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Abstract

The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular
cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3Dpol) also enters the host nucleus, where its function
remains unclear. In this study, we describe a novel mechanism of viral attack in which 3Dpol enters the nucleus through the
nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA
synthesis. The fingers domain of 3Dpol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain,
and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate.
Endogenous pre-mRNAs trapped by the Prp8-3Dpol complex in enterovirus-infected cells were identified and classed into
groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts
pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which
contributes to the pathogenesis of viral infection.
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Introduction

RNA viruses in general replicate in the cytoplasm and interfere

host cellular gene expression by utilizing proteolytic destruction of

cellular targets as the primary mechanism [1]. However, several

viral proteins have been found in the nucleus and altered host gene

expression [2]. For example, our previous finding shows that

picornaviral 3C protease cleaves CstF-64 and inhibits cellular

polyadenylation in the nucleus [3]. Besides the protease, the RNA-

dependent RNA polymerase (RdRp) also appears in the nucleus,

but the role of viral RNA polymerase in the nucleus remains

unclear. This study utilized picornaviral polymerase to probe the

function of RdRp in the nucleus.

Picornaviruses cause numerous diseases in humans and various

animal species. The enteroviruses in the Picornaviridae family are

critical human pathogens that typically cause hand, foot, and

mouth disease (HFMD) and contribute to severe neurological

complications, including aseptic meningitis, brainstem encephali-

tis, poliomyelitis, and even death [4,5]. Enterovirus 71 (EV71) has

played an increasingly substantial role in emerging epidemics

around the Asia Pacific region, and these infections are

particularly life-threatening in young children [6–8].

Picornaviruses have a single-stranded, positive-sense RNA

genome. This genome encodes the RdRp, also known as 3D

polymerase (3Dpol), which becomes active upon completion of the

auto-catalyzed proteolytic processing of the protease-polymerase

precursor 3CD [9,10]. 3Dpol plays a central role in viral genome

replication in the cytoplasm of infected cells by catalyzing the

uridylylation of small protein VPg (VPg-pUpU) as a primer during

viral RNA replication [11–13]. The cellular phosphatidylinositol-

4-phosphate (PI4P) lipid-enriched microenvironment is essential

for viral RNA replication, and the 3Dpol specifically binds PI4P to

catalyze the synthesis of viral RNA [14]. The 3Dpol of

picornaviruses exhibit a similar overall structure, which can be

described as a right hand with fingers, palm, and thumb domains.

The fingers domain creates the entrance to facilitate the entry and

stabilization of the template RNAs. In addition to the 3 central

domains, an N-terminal domain that bridges the fingers and

thumb domains is observed in all RdRps. The amino acid

sequence and the structural elements of 3Dpol are conserved in

evolutionarily distant species and serve essential functional roles

[15,16]. 3Dpol is a potential target for drug discovery based on its

critical role in viral replication and its structure and sequence

conservation [16–18].
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Although picornaviral 3Dpol primarily performs viral replication

in the host cytoplasm, 3CD and 3Dpol are capable of entering the

nucleus in virus-infected cells [2,19–22]. 3CD and 3Dpol of

poliovirus (PV) enter the nucleus through a nuclear localization

signal (NLS), KKKRD, which spans 125–129 amino acids (aa)

within 3Dpol. The putative NLS in the 3Dpol coding region is

partially contained within the sequence KKRD (126–129 aa),

which is typical among all known picornaviral 3Dpol [2,22].

Picornaviral 3C is delivered into the nucleus through its precursor

3CD, which results in the cleavage of cellular transcriptional

factors or regulators, such as CstF-64, polymerase I factor SL-1,

TATA-box binding protein (TBP), cyclic AMP-responsive element

binding protein (CREB), Octamer binding protein-1 (Oct-1), p53,

histone H3, and RNA polymerase III transcription factor IIIC

[2,3,23–28]. However, previous studies have only demonstrated

that 3Dpol containing a NLS can transport 3CD to the nucleus,

and the precise role of 3Dpol in the host cell nucleus remains

unclear. In this study, we identified several nuclear target proteins

in U5 small nuclear ribonucleoprotein particles (U5 snRNPs) that

interact with 3Dpol.

U1, U2, U4, U5, and U6 snRNPs are essential components of

the spliceosome in the pre-mRNA splicing process, which involves

introns excision and exon ligation to form a mature mRNA. U5

snRNPs contain several functionalities crucial to pre-mRNA

splicing factors, such as Prp8/220K, Brr2/200K, Snu114/116K,

Prp6/102K, Prp28/100K, Lin1/52K, SNRNP40/40K, and

Dib1/15K [29–31]. The human pre-mRNA processing factor 8

(Prp8), one of the largest and highly-conserved nuclear proteins,

provides a large scaffold and occupies a central position in the

catalytic core of a spliceosome. Prp8 contains 5 functional

domains: NLS, RNA recognition motif (RRM), 39 splice site

(39SS) fidelity region, 59 splice site (59SS) holding domain, and

Jab1/MPN. The putative bipartite NLS of Prp8 enables Prp8 to

enter the nucleus, assisted by the import-a family, and the RRM

domain provides an RNA binding center for pre-mRNA. The

59SS holding domain of Prp8 is believed to lock the 59SS-OH

(exon) and load it onto the 39SS-associated region of Prp8. The

Jab1/MPN domain in Prp8 represents a pseudo-enzyme that is

converted into a protein-protein interaction platform. Prp8 is the

only spliceosomal protein that directly cross-links to the 59SS,

39SS, and branch point (BP) of the pre-mRNA substrate, as well as

to U2, U5 and U6 snRNAs. Prp8 also interacts with several

spliceosomal proteins, including the RNA helicase Brr2, the

GTPase Snu114, and Prp6 of the U5 snRNP. The human Prp8

terminal fragment, the N-terminal region containing the NLS

domain and the C-terminal region containing the Jab1/MPN

domain also interact with each other, suggesting that these regions

form an intermolecular bridge [32–38].

In pre-mRNA processing, the U1 snRNP initially binds to the

59SS, and the U2 snRNP associates with the BP of the pre-mRNA.

The U5NU4/U6 tri-snRNPs assembly then forms the pre-

spliceosome B-complex. Then, a major structural change occurs

upon the release of the U1 and U4 snRNPs, transforming the B-

complex into the catalytically active component (Bact-complex) of

the spliceosome. The first catalytic step of the splicing process

involves the Bact-complex catalyzing the first trans-esterification

reaction, which is the attack of the branch site 29-OH on the 59SS.

This produces exon1 and the lariat form (intron-exon2), which

forms the C1-complex. The second catalytic step is to transition

from the C1 to C2 complex for the second trans-esterification. The

attack of the 39-OH of the 59exon on the 39SS results in 39SS

cleavage and exon ligation to produce the mRNA and release the

excised intron [39–41]. Prp8, U5 snRNA, and the nonspliceoso-

mal proteins Prp16, Slu7, Prp18, and Prp22 are required for the

second catalytic step. In addition, Arg1753 of Prp8 cooperates

with Prp18 to stabilize the U5/exon contacts that are crucial for

the second catalytic step and ensure that the Prp22 helicase

disrupts the interactions between the U5 snRNP and mRNA to

release the mRNA [36,42].

In this study, we describe a novel mechanism for picornavirus

invasion of host cells that involves a previously unidentified

function of 3Dpol that differs from its classic role in viral

replication. Our results suggest that the 3Dpol enters the cellular

nucleus to associate with the core splicing factor Prp8. Further-

more, 3Dpol affects the normal function of Prp8 during the second

catalytic splicing step, leading to the inhibition of pre-mRNA

splicing, the accumulation of the lariat form, and a decrease in the

resulting mRNA. This is the first study demonstrating that a

cytoplasmic RNA virus can use its polymerase to alter cellular

gene expression by hijacking the splicing machinery.

Results

3Dpol specifically interacts with the nuclear protein Prp8
Picornaviral 3Dpol has been shown to enter the nucleus of

infected cells [2,20,22]; however, the role of 3Dpol in the nucleus

has not been explored. We generated an EV71 3Dpol monoclonal

antibody that could recognize 3Dpol in the lysates of RD cells

infected with EV71 at a multiplicity of infection (MOI) of 40. To

determine the role of 3Dpol in the host nucleus, the 3Dpol-

interacting proteins were pulled down and detected using a one-

dimensional sodium dodecylsulfate-polyacrylamide gel electropho-

resis (1D SDS-PAGE) assay (Figure 1A). These potential target

proteins were identified using matrix-assisted laser desorption

ionization-time of flight mass spectrometry (MALDI-TOF MS)

analysis, and the results are summarized in Table 1. These data

indicated that 3Dpol may interact with numerous U5 snRNP

nuclear proteins, including Prp8, Brr2, Snu114, Prp6, and

SNRNP40. This interaction was further confirmed in EV71-

infected RD cell lysates following RNase A treatment using co-

immunoprecipitation (Co-IP) and Western blotting (WB) assays

(Figure 1B). Prp8, which is the nuclear protein at the central

Author Summary

RNA-dependent RNA polymerase (RdRp) is an enzyme that
catalyzes the replication from an RNA template and is
encoded in the genomes of all RNA viruses. RNA viruses in
general replicate in cytoplasm and interfere host cellular
gene expression by utilizing proteolytic destruction of
cellular targets as the primary mechanism. However,
several cytoplasmic RNA viral proteins have been found
in the nucleus. What do they do in the nucleus? This study
utilized picornaviral polymerase to probe the function of
RdRp in the nucleus. Our findings reveal a novel
mechanism of viruses attacking hosts whereby picornaviral
3D polymerase (3Dpol) enters the nucleus and targets the
central pre-mRNA processing factor 8 (Prp8) to block pre-
mRNA splicing and mRNA synthesis. The 3Dpol inhibits the
second catalytic step of the splicing process, resulting in
the accumulation of the lariat-form and the reduction of
the mRNA. These results provide new insights into the
strategy of a cytoplasmic RNA virus attacking host cell, that
differs from viral shutting off cellular transcription and
translation which contributes to the viral pathogenesis. To
our knowledge, this study shows for the first time that a
cytoplasmic RNA virus uses its polymerase to alter cellular
gene expression by hijacking the splicing machinery.
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Figure 1. 3Dpol associates with the nuclear protein Prp8. (A) Identification of potential 3Dpol-interacting host proteins. The cell lysates for IP
were harvested from EV71 40 MOI-infected RD cells at 6 h.p.i. and treated with the 3Dpol monoclonal antibody or untreated as a negative control. The
proteins that interacted with 3Dpol were pulled down using an anti-3Dpol antibody, along with protein A-Sepharose, and detected by 1D SDS-PAGE
and silver staining. (B) 3Dpol interacts with 5 components of U5 snRNPs, including Prp8, Brr2, Snu114, Prp6, and SNRNP40. The interaction of EV71
3Dpol and the nuclear protein U5 snRNPs was further confirmed by Co-IP and WB assays. The lysates harvested from mock- or EV71 40 MOI-infected
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position in the catalytic core of the spliceosome, was selected for

further study. The interaction of Prp8 and 3Dpol was further

verified in EV71-infected RD cell lysates following RNase A

treatment by Co-IP and WB assays with antibodies against

endogenous Prp8 and viral 3Dpol, respectively. The result of these

assays suggested that endogenous Prp8 interacts with EV71 3Dpol

and 3CD between 4 to 8 h post-infection (h.p.i.), without

intermediation of the RNA (Figure 1C). To discover the

interacting domains of Prp8 and 3Dpol, we constructed tags that

were fused with hemagglutinin (HA) or FLAG epitopes for the

various truncated forms of Prp8 and 3Dpol, respectively, and the

various fragments of Prp8 and 3Dpol were cloned separately from

each functional domain. To identify which Prp8 domain is

responsible for the 3Dpol interaction, plasmids containing various

truncated forms of Prp8 fused with HA and the FLAG-tagged full-

length 3Dpol were transfected into HEK293T cells, followed by

anti-FLAG IP and WB assays. The results of these assays revealed

that the full-length Prp8 (lane 4) and the C-terminal region (2094–

2335 aa) containing the Jab1/MPN domain of Prp8 (lane 24)

interacted with full-length 3Dpol (Figure 1D). Furthermore, to

determine which domain of 3Dpol interacts with the C-terminal

region of Prp8, we used different FLAG-tagged truncated forms

containing the fingers, palm, and thumb domains, as well the HA-

tagged C-terminal region, in anti-FLAG IP and WB assays. This

mapping study revealed that the fingers domain in the N-terminal

region (1–286 aa) of 3Dpol interacts with the C-terminal region

(2094–2335 aa) of Prp8 (lane 8) (Figure 1E). Here, we demonstrate

that 3Dpol associates with the nuclear protein Prp8 via a protein-

protein interaction that involves at least one region between the

finger domain of 3Dpol and the C-terminal domain of Prp8.

RD cells at 2 to 8 h.p.i. were treated with RNase A (10 mg/ml) and immunoprecipitated using an anti-3Dpol antibody. The 5 components of the U5
snRNPs that interacted with 3Dpol were detected using a WB assay. The input samples were verified in the presence of 3Dpol and the five components
of the U5 snRNPs in the lysates. Actin served as an internal control. (C) The core spliceosome splicing factor Prp8 can also pull down 3Dpol and 3CD.
EV71-infected RD cell lysates from 2 to 8 h.p.i. were treated with RNase A (10 mg/ml) and incubated with antibodies against the Prp8 probe. After the
IP assay, 3Dpol and 3CD were analyzed using WB with an anti-3Dpol antibody. (D) 3Dpol associates with the C-terminal domain of Prp8 containing the
Jab1/MPN region. The functional domain architecture of human Prp8 is shown (upper panel). HEK293T cells were transfected with plasmids encoding
full-length FLAG-3Dpol (lanes 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24), various truncated forms of HA-Prp8 (lanes 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23,
and 24), and empty vectors (lanes 1, 5, 9, 13, 17, and 21). At 48 h after transfection, the lysates were treated with RNase A (10 mg/ml) and
immunoprecipitated with antibodies against FLAG. The truncated form of Prp8 that interacted with 3Dpol was detected by WB using an antibody
against HA. (E) The C-terminal domain of Prp8 interacts with the fingers domain of 3Dpol. The functional domain architecture of EV71 3Dpol is shown
(upper panel). HEK293T cells were transfected with plasmids encoding HA-Prp8-2094-2335 (lanes 3, 4, 7, 8, 11, 12, 15, and 16), various truncated forms
of FLAG-3Dpol (lanes 2, 4, 6, 8, 10, 12, 14, and 16), and empty vectors (lanes 1, 5, 9, and 13). The various truncated forms of 3Dpol were pulled down by
IP with an anti-FLAG antibody. The C-terminal domain containing the Jab1/MPN region of Prp8, which interacts with the truncated form of FLAG-
3Dpol, was detected with an anti-HA antibody in a WB assay.
doi:10.1371/journal.ppat.1004199.g001

Table 1. Potential protein targets of EV71 3Dpol were identified by MALDI-TOF MS analysis.

Band
Number Protein Name NCBI GI No. Score

Sequence
Coverage (%) Mass (Da)

2 Pre-mRNA processing factor 8 homolog
(Prp8) (220 kDa U5 snRNP-specific protein)

gi|39963074 339 38 274719

3 200 kDa U5 snRNP-specific spliceosomal
protein (Brr2)

gi|45861372 391 44 246032

6 U5-116KD (Snu114) gi|48145665 223 37 110360

9 U5 snRNP associated 102 kDa protein (Prp6) gi|119595584 146 39 101447

10 Aminopeptidase puromycin sensitive gi|119615217 72 27 93428

14 Sec23a24A HETERODIMER, Complexed With
The Snare Protein Sec22b

gi|149242495 75 30 87320

15 78 kDa glucose-regulated protein gi|16507237 60 35 72402

16 Heat shock 70 kDa protein 8 isoform 1 gi|5729877 136 52 71082

17 Ras-GTPase-activating protein SH3-domain-
binding protein

gi|119582066 91 48 56658

23 Selenium donor protein gi|1000284 75 26 42754

24 Eukaryotic translation initiation factor 3,
subunit 3 gamma

gi|4503515 88 53 40076

26 U5 snRNP-specific 40 kDa protein (SNRNP40) gi|3820594 115 54 39730

27 Eukaryotic translation initiation factor 3,
subunit 2 beta

gi|4503513 86 55 36878

32 40S ribosomal protein S3 gi|15718687 59 48 26842

33 Heat shock protein beta-1 gi|4504517 60 37 22826

Footnotes:
The score of the above-mentioned proteins was greater than 50. The band numbered 1, 4–5, 7–8, 11–13, 18–22, 25, 28–31, 34–37 did not achieve a significant score for
protein identification and were not listed in the Table.
The sequence coverage for these proteins determined by MALDI-TOF analysis is also indicated.
doi:10.1371/journal.ppat.1004199.t001
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3Dpol enters the cellular nucleus and colocalizes with
Prp8

The localization of 3Dpol and Prp8 in RD cells following a time-

course of EV71 infection was studied using anti-3Dpol (green color)

and anti-Prp8 (red color) antibodies in an immunofluorescence

assay (IFA) by confocal microscopy. The images revealed that

EV71 3Dpol was localized primarily in the cytoplasm; however,

this polymerase partially entered the nucleus and was colocalized

with Prp8 at 4 h.p.i. During the late stage, from 6 to 8 h.p.i., both

3Dpol and Prp8 were mainly present in the cytoplasm (Figure 2A).

Figure 2. 3Dpol and Prp8 are colocalized in the nucleus at 4 h.p.i. (A) The 3Dpol-Prp8 association is localized in the nucleus at 4 h.p.i. Mock- or
EV71 40 MOI-infected RD cells were fixed and stained using antibodies against EV71 3Dpol (green color) and Prp8 (red color) at 2, 4, 6, and 8 h.p.i. The
nuclei of RD cells were stained with Hoechst 33258 dye (blue color), and the merged images show the 3Dpol and Prp8 immunofluorescence signals.
All immunofluorescence images were detected by confocal microscopy. Scale bar, 10 and 20 mm. (B) 3CD, 3Dpol, and Prp8 appear in the nuclei of
infected cells at 4 h.p.i. The cytoplasmic (C) and nuclear (N) fractions of EV71-infected RD cells at 2 to 4 h.p.i were extracted and loaded with the same
percent-volume for SDS-PAGE. EV71 3CD, 3Dpol, and Prp8 were detected using anti-3Dpol and Prp8 antibodies in a WB assay. GAPDH and Lamin A/C
were detected as cytoplasmic and nuclear protein controls, respectively. (C) EV71 3Dpol enters the nucleus through the KKKD amino acids of the NLS.
FLAG-tagged constructs of 3Dpol containing the FLAG-tagged wt 126–129 aa NLS (KKKD) and mutant NLS (AAAA) were used to map the NLS on EV71
3Dpol. RD cells were transfected with these plasmids expressing FLAG-3Dpol-wt or FLAG-3Dpol-mut for 48 h and then stained using antibodies against
FLAG (green color). The nuclei were stained with Hoechst 33258 dye (blue color). The immunofluorescence was visualized by confocal microscopy.
Scale bar, 10 and 20 mm.
doi:10.1371/journal.ppat.1004199.g002
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We also examined the distribution of 3Dpol and Prp8 in the

cytoplasmic (C) and nuclear (N) fractions of EV71-infected RD

cells at 2, 3, and 4 h.p.i. using the same volume percent of the

cytoplasmic and nuclear extracts for WB analysis. Prp8, 3CD, and

3Dpol were present in the nucleus of the RD cells at 4 h post-

EV71-infection (Figure 2B, lane 12). To determine whether the

NLS present within the 3Dpol sequence impacts the nuclear entry

of EV71 3Dpol and 3CD, the wild-type (wt) NLS sequence

containing aa 126–129 (KKKD) was mutated to AAAA. Then,

RD cells were transfected with FLAG-tagged 3Dpol with a wt or

mutated NLS, and the resulting fluorescence was detected with an

anti-FLAG antibody (green color) by IFA and confocal microsco-

py. As shown in Figure 2C, the overexpressed FLAG-3Dpol with

the wt NLS was partially expressed in the nucleus, whereas the

FLAG-3Dpol with the mutant NLS was only expressed in the

cytoplasm of RD cells. The result indicated NLS mutation

interferes with nuclear entry of FLAG-3Dpol.

3Dpol interferes with the splicing process and promotes
accumulation of the lariat form and inhibition of mRNA
synthesis

Whether picornaviral polymerase play a role in host pre-mRNA

splicing remains unknown. Therefore, we first investigated

whether 3Dpol affects the splicing process using in vitro splicing

assays. PIP85a pre-mRNA was synthesized and labeled with 32P as

the substrate, and then mixed with nuclear extracts of HeLa cells

and 0.5, 1, 2, or 4 mM of EV71 3Dpol recombinant protein for

90 min. The splicing intermediates and products were analyzed by

electrophoresis on urea-PAGE gels. The 3Dpol inhibited mRNA

production and induced the accumulation of the lariat form in the

nuclear extract, depending on the amount of EV71 3Dpol

recombinant protein (Figure 3A). Moreover, in vitro splicing was

evaluated using a mock treatment or treatment with 4 mM of

EV71 3Dpol recombinant protein in a time-course study. The

result showed that EV71 3Dpol suppressed the splicing process and

produced the lariat form as early as 30 min after the start of the

reaction (Figure 3B). We also determined the inhibitory splicing

effect of recombinant 3Dpol proteins from other picornaviruses,

including poliovirus (PV), coxsackievirus B3 (CVB3), and human

rhinovirus type 16 (HRV16), in which a NLS was identified.

Following the same conditions used in the in vitro splicing analysis,

we discovered that PV 3Dpol inhibited the splicing process and led

to a decrease in mRNA production and accumulation of the lariat

form, similar to the results for EV71; however, neither the CVB3

nor the HRV16 3Dpol inhibited the pre-mRNA splicing process

(Figure 3C). These data demonstrate that the 3Dpol of EV71 and

PV blocked the second catalytic splicing step involving 39SS

cleavage and exon ligation, leading to the accumulation of the

lariat form and a decrease on mRNA levels. Because Prp8 is

involved in the second catalytic step of pre-mRNA splicing, we

next assessed whether the inhibitory effects of these picornaviruses

on the splicing process were related to Prp8. Purified His+-3Dpol

from various picornaviruses and GST-Prp8-C-terminal region

fusion proteins were mixed and subjected to GST pull-down and

WB assays. The results of these assays revealed that the 3Dpol

proteins of EV71 and PV directly associate with the C-terminal

region of Prp8, whereas the CVB3 and HRV16 3Dpol do not

(Figure 3D). Therefore, the 3Dpol-Prp8 interaction is required for

inhibition of the second catalytic step. These results suggest that

the 3Dpol of EV71 and PV are associated with the splicing factor

Prp8 and affect the normal function of Prp8 during the second

catalytic splicing step, leading to inhibition of pre-mRNA splicing,

accumulation of the lariat form, and a decrease in the resulting

mRNA.

3Dpol inhibits intracellular pre-mRNA splicing by
interacting with Prp8

We next sought to assess the effects of pre-mRNA splicing upon

picornaviral infection. First, we investigated whether EV71 affects

the splicing process by interfering the core splicing factor Prp8. The

splicing reporter pSV40-CAT(In1) containing human b-globin

intron 1 [43,44], which encodes chloramphenicol acetyl transferase,

was transfected to RD cells. After viral infection for 2 and 4 h, the

RNA expression of the reporter plasmid was measured by reverse

transcription quantitative PCR (RT-qPCR). EV71 infection signif-

icantly inhibited the splicing of the reporter transcription at 4 h.p.i.,

resulting an accumulation of the pre-mRNA and a reduction of the

mRNA (Figure 4A, lane 5 vs. 6). Consistently, the splicing activity of

EV71-infected cells could be restored by the overexpression of HA-

tagged Prp8 (Figure 4A, lane 6 vs. 8). To confirm whether EV71

interferes with the endogenous gene splicing process, we designed

specific primers for the precursor and mature RNA of the

endogenous NCL gene, which encodes the protein nucleolin. The

RT-qPCR data revealed that EV71 could suppress endogenous

nucleolin pre-mRNA splicing by reacting with Prp8 (Figure 4B),

similar to the results obtained by using the exogenous reporter

described above. To further confirm that EV71 inhibits the pre-

mRNA splicing process through the interaction of viral 3Dpol and

host protein Prp8, the pSV40-CAT(In1) reporter was co-transfected

with FLAG-tagged 3Dpol and HA-tagged Prp8 to RD cells. 3Dpol

alone inhibited the splicing process, and led to increased levels of

pre-mRNA and decreased levels of mRNA (Figure 4C, lane 1 vs. 3),

whereas overexpression of both 3Dpol and Prp8 restored the pre-

mRNA splicing activity (Figure 4C, lane 3 vs. 4). These results

demonstrate that EV71 affects the cellular splicing process through

the interaction between 3Dpol and Prp8 at 4 h.p.i.

High-throughput sequence screening of the target pre-
mRNA captured by Prp8 associated with 3Dpol

After demonstrating that 3Dpol associates with Prp8 and affects

its function during the second step of the splicing process, leading

to the accumulation of pre-mRNA intermediates (Figure 3A and

3B), we further analyzed whether endogenous pre-mRNA

substrates of Prp8 associate with 3Dpol in EV71-infected RD cells.

A diagram for the experimental procedure is provided in

Figure 5A. We isolated RD cell lysates that were either infected

with EV71 at a MOI of 40 for 4 h or without infection, and then a

Prp8 antibody was applied to pull-down the Prp8/RNA or Prp8-

3Dpol/RNA complexes in the lysates, named RNA-binding

protein IP (RIP) assay. After the Co-IP of protein-RNA complex,

the proteins in the precipitates were analyzed by WB analysis. The

RNAs in the precipitates were also isolated and subjected to next

generation sequencing (NGS) analysis (Figure 5A). Firstly, we

verified the binding of Prp8-3Dpol in EV71-infected cells by IP

assay with the anti-Prp8 antibody. The Prp8 antibody specifically

bound to Prp8, and the Prp8-3Dpol interaction was detected in the

Prp8-3Dpol/RNA complexes from EV71-infected cells. An anti-

body against IgG was used as a negative control (Figure 5B). The

selection of target RNA for the NGS analysis is illustrated in the

flow chart. The sequences were aligned to the human reference

genome (hg19, GRCh37) and the aligned regions were annotated

as known transcripts based on the Reference Sequence Database

(Refseq) of the National Center of Biotechnology Information

(NCBI). There are total 33,532 transcripts in Refseq database,

including 29,344 mRNA and 4,138 non-coding RNA sequences.

We then adjusted the transcripts with read counts lower than 5 (,

5) to 5. The peaks detected for the transcripts that were pulled

down by Prp8 were compared with those for IgG and were filtered
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for P,0.05 and $2-fold enrichment. Among the 4,561 transcripts,

after filtering for P,0.05 and $2-fold, 2,031 transcripts were

more highly expressed following EV71 infection than mock

infection (Figure 5C). The differentially expressed transcripts were

uploaded to DAVID Tools [45], and functional annotations were

assigned to the KEGG pathways (Table 2). The comparison of the

targeted RNA in EV71 infection and mock infection functionally

associated with cell growth, proliferation, and differentiation, and

these associations were related to focal adhesion and the mitogen-

activated protein kinase (MAPK) pathway (Figure S1A and S1B;

red aster). To validate our RIP-Seq analysis, the intracellular

targeted RNAs, such as cyclin D3 of focal adhesion pathway and

platelet-derived growth factor (PDGF) of MAPK pathway, were

further investigated to confirm the increased levels of pre-mRNA

and decreased mRNA levels at 4 to 6 h.p.i. in EV71-infected RD

cells by RT-qPCR (Figure 5D).

Figure 3. The EV71 and PV 3Dpol interfere with the splicing process and inhibit mRNA synthesis. (A) Recombinant EV71 3Dpol inhibits
mature mRNA production. An in vitro splicing assay was performed for 90 min using 32P-labeled PIP85a pre-mRNA as the substrate, nuclear extracts of
HeLa cells, and varying amounts of purified recombinant 3Dpol. The autoradiogram revealed the presence of different radioactive RNA forms, including
pre-mRNA, the lariat form, excised intron, mature mRNA, and exon1. (B) Recombinant EV71 3Dpol stops the splicing process in the lariat form. The in vitro
splicing substrate, 32P-labeled PIP85a pre-mRNA, was incubated with mock- or EV71 3Dpol recombinant protein-containing nuclear extracts for varying
time periods. The autoradiogram shows the different forms of RNAs in the splicing reaction. (C) Recombinant EV71 and PV 3Dpol inhibit the synthesis of
mature mRNA. The in vitro splicing assay was performed using the same conditions described above, including a protein concentration of 4 mM and a
reaction time of 90 min, with recombinant 3Dpol proteins from EV71, PV, CVB3, and HRV16. (D) The EV71 and PV 3Dpol proteins directly associate with the
C-terminal domain of Prp8. In vitro pull-down assay, a total of 5 mg of bacterially purified His+-3Dpol from EV71, PV, CVB3, or HRV16 was mixed with 5 mg
of the GST-Prp8-C-terminal domain fusion protein for 90-min reaction time, followed by GST pull-down and WB assays.
doi:10.1371/journal.ppat.1004199.g003
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Discussion

Picornaviral 3Dpol plays a key role in viral genome replication in

the cytoplasm. Both picornaviral 3CD and 3Dpol have also been

observed in the nucleus as a result of infection, and this

localization is mediated through the NLS of 3Dpol. In the nucleus,

mature 3C from the precursor 3CD shuts off host cell transcription

[2,19,22]. Although evidence for the entry of picornaviral 3Dpol

into the nucleus was first reported approximately a decade ago, the

precise role of 3Dpol in the host nucleus has remained unknown. A

schematic model is provided in Figure 6. Our study uncovered a

novel mechanism for picornaviral 3Dpol invasion of host cells by its

localization to the nucleus and association with the Prp8 protein,

which is located at the center of the spliceosome. The viral 3Dpol

Figure 4. 3Dpol affects cellular pre-mRNA splicing by interacting with Prp8. (A) EV71 inhibits cellular pre-mRNA splicing by interacting with
Prp8. RD cells were transfected with pCMV-HA (lanes 1, 2, 5, and 6) or the vector encoding HA-tagged Prp8 (lanes 3, 4, 7, and 8). After 24 h, the
exogenous reporter pSV40-CAT(In1), which encodes chloramphenicol acetyl transferase inserted by human b-globin intron 1, was transfected into all
of the samples for 24 h. The total RNA obtained from RD cells was subsequently harvested after EV71 40 MOI infection at 2 h.p.i. (lanes 2 and 4) and
4 h.p.i. (lanes 6 and 8) for RT-qPCR. The fold changes in the amount of pre-mRNA and mRNA were calculated. The overexpression of HA-tagged Prp8
and the level of viral 3Dpol in infected cells were detected using anti-HA and anti-EV71 3Dpol antibodies, respectively, in a WB assay. (B) To confirm the
effects of EV71 on endogenous splicing, RNAs were isolated from EV71-infected cells at 2 to 4 h.p.i. and evaluated with a specific primer for nucleolin
by RT-qPCR. (C) 3Dpol inhibits cellular pre-mRNA splicing by interacting with Prp8. RD cells were transfected with constructs encoding FLAG-tagged
3Dpol (lanes 3 and 4) or HA-tagged Prp8 (lanes 2 and 4). The vectors pFLAG-CMV2 and pCMV-HA were used as negative controls (lane 1). The
exogenous reporter pSV40-CAT(In1) was transfected into all of the samples for 24 h, and the total RNA obtained was subsequently harvested from RD
cells for RT-qPCR. The fold changes in the amount of pre-mRNA and mRNA were calculated. In a WB assay, the overexpression of HA-tagged Prp8 and
the level of FLAG-tagged 3Dpol were detected using anti-HA and anti-FLAG antibodies, respectively. Error bars, mean 6 SD (n = 3). The statistical
significance was analyzed using a t test. ***p,0.001; **p,0.01.
doi:10.1371/journal.ppat.1004199.g004
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affects the splicing function of Prp8 in the C1-complex and inhibits

the second step of the splicing process, resulting in accumulation of

the lariat form and a reduction on mRNA levels. The intracellular

targeted RNAs that are trapped by the Prp8-3Dpol complexes are

primarily responsible for cell growth, proliferation, and differen-

tiation.

The host nuclear protein Sam68 has been shown to interact

with PV 3Dpol using a yeast two-hybrid system, but the function of

this Sam68-3Dpol interaction remains unknown [46]. In this study,

we identified 15 novel proteins that act as host substrates for EV71

3Dpol using IP assays with a 3Dpol monoclonal antibody and

MALDI-TOF MS analysis. We further selected the nuclear

protein Prp8, which occupies a central position in U5 snRNP

complexes, for further analysis and confirmed the interaction

between endogenous Prp8 and viral 3Dpol without the interme-

diation of RNA. Prp8 provides a large platform for the RNA

helicase Brr2, the GTPase Snu114, and Prp6 to form U5 snRNP

complexes [33,37]. Our results revealed that 3Dpol interacts with

Prp8 and could be pulled down with other components of U5

snRNPs, including Brr2, Snu114, Prp6, and SNRNP40, by Co-IP

and WB analysis. We further demonstrated that the fingers

domain (1–286 aa) of 3Dpol associates with the C-terminal region

(2094–2335 aa) containing the Jab1/MPN domain of Prp8 by

overexpressing various truncated forms of Prp8. Moreover, the

3Dpol proteins of EV71 and PV directly associate with the C-

terminal region of Prp8 in in vitro pull-down assays.

Figure 5. RIP-seq of the pre-mRNA trapped by the Prp8-3Dpol complexes. (A) Procedural diagram for the RIP assays. The schematic shows
the experimental procedure for characterizing RNA from Prp8 or Prp8-3Dpol complexes by IP. (B) The Prp8 antibody pulls down the Prp8 and Prp8-
3Dpol complexes. In the WB analysis, the pulled down Prp8 and Prp8-3Dpol complexes demonstrated the efficiency of Prp8 IP and the interaction
between Prp8 and 3Dpol. (C) A flow chart for the selection of targeted RNAs from the sequencing data. The schematic shows the experimental
procedure for characterizing RNAs from Prp8 or Prp8-3Dpol complexes. (D) The inhibition of the pre-mRNA splicing in intracellular targeted cyclin D3
and PDGF. The increase in pre-mRNA and decrease in mRNA for intracellular cyclin D3 and PDGF in EV71-infected cells at 4–6 h.p.i. validated our RIP-
Seq analysis. Error bars, mean 6 SD (n = 3). The statistical significance was analyzed using a t test. ***p,0.001; **p,0.01; *p,0.05.
doi:10.1371/journal.ppat.1004199.g005
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The 3Dpol of picornaviruses, such as PV, EMCV, HRV16, and

human parechovirus-1 (HPEV-1), can enter the nucleus upon viral

infection due to the expression of a NLS [19–22]. This NLS is

partially contained within a conserved sequence, KKRD (126–129

aa), that is present in all known picornaviral RNA polymerases

and may therefore play a crucial function in the life cycle of the

virus [22]. However, whether EV71 can enter the nucleus in virus-

infected cells remains unknown. In this study, we first observed

that EV71 3Dpol entered the nucleus during the early stages of

viral entry at 4 h.p.i., as demonstrated by anti-3Dpol antibody

detection by confocal imaging and nuclear fractionation analysis.

In contrast to PV, 3Dpol alone could directly and independently

enter the nucleus without EV71 infection via the NLS KKKD,

which spans aa 126–129. However, mutation of the NLS of 3Dpol

by replacing the sequence KKKD with AAAA prevented nuclear

entry. We also observed that 3Dpol and Prp8 were colocalized at

4 h.p.i. in the nucleus and at 6–8 h.p.i. in the cytoplasm of EV71-

infected cells. Furthermore, the 3Dpol-Prp8 interaction was

maintained between 4 and 8 h.p.i. These results suggest that this

interaction blocks the cellular pre-mRNA splicing process at the

early stages of viral entry and may have advantages for the viral

life cycle during the later stages. Picornavirus infection inhibits the

cellular translation machinery of the host, reducing the accumu-

lation of the cellular proteins, including Prp8 at 8 h.p.i.

(Figure 1C). Furthermore, 3Dpol and Prp8 were co-localized in

the nucleus at 4 h.p.i. and in the cytoplasm at 8 h.p.i. (Figure 2A).

This interaction in the nucleus disrupts the cellular splicing

machinery of the host, whereas the interaction in the cytoplasm

may support the function of 3Dpol during viral infection, and this

phenomenon is of worthy of further exploration.

Previous studies have reported that picornaviruses influence

host cell gene expression by shutting off cellular transcription and

cap-dependent mRNA translation [2,47–49]. Poliovirus 2A

protease modulates the cellular alternative splicing [50]. In this

Table 2. The differentially expressed transcripts were classed into groups according to functional annotations from the KEGG
pathways.

Term Count % PValue List Total Pop Hits Pop Total

hsa04510:Focal adhesion 40 2.3474178 5.28E-05 523 201 5085

hsa04010:MAPK signaling pathway 47 2.7582160 2.34E-04 523 267 5085

hsa05200:Pathways in cancer 50 2.9342723 0.00380621 523 328 5085

hsa05221:Acute myeloid leukemia 14 0.8215962 0.00497523 523 58 5085

hsa04810:Regulation of actin cytoskeleton 35 2.0539906 0.00635485 523 215 5085

hsa05215:Prostate cancer 18 1.0563380 0.00807954 523 89 5085

hsa05220:Chronic myeloid leukemia 16 0.9389671 0.00814590 523 75 5085

hsa00030:Pentose phosphate pathway 8 0.4694836 0.01069550 523 25 5085

hsa04144:Endocytosis 30 1.7605634 0.01179329 523 184 5085

hsa04722:Neurotrophin signaling pathway 22 1.2910798 0.01396748 523 124 5085

hsa00562:Inositol phosphate metabolism 12 0.7042254 0.01921380 523 54 5085

hsa05216:Thyroid cancer 8 0.4694836 0.02424746 523 29 5085

hsa04910:Insulin signaling pathway 22 1.2910798 0.03344581 523 135 5085

hsa04540:Gap junction 16 0.9389671 0.03585054 523 89 5085

hsa04115:p53 signaling pathway 13 0.7629108 0.04190497 523 68 5085

hsa05016:Huntington’s disease 27 1.5845070 0.04431270 523 180 5085

hsa05211:Renal cell carcinoma 13 0.7629108 0.05081584 523 70 5085

hsa00051:Fructose and mannose metabolism 8 0.4694836 0.05358196 523 34 5085

hsa03010:Ribosome 15 0.8802817 0.05820913 523 87 5085

hsa05219:Bladder cancer 9 0.5281690 0.06040354 523 42 5085

hsa05414:Dilated cardiomyopathy 15 0.8802817 0.08490081 523 92 5085

hsa04512:ECM-receptor interaction 14 0.8215962 0.08516606 523 84 5085

hsa04142:Lysosome 18 1.0563380 0.08763026 523 117 5085

hsa04530:Tight junction 20 1.1737089 0.08958635 523 134 5085

hsa04730:Long-term depression 12 0.7042254 0.09139957 523 69 5085

hsa04520:Adherens junction 13 0.7629108 0.09179898 523 77 5085

hsa00600:Sphingolipid metabolism 8 0.4694836 0.09875063 523 39 5085

Footnotes.
Term: gene set name.
Count: number of genes associated with this gene set.
Percentage (%): gene associated with this gene set/total number of query genes.
P-value: modified Fisher Exact P-value.
List Total: number of genes in your query list mapped to any gene set in this ontology.
Pop Hits: number of genes annotated to this gene set on the background list.
Pop Total: number of genes on the background list mapped to any gene set in this ontology.
doi:10.1371/journal.ppat.1004199.t002
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study, we examined whether picornaviral polymerase could impair

cellular pre-mRNA splicing processes by interfering with Prp8.

The in vitro splicing results demonstrated that the second step of the

splicing process was blocked by the 3Dpol of EV71 and PV, leading

to inhibition of pre-mRNA splicing, the accumulation of the lariat

form, and a decrease in mRNA synthesis. However, the 3Dpol of

CVB3 and HRV16 did not inhibit pre-mRNA splicing and did not

exhibit any association with the C-terminal region of Prp8.

Therefore, our data support the theory that the viral 3Dpol inhibits

pre-mRNA splicing through an association with cellular Prp8 in

the nucleus. However, the splicing effect of the 3Dpol of EV71 and

PV in the cellular nucleus differs from that of CVB3 and HRV16,

which represents a promising theme for future research.

Moreover, we demonstrated that EV71 infection inhibited the

splicing of exogenous pSV40-CAT(In1) and endogenous nucleo-

lin. However, the splicing activity of the viral infected cells could

be restored by overexpression of HA-tagged Prp8. We also

confirmed that 3Dpol alone inhibits the splicing processes by

reacting with cellular Prp8. Our study provides a new insight into

EV71-mediated inhibition of the pre-mRNA splicing by the 3Dpol-

Prp8 interaction. We also transfected FLAG-CVB3-3Dpol plasmid

DNA into RD cells. The results indicated that FLAG-CVB3-3Dpol

was unable to inhibit the splicing process (lane 1 vs. 3), and did not

lead to increased levels of pre-mRNA. However, FLAG-CVB3-

3Dpol was capable of decreasing the levels of both pre-mRNA and

mature mRNA (Figure S2A). This observation was also confirmed

using an in vitro splicing assay (Figure 3C) that examined the

CVB3 3Dpol recombinant protein versus a control without 3Dpol.

These findings suggest that FLAG-EV71-3Dpol can inhibit splicing

through interference with Prp8, whereas FLAG-CVB3-3Dpol did

not. RD cells were infected with CVB3, a non-Prp8 interacting

virus, at 2 to 6 h.p.i. (Figure S2B). The data indicated that CVB3

was unable to inhibit the splicing process at 4 h.p.i., whereas it was

capable of decreasing the pre-mRNA and mature mRNA of cyclin

D3 and PDGF. This result is consistent with those obtained with

RD cells transfected with FLAG-CVB3-3Dpol (Figure S2A).

Using high-throughput sequence screening of the target pre-

mRNA, we evaluated in detail the types of endogenous pre-

mRNAs that were captured when Prp8 was bound to 3Dpol in

EV71-infected RD cells. Comparison of the targeted RNA in

EV71- and mock-infected cells revealed that most of the gene

expression and transcription generating pre-mRNAs was associ-

ated with cell growth, proliferation, and differentiation, processes

classified in the focal adhesion and MAPK pathways. In addition,

the 3Dpol-Prp8 interaction complexes disrupted mRNA synthesis

and downstream protein expression. Cell-matrix adhesions are

critical for biological processes such as cell motility, proliferation,

differentiation, regulation of gene expression, and cell survival, and

the MAPK cascade is a highly conserved pathway that is involved

in numerous cellular functions, such as cell proliferation,

differentiation, and migration. Viral 3Dpol-mediated blockade of

the pre-mRNA splicing process results in the production of less

cellular mRNA and the use of more translational machinery by

viral RNA to make viral proteins efficiently. The disruption of

cellular mRNA synthesis by the infecting virus may also directly

cause cell damage and death. Timely cell death would facilitate the

release of some picornaviruses, e.g., enterovirus 71. Furthermore,

certain picornavirus genome sequences may contain fortuitous

splice sequences. Erroneous recognition of such sequences by

cytoplasmic splicing components would require the presence of

some sort of anti-splicing defensive mechanism.

In summary, our study reports a novel invasion strategy for

picornaviruses in which 3Dpol enters the host cell nucleus and

associates with Prp8. This association leads to the inhibition of pre-

mRNA splicing, accumulation of the lariat form, and a decrease in

mRNA synthesis. However, the pre-mRNA and the intermediate

Figure 6. Schematic model of 3Dpol-mediated inhibition of the cellular splicing by targeting Prp8 in the nucleus. 3Dpol primarily
performs viral RNA replication in the host cytoplasm, but partially 3Dpol also enters the nucleus and interacts with the core splicing factor Prp8, which
interferes with the function of Prp8 in the C1-complex. The interference of Prp8 function inhibits the second step of the splicing process and results in
the accumulation of the lariat form and a reduction in mRNA synthesis.
doi:10.1371/journal.ppat.1004199.g006
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lariat form become occupied by the 3Dpol-Prp8 interaction during

infection, thereby blocking mRNA synthesis of numerous cellular

genes, including those associated with cell growth, proliferation,

and differentiation.

Picornaviruses inhibit the cellular transcription and cap-

dependent mRNA translation to affect the genes expression of

the host cell [2,47–49]. However, several cellular genes could

escape the shutoff of gene expression by picornavirus infection.

Our previous investigations of cDNA microarray analysis for total

cellular RNA demonstrated that the level of some RNAs that are

related to chemokines, protein degradation, complement proteins

and proapoptosis proteins increased upon EV71 infection,

suggesting leakage from the inhibition of transcription by EV71

[51]. Translations of c-myc, Bip, and eIF4G mRNA have been

observed to be increased in poliovirus-infected cells as the cap-

dependent translation shuts down, owing to the presence of

internal ribosome entry sites (IRES) [52–54]. This work presents a

novel mechanism by which cytoplasmic viral RdRp inhibits

cellular gene expression in the pre-mRNA splicing processing step,

which would inhibit mRNA synthesis of the surviving host RNAs,

potentially providing yet another advantage of virus replication.

Materials and Methods

Cell cultures and virus infection
Human RD, HEK293T, and HeLa cells were cultured in

DMEM containing FBS and penicillin/streptomycin/glutamine

(Gibco) at 37uC. EV71 (TW/4643/98) virus infection at a MOI of

40 was performed under serum-free conditions for 1 h at 37uC.

After 1 h of incubation, the virus-infected cells were washed twice

in PBS, and the medium was replaced with DMEM containing

2% FBS to maintain the virus-infected cells at 37uC.

Immunoprecipitation and protein identification
To identify potential EV71 3Dpol-interacting host proteins,

5 mg of cell lysates from EV71 40 MOI-infected RD cells at

6 h.p.i. was harvested for immunoprecipitation and treated with

250 mg of EV71 3Dpol monoclonal antibody (self-preparation) and

100 ml of protein A-Sepharose (GE Healthcare) at 4uC. After

centrifugation and bead washing, the co-precipitated proteins were

separated by 8–16% gradient SDS-PAGE, which was followed by

silver staining. The proteins were identified using in-gel digestion

and analyzed by Bruker Ultraflex MALDI-TOF MS. Mass lists

were performed peptide mass fingerprinting by Biotool 2.0

software and the algorithm of Mascot (http://www.

matrixscience.com).

Co-immunoprecipitation and western blotting
RD cells (2.46106/10-cm dish) were seeded 24 h prior to EV71

infection at a MOI of 40. Cells were lysed in 1 ml of IP-lysis buffer

(25 mM Tris-HCl pH 7.6, 300 mM NaCl, 0.5% CA630, 1.5 mM

MgCl2, 0.2 mM EDTA, 0.5 mM DTT, and 16 proteinase

inhibitor) at 4uC for 30 min and then treated with 10 mg/ml

RNase A at 30uC for 1 h. The cell extracts were pre-cleared by

incubation at 4uC for 1 h with protein G-agarose (GE Healthcare)

and centrifuged to remove non-specific complexes. The lysate was

then added to 10 mg/ml EV71 3Dpol antibody or Prp8 antibody

(Abcam) at 4uC for 2 h and 100 ml of protein G-agarose at 4uC for

12 h. The co-precipitated proteins were collected by centrifuga-

tion, followed by washing 6 times with IP buffer (25 mM Tris-HCl

pH 7.6, 200 mM NaCl, 0.1% CA630, 6% glycerol, 1 mM EDTA,

0.5 mM DTT, and 16 proteinase inhibitor). The precipitated

proteins were separated by 8% SDS-PAGE; subsequently, these

immune complexes were detected using anti-Prp8 (diluted 1:5000;

Abcam), Brr2 (diluted 1:5000; Abcam), Snu114 (diluted 1:5000;

Abcam), Prp6 (diluted 1:5000; Abcam), SNRNP40 (diluted

1:5000; Abcam), EV71 3Dpol (diluted 1:10000; self-preparation),

and b-actin (diluted 1:10000; Millipore) antibodies in a WB assay.

Plasmid construction and FLAG immunoprecipitation
To map the interacting domains between 3Dpol and Prp8, the

full-length and various truncated forms of human Prp8 were

amplified by PCR from the human Prp8-pCMV-XL5 cDNA

clone (OriGene) using specific primers. The PCR product was

inserted into a pCMV-HA vector (Clontech) between the XhoI

and NotI sites to enable the expression of HA-tagged proteins. The

EV71 full-length infection cDNA clone was used to amplify full-

length and various truncated forms of EV71 3Dpol by PCR,

followed by cloning into the EcoRI and KpnI sites of the

p3XFLAG-Myc-CMV-25 vector (Sigma) to enable expression of

the EV71 3Dpol constructs as fusions with 3 adjacent FLAG

epitopes. To overexpress these proteins, 2 mg of the constructs of

the various truncated forms of Prp8 and 3Dpol was co-transfected

into HEK293T cells (16106/per 6-well plate) using Lipofectamine

2000 reagent (Invitrogen) for 48 h. The cells were harvested for

FLAG-IP using a FLAG-immunoprecipitation kit (Sigma). After

lysis and centrifugation, the supernatant was treated with 10 mg/

ml RNase A at 30uC for 1 h, and then 40 ml of anti-FLAG M2

agarose affinity gel was added at 4uC for 12 h. Proteins were then

eluted by competition with 36FLAG peptide. In the WB assay,

the precipitated proteins were identified using an anti-HA

antibody (diluted 1:5000; Sigma) and an anti-FLAG antibody

(diluted 1:5000; Sigma).

Construction of the mutant FLAG-3Dpol NLS,
immunofluorescence microscopic analysis, and cellular
fractionation

The PCR product of EV71 3Dpol containing the wt NLS

(KKKD) was cloned into the pFLAG-CMV-2 vector (Sigma)

between the EcoRI and KpnI sites to enable expression of the

protein as a fusion with the FLAG epitope protein. The mutated

NLS (AAAA)-containing pFLAG-3Dpol clone was generated using

specific primers (Table S1) in 2 steps of PCR and digestion and

subsequently cloned into the pFLAG-CMV-2 vector. The wt and

mutant clones of EV71 3Dpol were verified by sequencing. For

immunofluorescence microscopic analysis, RD cells grown in 22-

mm-diameter wells at 80% confluency were infected with EV71 at

a MOI of 40 for 2 to 8 h.p.i. or were transfected with 4 mg of the

wild-/mutant-type 3Dpol clone. The cells were fixed in PBS

containing 4% formaldehyde, permeated with 0.3% Triton X-

100, blocked with 0.5% BSA for 1 h at 25uC, and then stained

with anti-EV71 3Dpol (diluted 1:200; self-preparation), anti-Prp8

(diluted 1:15; Abcam), or anti-FLAG (diluted 1:200; Sigma)

antibodies for 2 h at 37uC. Subsequently, the cells were stained

with FITC-conjugated goat anti-mouse IgG (diluted 1:400; green;

Invitrogen) or goat anti-rabbit IgG (diluted 1:75; red; Invitrogen)

for 2 h at 37uC, followed by treatment with nuclear Hoechst

33258 stain (diluted 1:500; blue) for 15 min at 25uC. The cells

were washed 3 times with PBS and mounted on glass slides with

Prolong Gold (Invitrogen). Confocal images were obtained with a

confocal laser-scanning microscope (Zeiss; LSM 510 NLO). To

prepare EV71-infected RD cells (2.46106/10-cm dish) for

cytoplasmic and nuclear fractionation, the cells were lysed in

300 ml of buffer C, provided in the CMN compartment protein

extraction kit (Biochain), for 30 min at 4uC and then disrupted by

50 passages through a 25G needle. After centrifugation, the pellets

were washed with buffer W 3 times and lysed in 50 ml of buffer N
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for 1 h at 4uC. The same volume percent of cellular fractionation

was loaded onto an 8% SDS-PAGE gel, and GAPDH (diluted

1:5000; Abnova) and Lamin A/C (diluted 1:5000; Santa Cruz)

were detected as internal controls for the cytoplasmic and nuclear

fractions, respectively, by WB.

In vivo splicing assay and reverse transcription
quantitative PCR

RD cells were transfected with 4 mg of the pCMV-HA vector or

HA-tagged Prp8 clone for 24 h, followed by transfection with

0.5 mg of the pSV40-CAT(In1) splicing reporter (a gift from Dr.

Woan-Yuh Tarn, Academia Sinica, Taiwan) [44] for 24 h. The RD

cells were infected with EV71 at a MOI of 40 at 2 and 4 h.p.i., and

RNA samples were harvested from cells using an RNeasy mini kit

(Qiagen) and treated with RQ-DNase1 (Promega). RNAs were

converted into first-strand cDNAs using SuperScript III reverse

transcriptase (Invitrogen) with CAT(In1) reverse primers. All PCR

reactions were performed using specific primers (Table S1). The

qPCR analysis was performed using SYBR Green reagents and the

LightCycler 480 instrument (Roche). NCBI GI numbers for genes

and proteins mentioned in the text were provided in the Table S2.

Expression and purification of Prp8-C-terminal region
and 3Dpol recombinant proteins

The Prp8-C-terminal region (2094–2335 aa) was cloned into the

EcoRI and XhoI sites of the pGEX-5X-1 vector and transformed

into BL21(DE3). Expression of the protein was induced by adding

1 mM isopropyl-b-d-thiogalactopyranoside (IPTG) at 16uC for

16 h. The protein expressed from lysed cells was suspended in buffer

(20 mM HEPES pH 7.9, 300 mM NaCl, 5 mM DTT, 0.2 mM

EDTA, 0.05% NP-40, 0.5 mM PMSF) at 4uC for 30 min and

loaded onto a GST column (GE Healthcare), which was then eluted

with buffer containing 10 mM Glutathion. The eluted product was

dialyzed in buffer (20 mM HEPES pH 7.9, 100 mM NaCl, 1 mM

DTT, 0.2 mM EDTA, 0.01% NP-40, 20% glycerol). To construct

pET26b-Ub-EV71-3D-6H, the EV71 3Dpol full-length containing

the 66His+ at C-terminal region was cloned into the SacII and

BamHI sites of pET26b-Ub-3D-GSSG-6H [55] and used to replace

the PV 3D-GSSG-6H of pET26b-Ub-3D-GSSG-6H. pCG1

encodes an Ub-specific carboxy-terminal protease (Ubp1). Expres-

sion of Ub-3D fusion protein in the presence of Ubp1 has glycine at

the amino terminus of polymerase, not methionine. Plasmids

pET26b-Ub-EV71-3D-6H and pCG1 or pET26b-Ub-3D-GSSG-

6H and pCG1 were cotransformed into BL21(DE3) to express

EV71-3D-6H or PV-3D-GSSH-6H recombinant protein, respec-

tively. Expression of these recombinant proteins were induced by

adding 50 mM IPTG at 25uC for 4 h. The protein expressed from

lysed cells was suspended in buffer A (50 mM Tris pH 8.0, 20%

glycerol, 1 mM DTT, 0.1% NP-40, and 60 mM ZnCl2) and loaded

onto a HisTrap column (GE Healthcare), which was then washed

with buffer A containing 30, 50, 70, or 90 mM imidazole; the

protein was then eluted with buffer A containing 500 mM

imidazole. The eluted product was dialyzed in buffer B (50 mM

HEPES, pH 7.5, 500 mM NaCl, 20% glycerol, 1 mM DTT, 0.1%

NP-40, and 60 mM ZnCl2) [18]. The purified 3Dpol recombinant

proteins of CVB3 and HRV16 were gifts from Dr. Craig E.

Cameron. The expression and purification of CVB3 and HRV16

3Dpol have been described previously [55–57].

In vitro splicing assay, and glutathione S-transferase (GST)
pull-down

The PIP85a plasmid (a gift from Dr. Woan-Yuh Tarn,

Academia Sinica, Taiwan) was cleaved using Hind III and labeled

with a-32P-UTP (800 Ci/mmol) using an in vitro transcription

system (Promega). In vitro splicing was performed in 15 ml of

reaction mixtures containing 60% HeLa cell nuclear extracts,

10 mM ATP, 0.4 M creatine phosphate, 48 mM MgCl2, 12 U

RNasin, various recombinant proteins, and 36105 cpm 32P-

labeled PIP85a pre-mRNA as the substrate for 1.5 h at 37uC.

RNA was extracted with the Trizol reagent (Invitrogen) from the

splicing reaction and fractionated on a 5% denaturing polyacryl-

amide gel containing 7 M urea, TBE, APS, and TEME. A total of

5 mg of each recombinant protein was incubated in IP lysis buffer

(25 mM Tris-HCl pH 7.6, 300 mM NaCl, 0.5% CA630, 1.5 mM

MgCl2, 0.2 mM EDTA, 0.5 mM DTT, and 16 proteinase

inhibitor) at 4uC for 3 h, and the targeted proteins were

immunoprecipitated using GST beads and washed with IP buffer

(25 mM Tris-HCl pH 7.6, 200 mM NaCl, 0.1% CA630, 6%

glycerol, 1 mM EDTA, 0.5 mM DTT, and 16 proteinase

inhibitor). The same concentration (5 mg) of GST-Prp8-C-

terminal region (2094–2335 aa) and 66His+ viral 3Dpol recom-

binant proteins were incubated in IP-lysis buffer for 3 h at 4uC,

and Glutathione Sepharose (GE Healthcare) was then added to

the mixture. After denaturation in 66 loading dye and centrifu-

gation, the precipitated proteins were separated by 10% SDS-

PAGE and analyzed by WB with an anti-GST antibody (diluted

1:5000; Santa Cruz) and an anti-His+ antibody (diluted 1:5000;

Calbiochem).

RNA-binding protein immunoprecipitation-sequencing
(RIP-Seq)

The 20 dishes of Mock or EV71-infected RD cells (9.66106/15-

cm dish) were harvested in IP-lysis buffer, and the lysates were then

added to the Prp8 antibody or control IgG antibody (Abcam) for

RIP analysis. RNA-protein complexes were immunoprecipitated

with protein G agarose beads, and total RNA was extracted by

treatment with proteinase K and Trizol and prepared for

sequencing. RNA sequencing was performed by the Genomics

Core Laboratory of the Molecular Medicine Research Center,

Chang Gung University. SOLiD sequencing libraries were prepared

using the SOLiD Total RNA Sequencing kit (ABI PN4445374)

according to the manufacturer’s instructions. Approximately 1 mg of

total immunoprecipitated RNA was used as the starting material.

The samples were then subjected to ribosomal RNA removal using

Ribo-Zero Gold kits (human/mouse/rat) (Epicentre); subsequently,

100 ng of the rRNA-depleted RNAs was fragmented using RNase

III. After purification, 50 ng of each fragmented sample was ligated

with RNA adaptors. An Agilent 2100 Bioanalyzer was used to profile

the distribution of the fragmented RNA (the median size was

between 125 to 140 nt). After reverse transcription and size selection,

each cDNA library was amplified using distinct barcoded 39 PCR

primers from the SOLiD RNA barcoding kits (PN 4427046). The

insert size distribution and the concentration of each library were

measured using the Agilent 2100 Bioanalyzer. From each library,

equal concentrations (0.8 pM) were pooled together and sequenced

strand-specifically on an ABI SOLiD5500 platform (Life Technol-

ogies, Foster City, CA, USA) to generate 75-bp tags. The single-end

sequence data were aligned to the hg19 (GRCh37) human reference

genome. The transcripts were uploaded to DAVID Tools, and

functional annotations were assigned based on the KEGG pathways.

Supporting Information

Figure S1 Pathway maps. (A) KEGG pathway entry

(hsa04510) for focal adhesion. (B) KEGG pathway entry

(hsa04010) for MAPK signaling pathway.

(TIF)
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Figure S2 CVB3 3Dpol is unable to inhibit the cellular
splicing process. (A) CVB3 3Dpol leads to decreased levels of

both pre-mRNA and mature mRNA. RD cells were transfected

with constructs encoding FLAG-tagged CVB3 3Dpol (lanes 3 and

4) or HA-tagged Prp8 (lanes 2 and 4). The vectors pFLAG-CMV2

and pCMV-HA were used as negative controls (lane 1). The

exogenous reporter pSV40-CAT(In1) was transfected into all of

the samples for 24 h, and the total RNA obtained was

subsequently harvested from RD cells for RT-qPCR. The fold

changes in the amount of pre-mRNA and mRNA were calculated.

In a WB assay, the overexpression of HA-tagged Prp8 and the

level of FLAG-tagged CVB3 3Dpol were detected using anti-HA

and anti-FLAG antibodies, respectively. (B) CVB3 is unable to

inhibit the splicing process in intracellular cyclin D3 and PDGF.

CVB3 decreased the pre-mRNA and mRNA of intracellular cyclin

D3 and PDGF in CVB3 40 MOI-infected RD cells.

(TIF)

Table S1 The sequences of primers.
(DOC)

Table S2 A list of NCBI GI numbers for genes and
proteins mentioned in the text.

(DOC)
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