2002 and

2004 was 73 compared with an average of 45 detections per week

for years 2001, 2003 and 2005. The proportion of specimens

tested that were positive for RSV ranged from 0% in off season

months to 74% in the peak periods.

SEIRS model
The SEIRS model was fitted to the 6 years of RSV positive

identifications. The transmission parameter values that minimised

the fit statistic using the Nelder-Mead method were b0 = 1.99,

b1 = 0.65, Q=2.43 and n=0.044 (translating to an immunity

period of about 23.5 weeks), resulting in a fit statistic of F = 89.575.

This best fit of the model to the data displayed alternating peak

sizes that accurately mimicked the observed data (Figure 3). In

contrast to the models of Leecaster and colleagues [15] the

parameter values used here are constant across the entire dataset

and do not vary by epidemic year. That is, there is a natural period

2 oscillation in the model with these parameter values giving the

alternating peaks observed in the data. Using different parameter

values for different years was not required to achieve the biennial

cycle. The biennial cycle was found to exist over a range of

parameter values and was not restricted to narrow parameter

choices. It should be noted that there are other regions of the

parameter space that had a poorer fit to the data that did not

exhibit this period 2 oscillation but instead had peaks of equal size

as has been observed in some other models [13,14].

Parameter variation
We explored differences in the fit statistic and transmission

parameter values through the variation of duration of the latency

and infectious periods, and the scaling parameters for reduced

susceptibility and infectiousness in the older age class. A summary

of the results is given in Table 1. We did not investigate the

variation in the parameter w because this simply represents the

horizontal fitting of the model to the dataset and does not change

the dynamics of the system overall.

Based on the available literature, our initial estimate of the

latency period was 4 days. To allow for variation around this

value, we tested values within the range of 2 days (weekly rate of

1/0.28) and 6 days (weekly rate of 1/0.86) All values within this

range produced a good model fit (F = 90.03 to F= 92.32; Table 1),

with the best fit agreeing with our initial estimate of 4 days.

Similar to other RSV models, our model initially assumed the

infectious period to be 10 days. This original estimate was based

on a study reporting the mean duration of shedding of RSV to be

6.7 days with the range of 1–21 days [23]. An additional study

found the shedding duration to be between 3.4 and 7.4 days but

considerably longer (9 days and potentially longer) for children

aged less than 2 years [28]. While we do not have available viral

shedding data, we explored hospital length of stay as a proxy for

the infectious period. This assumes that infectiousness is linked to

symptom presentation which may not be true. In addition, patients

may be discharged from hospital whilst still showing symptoms

that are not serious enough to warrant continued hospitalisation. It

is expected that hospital stay would be an underestimation of

infectious period. From linking the RSV laboratory data to

hospitalisation data, we identified 2,424 hospitalisations in

children aged less than 2 years in metropolitan Western Australia.

The median length of hospital stay was 3 days with the range of 0–

6 days. To allow for additional time before and after the hospital

stay, where a child may still be infectious, we explored models with

infectious periods of 7 days (weekly rate of 1/1) to 12 days (weekly

rate of 1/1.7). Despite the epidemiology of RSV infections in

Modelling Respiratory Syncytial Virus in Children
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Western Australia suggesting the optimal estimate for the

infectious period in the vicinity of 5–12 days, only periods in the

range of 8–11 days were successful in producing a model with the

biennial seasonal pattern; outside this range the model gave an

annual pattern which does not concord with the data.

Very few studies have been undertaken to ascertain to what

level RSV is transmitted from adults to children, with RSV in

Figure 2. Weekly number of specimens tested and found positive for RSV in metropolitan Western Australian children aged less
than 2 years from January 2000 to December 2005.
doi:10.1371/journal.pone.0100422.g002

Figure 3. Observed RSV identifications in those aged less than 2 years and the fitted SEIRS model. The parameters used in the model
are a= 0.65; d= 0.65; c= 1/1.4; and s= 1/0.57, producing a fit statistic of F = 89.5751.
doi:10.1371/journal.pone.0100422.g003
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adults most often presenting as the ‘‘common cold’’ [24]. One

study by Henderson et al (1979) found that the attack rate for first

RSV infection was 98%, 75% for second infections and 65% for

third infections [25]. As such, values between 0.5 and 0.8 were

tested for the scaling parameters a and d. Suitable model fits, close

to the optimal fit, were found for all tests in this range, with the

best fits for values between 0.6 and 0.7.

For the parameter ranges tested, the fitted duration of immunity

had little variation with typical values around 160 days

(n=0.0438) and a range from 148 to 164 days. As expected, the

most sensitive fit parameter was the average transmission

parameter b0. Reducing either the susceptibility or infectiousness

for the older age class required an increase in the transmission rate

for the model to fit the data. Increasing the infectious period

reduced the required level of transmission. Varying the latency

period did not have a significant impact on the transmission

parameter. The fitted value of the seasonality parameter, b1, was
consistent across the sensitivity analysis with a value typically

around 0.65 and a range from 0.59 to 0.68. The only other model

that has been fitted to biennial pattern RSV data assumed an

overly large seasonal forcing parameter of b1 = 1 and required

other parameters to vary season by season to obtain a good fit to

the data [15].

The best fitting transmission estimates and the corresponding fit

statistic for the different combinations of the duration of immunity

and recovery period are shown in Table 1. The fit statistic for

realistic parameter choices ranged from F=89.575 (the best fit) to

92.324. A number of parameter choices produced seasonal

epidemics curves of alternating peak sizes, consistent with the

RSV data. However, the model that minimised the residual sum of

errors assumed a latency period of 4 days and infectious period of

10 days, in keeping with earlier estimates in the literature.

Discussion

RSV is the most commonly detected pathogen in children with

ALRI and both RSV testing and positive detections in Western

Australia exhibit distinct seasonality with alternating peaks in

winter months. Using positive RSV detections obtained through

population-based data linkage, we have constructed a simple

mathematical model to mimic these seasonal patterns of detections

in the metropolitan population of Western Australia. Our age-

structured model accurately captures the biennial seasonal

epidemic curves that were observed in children aged less than 2

years between 2000 and 2005. The compartmental SEIRS model,

based on several assumptions, now provides a base model on

which to expand and increase complexity.

All models are based on assumptions of epidemiological

parameters of the disease in question. There is a paucity in the

literature of the characteristics of RSV infection including

duration of shedding and infectiousness. Previous models have

used the infectious period of 10 days based on a study of 23 infants

[23]. In another Kenyan community study of 193 children, the

mean duration of shedding was 4.5 days and varied between

severity of infection and recent history of infection [29]. While we

investigated models with infectious periods ranging from 7 to 12

days, we could only replicate the biennial seasonal peaks of RSV

with infectious periods between 8 and 11 days; outside this range a

suitable fit could not be found with only annual patterns produced

by the model.

Our initial estimate for the duration of immunity was 200 days

(,6.6 months), based on previous RSV models in the literature

[13]. We investigated this estimate using data regarding RSV

reinfections. From our linked laboratory data, there were 4,920

RSV positive identifications between 2000 and 2005 throughout

Western Australia in those aged less than 2 years. Of these, 92.6%

were single infections and 363 (7.4%) were reinfections (6.3% were

second time infections, 0.7% third time infections and 0.2% fourth

time infections). Excluding those reinfections with positive RSV

identifications from specimens collected less than 14 days apart

(most likely to be indicative of the same infection), there were 99

reinfections where the time between positive RSV identification

was .14 days. Of these 99 reinfections, 80 were identified in

children from metropolitan Western Australia. The mean time

between subsequent RSV infections from reinfections in metro-

politan children was 250 days (8.21 months) and the range was

15–592 days. However, the duration of immunity that the

produced the best fit for the model was 160 days. It is possible

that immunity wanes several months before the onset of a

subsequent RSV season, but that there are not enough infected

individuals in the population at that time for the infection to gain

momentum and hence our estimate of the immunity period from

the data is an overestimate.

We have identified several improvements that can be made to

the model which will become the focus of future work. First, we

will improve the age structure of the model to allow the

Table 1. Sensitivity analysis of the fit statistic and fitted transmission parameters for varying duration of immunity and infectious
period.

Test conducted Parameter variation Fitting parameters Fit statistic (F)

Parameter Value tested b0 b1 n

Parameters for best fit: a=0.65; d=0.65; c= 1/1.4; s= 1/0.57 - - 1.9896 0.6495 0.0438 89.5751

Reduction in infectiousness for adults a 0.5 2.5639 0.6775 0.0454 90.3653

a 0.8 1.6300 0.6262 0.0436 89.6733

Reduction in susceptibility for adults d 0.5 2.5534 0.6279 0.0445 90.1470

d 0.8 1.6488 0.6667 0.0468 90.2240

Variation to latency period 1/s 1/0.28 1.9113 0.5879 0.0474 90.0338

1/s 1/0.86 2.1255 0.6618 0.0457 92.3239

Variation to infectious period 1/c 1/1.14 2.3617 0.6478 0.0464 91.6664

1/c 1/1.57 1.8289 0.6599 0.0428 90.2565

The assumed values of the parameters are a= 0.65; d= 0.65; c= 1/1.4; and s= 1/0.57 unless otherwise varied, as indicated in the table.
doi:10.1371/journal.pone.0100422.t001
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transmission parameters to vary between the different age groups

as opposed to our current model where we assume the same

transmission rate for each age group with a fixed scaling

parameter. The incidence of RSV is greater in infants aged less

than 12 months than those in the second year of life, as we have

previously shown with hospitalisation rates for bronchiolitis for

which RSV is mostly associated [19]. Therefore a natural next step

is to further refine the age classes into those aged less than 12

months, 12–23 months and 2 years and over. This will result in a

higher number of parameters to fit to the data and therefore will

increase the complexity of the model. The advantage is that age-

specific interventions, such as vaccination, are easily incorporated

in the modelling framework.

Second, we will introduce non-metropolitan data on RSV

detections and investigate the changes in the parameters. Parts of

rural and remote Western Australia experience tropical climate

and therefore, are very likely to experience a different seasonal

pattern in terms of peak height and duration. Our total

population-based data allows us to investigate seasonality based

on geographical location. To achieve this accurately, we will

investigate whether the transmission parameters can be modelled

as functions of climatic variables of each geographical region such

as average weekly temperatures, rainfall and humidity. A study in

Utah correlated climatic variables to hospitalisation data coded for

RSV and RSV-bronchiolitis and concluded that temperature and

wind speed were the best fitting climatic variables [30]. Due to the

differing geographical regions, the effect of corresponding climatic

variables on RSV detections may be different in Australia. Indeed,

other RSV transmissions with an annual pattern have had lower

estimates for the seasonal forcing parameter b1, depending on the

climatic region. In models from tropical regions, b1 has been

typically small (e.g. Gambia: 0.16–0.20; Florida: 0.10–0.13 and

Singapore: 0.14–0.20); whereas models from temperate climate

regions with more distinct seasonality have a larger b1 (e.g.

Finland: 0.16–0.39) [13].

Third, to measure the likely impact of future interventions, we

will model the introduction of a newborn vaccination program and

predict the effect on RSV incidence. Such analyses have been

previously attempted by modelling [14] and economic models

using Monte Carlo simulation methods [31]. However, until such

time as accurate vaccine efficacy estimates can be derived from

vaccine trial data, these models will continue to be based on

multiple assumptions. The benefit of this modelling approach is

that different scenarios around age of vaccination, efficacy and

waning period of the vaccine can be investigated to inform future

vaccination policy.

We also did not investigate RSV transmission by Aboriginality

or other risk groups for RSV. Our previous analysis of

metropolitan RSV identifications showed no difference in

seasonality of RSV in metropolitan Aboriginal and non-Aboriginal

children [3]. However, as we extend our model to include non-

metropolitan data, disaggregating according to Aboriginality will

be important due to the higher burden of illness in Aboriginal

children from rural and remote areas [32,33].

Conclusions

We have successfully developed a model to mimic the biennial

seasonal epidemic curves of RSV identifications in metropolitan

Western Australia. A strength of our model is the quality of data

that it is based on, gathered from individual-level linked total

population-based data sources. Not all RSV positive detections are

associated with hospitalisations so it is important to not limit data

sources to the severe end of the clinical spectrum. RSV continues

to be a major pathogen in children and until such time that

positive identifications of RSV become mandatory, future studies

will need to rely on routinely collected laboratory data.
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