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Abstract
Multiple factors are involved in the etiology of cardio-
vascular disease (CVD). Pathological changes occur in a 
variety of cell types long before symptoms become ap-
parent and diagnosis is made. Dysregulation of physi-
ological functions are associated with the activation 
of immune cells, leading to local and finally systemic 
inflammation that is characterized by production of 
high levels of reactive oxygen species (ROS). Patients 
suffering from inflammatory diseases often present 
with diminished levels of antioxidants either due to in-
sufficient dietary intake or, and even more likely, due 
to increased demand in situations of overwhelming 
ROS production by activated immune effector cells like 
macrophages. Antioxidants are suggested to benefi-
cially interfere with diseases-related oxidative stress, 
however the interplay of endogenous and exogenous 
antioxidants with the overall redox system is complex. 
Moreover, molecular mechanisms underlying oxida-
tive stress in CVD are not fully elucidated. Metabolic 
dybalances are suggested to play a major role in dis-
ease onset and progression. Several central signaling 

pathways involved in the regulation of immunological, 
metabolic and endothelial function are regulated in a 
redox-sensitive manner. During cellular immune re-
sponse, interferon γ-dependent pathways are activated 
such as tryptophan breakdown by the enzyme indole-
amine 2,3-dioxygenase (IDO) in monocyte-derived 
macrophages, fibroblasts, endothelial and epithelial 
cells. Neopterin, a marker of oxidative stress and im-
mune activation is produced by GTP-cyclohydrolase Ⅰ in 
macrophages and dendritic cells. Nitric oxide synthase 
(NOS) is induced in several cell types to generate nitric 
oxide (NO). NO, despite its low reactivity, is a potent 
antioxidant involved in the regulation of the vasomotor 
tone and of immunomodulatory signaling pathways. 
NO inhibits the expression and function of IDO. Func-
tion of NOS requires the cofactor tetrahydrobiopterin 
(BH4), which is produced in humans primarily by fibro-
blasts and endothelial cells. Highly toxic peroxynitrite 
(ONOO-) is formed solely in the presence of superoxide 
anion (O2

-). Neopterin and kynurenine to tryptophan 
ratio (Kyn/Trp), as an estimate of IDO enzyme activity, 
are robust markers of immune activation in vitro  and in 
vivo . Both these diagnostic parameters are able to pre-
dict cardiovascular and overall mortality in patients at 
risk. Likewise, a significant association exists between 
increase of neopterin concentrations and Kyn/Trp ratio 
values and the lowering of plasma levels of vitamin-C, 
-E and -B. Vitamin-B deficiency is usually accompanied 
by increased plasma homoycsteine. Additional determi-
nation of NO metabolites, BH4 and plasma antioxidants 
in patients with CVD and related clinical settings can be 
helpful to improve the understanding of redox-regula-
tion in health and disease and might provide a rationale 
for potential antioxidant therapies in CVD.
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volved in the regulation of immune and endothelial ho-
meostasis is strongly coordinated by redox processes. 
Underlying molecular mechanisms of atherogenesis 
include metabolic imbalances that are linked to the 
onset and progression of endothelial dysfunction and 
inflammation, finally leading to a status of heightened 
oxidative stress. Decrease of plasma antioxidants may 
develop secondarily due to an increased demand for 
oxidation-sensitive vitamins during inflammation. An-
tioxidant and vitamin supplementation therapy is con-
troversially discussed and success might depend of an 
individual patient’s demand.
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INTRODUCTION
Despite the availability of  successful treatment strategies 
for dyslipidemia and hypertension, cardiovascular diseas-
es (CVD) account for one third of  all deaths worldwide, 
and prevalence still increases[1,2].

CVD comprise a class of  diseases that involve heart 
and systemic blood vessels[3]. In coronary heart disease, 
cerebrovascular disease or peripheral arterial disease, im-
paired blood vessel function leads to an inadequate blood 
supply of  organs. Deep vein thrombosis and pulmonary 
embolism are usually caused by blood clots in the leg 
veins.

Avoiding risk factors such as smoking, obesogenic 
lifestyle, e.g., unhealthy diet, physical inactivity, high blood 
pressure, diabetes and dyslipidemia, is strongly recom-
mended for disease prevention. Nevertheless, beside life-
style, genetic, epigenetic and environmental factors may 
essentially influence the risk of  CVD.

The multifactorial background makes it difficult to 
unravel initial pathological events, which are suggested to 
occur in a very early phase of  disease, where symptoms 
are subclinical. Inflammation is considered to play a key 
role in both disease initiation and progression[4]. Chronic 
inflammatory conditions attenuate endogenous antioxi-
dant capacities due to continuous production of  high 
levels of  reactive oxygen species (ROS). Patients often 
represent with low blood levels of  antioxidants[5] and 
enhanced oxidative stress markers[6]. This is usually due 
to increased demand in situations of  overwhelming ROS 
production by activated immune effector cells like mac-
rophages. Also insufficient nutritional intake may play a 
role. Uptake of  exogenous antioxidants is suggested to 
beneficially interfere with diseases-related oxidative stress, 
however the interplay of  endogenous and exogenous an-
tioxidants with the overall redox system is complex.

The object of  this review is to give an overview on 
immunobiochemical pathways activated in atherogen-

esis, which lead to oxidative stress-related pathological 
consequences. Understanding of  the mechanisms will be 
helpful in the establishment of  new preventive and thera-
peutic strategies.

MAIN FEATURES OF ATHEROGENESIS
Atherosclerosis is the most common pathological process 
that leads to CVD including myocardial infarction (MI), 
heart failure, stroke and claudication. A central event is 
the development of  atherosclerotic plaques in the inner 
lining of  arteries. Irritative inflammatory stimuli, hyper-
tension, hyperglycemia and dyslipidaemia cause endothe-
lial stress leading to expression of  adhesion molecules 
and recruitment of  leukocytes[7].

Atherosclerotic plaques are characterized by necrotic 
cores, calcification, accumulation of  modified lipids and 
foam cells, but also other cell types such as smooth mus-
cle cells, vascular dendritic cells, T cells and endothelial 
cells are involved in lesion formation[8]. The “oxidative 
modification hypothesis” of  atherogenesis implies that 
low-density lipoprotein (LDL) oxidation is an early event 
in atherosclerosis[9]. Cholesterol-containing LDL particles 
are retained in the artery wall and biochemically modified 
components of  these particles in turn induce leukocyte 
adhesion but also intracellular cholesterol accumula-
tion in invaded macrophages[10]. Chronic inflammatory 
conditions are maintained due to the production of  pro-
inflammatory mediators through immune competent 
cells in the lesions[11]. Activation of  macrophages is a key 
factor in atherosclerotic plaque formation, fibrous cap 
disruption and thrombus formation.

While in the past atherosclerosis was viewed primar-
ily as passive process of  cholesterol accumulation, recent 
evidence indicates that it is a highly active process involv-
ing components of  the vascular, immune, metabolic and 
endocrine system[12]. Initial pathological changes occur in 
a variety of  cell types long before symptoms become ap-
parent and diagnosis is made[13,14]. Of  note, also in a large 
sample of  cardiovascular disease-free adults, Chrysohoou 
et al[15] revealed an association of  pre-hypertension with re-
duced serum antioxidant capacity and increased oxidized 
LDL probably indicating initial pathological changes.

Atherosclerotic plaque composition, endothelial ero-
sion, intraplaque hemorrhage, adventitial and intraplaque 
neovascularization, rather than the percentage of  steno-
sis, turned out to be critical predictors for both risk of  
plaque rupture and subsequent thrombogenicity[2,16,17]. 
Disruption of  a vulnerable or unstable plaque may lead 
to a complete occlusion, to plaque progression or result 
in an acute coronary syndrome, i.e., acute MI (AMI), un-
stable angina and sudden cardiac death or stroke in case 
of  carotid plaque destabilization.

OXIDATIVE STRESS AND IMMUNE 
ACTIVATION
Although substantial efforts have been made to dissect 
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molecular details of  atherogenesis, a full understanding 
of  the underlying mechanisms is still missing. However, 
activation of  immune competent cells, leading to local 
and finally systemic inflammatory phenomena and the as-
sociated status of  heightened oxidative stress are central 
events[4].

Monocyte/macrophage accumulation at the lesion is 
a key factor in the pathology and involves several steps, 
such as monocyte recruitment by expression of  adhesion 
molecules and chemotactic factors, induction of  activa-
tion and differentiation processes as well as proliferation, 
and immobilization of  macrophages in the inflamed 
plaque[18]. Current data indicate that due to the presence 
of  variable differentiation stimuli, different macrophage 
populations reside in the atherosclerotic plaque[19]. Both 
M1 and M2 macrophages are present in atherosclerotic 
regions. Macrophage colony-stimulating factor (M-CSF), 
which is continuously present in circulation, induces pre-
dominantly M2-type macrophages with increased phago-
cytic activity, characterized by expression of  interleukin 
(IL)-10, scavenger receptor A and mannose receptor[18,19]. 
Granulocyte-macrophage CSF (GM-CSF) induces M1-
polarized cells with antigen presentation capacities, which 
express tumor necrosis factor alpha (TNFα) and pro-
inflammatory cytokines such as IL-1β, IL-6, IL-8 and 

IL-12 upon stimulation with interferon gamma (IFN-γ) 
or lipopolysaccharides (LPS)[18,20]. While M1 macrophages 
were found to predominate in rupture-prone plaque 
regions, M2-type are located in the vascular adventitial 
tissue[21]. However, also other macrophage phenotypes 
are suggested to contribute to the inflammatory process 
in atherosclerosis, such as the recently described platelet 
chemokine CXCL4-induced M4 cells[22].

Immune reactions in atherosclerotic lesions are 
mainly T helper (Th1) type responses, as indicated by 
the dominance of  pro-inflammatory and macrophage-
stimulating cytokines found in advanced plaques[11,23,24]. 
During Th1-type response, IFN-γ is probably the most 
important trigger for high ROS production in macro-
phages[25] by phagocytic NADPH oxidase (NOX)[26]. 
Main reactive species are hydrogen peroxide (H2O2), 
superoxide anion (O2

-), but also reactive nitrogen species 
such as peroxynitrite (ONOO-), nitrogen dioxide and 
trioxide[27]. IFN-γ signaling initiates a variety of  cellular 
defense mechanisms such as pro-inflammatory cytokine 
production via nuclear factor kappa B (NF-κB) signaling, 
enhancement of  antigen presentation[28] and other im-
portant pathways, e.g., neopterin formation via guanosine 
triphosphate (GTP)-cyclohydrolase Ⅰ (GTP-CH-Ⅰ) and 
indoleamine 2,3-dioxygenase (IDO)-mediated tryptophan 
breakdown[29] (Figure 1).

Under normal conditions, low levels of  ROS are main-
ly byproducts from electron transport chain reactions in 
the mitochondria[30]. They are important regulators of  sev-
eral redox-sensitive pathways involved in the maintenance 
of  cellular homeostasis[31], and act by modifying molecules, 
enzymes and transcription factors as well by interfering 
with the endogenous antioxidant pool[27,31,32]. Depletion 
of  endogenous redox buffer systems in conditions with 
overwhelming oxidative stress is critical, not only due to 
triggering of  immune responses but also through leading 
to endothelial and smooth muscle dysfunction, and thus 
to the progression of  atherosclerosis[33,34].

ROLE OF LIPOPROTEINS IN 
ATHEROSCLEROSIS
Proatherogenic oxidized LDL (oxLDL) accumulates in 
the vascular wall and contributes to the pathogenesis of  
vascular dysfunction early in the development of  athero-
sclerosis. After incorporation via scavenger receptors of  
macrophages, oxLDL leads to their transformation into 
foam cells[35]. Foam cells accumulate a variety of  lipids in 
droplets in the cytoplasm and secrete extracellular matrix 
proteins that further support the retention of  lipopro-
teins and attraction of  immune cells, thus leading to an 
enlargement of  the lesion[10].

Oxidation of  LDL is considered to occur primarily 
in the vascular wall[36], but also circulating oxLDL was 
detected in CVD patients[37]. Although the amount of  
circulating oxLDL is small compared to oxLDL present 
in vessels[38], enhanced serum levels of  oxLDL are predic-
tive for endothelial dysfunction and coronary heart dis-
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Figure 1  Regulatory circuits in inflammation and endothelial dysfunction. 
During inflammation, NADPH oxidase (NOX) produces high levels of reactive 
oxygen species (ROS). T cells and natural killer cells produce interferon-γ, 
which activates enzyme GTP-cyclohydrolase Ⅰ (GTP-CH-Ⅰ), indoleamine 
2,3-dioxygenase (IDO) and inducible nitric oxide synthase (iNOS) in monocyte-
derived macrophages (M) and dendritic cells (DC). In endothelial cells, en-
dothelial NOS (eNOS) is constitutively expressed and GTP-CH-Ⅰ produces 
tetrahydrobioterin (BH4), which is a NOS cofactor. BH4 deficiency leads to NOS 
uncoupling and superoxide anion (O2

-) formation, which reacts with NO to form 
peroxynitrite (ONOO-). In a vicious cycle, ONOO- oxidizes BH4. In M/DC, GTP-
CH-Ⅰ synthesizes neopterin at expense of BH4, which contributes to the low 
activity of iNOS in human M/DC. Furthermore, NO is a reversible inhibitor of the 
immunoregulatory enzyme IDO. IDO degrades the essential amino acid trypto-
phan to kynurenine.
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IFN-γ is the major stimulus for neopterin formation. 
Other cytokines have only limited stimulatory poten-
tial in vitro but some, e.g., TNFα, can indirectly enhance 
IFN-γ induced neopterin formation[55]. Of  note, also pro-
inflammatory compounds like LPS can elevate neopterin 
levels[55]. The amount of  neopterin secreted by human 
macrophages correlates with their ROS-generation capac-
ity in vitro[56] and neopterin concentration in body fluids is 
considered as an indicator for immune activation-associ-
ated oxidative stress[57].

GTP-CH-1 catalyzes the conversion of  guanosine 
triphosphate (GTP) to 7,8-dihydroneopterin triphosphate 
finally leading to the formation of  neopterin, 7,8-dihy-
droneopterin and 5,6,7,8-tetrahydrobiopterin (BH4)[57]. 
Human monocyte-derived macrophages and DCs are 
the most important source of  neopterin and its partially 
reduced derivative 7,8-dihydroneopterin, both present in 
relative constant ratio in human serum[57], but not of  BH4, 
due to the relative deficiency of  pyruvoyl-tetrahydrop-
terin synthase in this cell types[58] (Figure 1). In contrast, 
cells from other animal species and other human cell 
types such as endothelial cells or fibroblasts preferentially 
produce BH4, which is needed as a cofactor by several 
monooxygenases including NOS, phenylalanine hydroxy-
lase or tyrosine hydroxylase[59].

Elevated neopterin concentrations were reported to 
be associated with chronic immune activation in several 
diseases such as viral, bacterial and parasite infections, 
autoimmune or malignant tumor diseases and during re-
jection episodes in allograft recipients[60-63]. Also patients 
with CVD present with increased neopterin concentra-
tions, supporting the crucial involvement of  chronic 
immune activation, in particular of  macrophages, in 
atherogenesis. Several studies (Table 1) strengthened the 
impact of  neopterin as an independent marker for CVD, 
with predictive value for coronary artery disease (CAD) 
progression[6].

Of  note, neopterin-positive macrophages were found 
in coronary atherectomy specimens from patients with 
stable angina pectoris and to a lesser extent in those with 
unstable angina pectoris, and the number of  these macro-
phages correlated with T cell and neutrophil count in the 
lesions[76]. Furthermore, neopterin was shown to induce 
an atherothrombotic phenotype in human coronary en-
dothelial cells in vitro by promoting cellular adhesion mol-
ecules (intercellular adhesion molecule 1 and vascular cell 
adhesion molecule 1) and tissue factor (TF) expression 
mediated by activation of  NF-κB[77]. These data suggest 
that neopterin is not only associated with the systemic 
inflammation process in atherosclerosis, but might also be 
of  importance for the inflammatory process within the 
plaque and thus for plaque destabilisation[6,76].

Neopterin concentrations correlate with IFN-γ-
induced ROS production[56]. In addition, neopterin has 
pro-oxidant properties itself  by intensifying the effects 
of  ROS as well as of  reactive chlorine and nitrogen spe-
cies[78]. Of  note, Herpfer et al[79] showed that neopterin is 
able to enhance ONOO- as well as Cu(Ⅱ)-mediated LDL 
oxidation, whereas 7,8-dihydroneopterin may protect 

ease[36-39]. The role of  oxLDL as a relevant pro-atherogen-
ic marker is further supported by the study of  Meisinger 
et al[40], who found elevated oxLDL to be predictive for 
future coronary heart disease events in apparently healthy 
men. Oxidation of  LDL contributes to the prooxidant 
environment in atherosclerotic lesions. OxLDL is a po-
tent stimulus of  vascular ROS formation, mainly through 
activation of  NOX and uncoupling of  endothelial nitric 
oxide (NO)-synthase (NOS) that promotes endothelial 
dysfunction[36].

High-density lipoprotein (HDL) is another poten-
tial biomarker with anti-atherogenic properties due to 
its function in the reverse cholesterol transport and in 
decreasing lipoprotein oxidation[41]. HDL is involved in 
several biological processes that counteract inflamma-
tion and oxidative stress, by beneficially influencing, e.g., 
pancreatic beta-cell function, endothelial vasoreactivity, 
endothelial apoptosis, restorative processes and mono-
cyte activation as well as adhesion molecules expression, 
thus being highly vasculoprotective[42]. Paraoxonase-1, a 
calcium dependent enzyme, is located at the surface of  
HDL particles and contributes to the antioxidant and 
anti-inflammatory role of  HDL[43]. In particular, HDL-
associated paraoxonase was shown to inhibit the forma-
tion of  “minimally oxidized” LDL[44]. Nevertheless, also 
other mechanisms are suggested to be involved in HDL-
associated inhibition of  LDL oxidation[45].

Plasma HDL cholesterol (HDL-C) levels are inversely 
associated with CVD risk in preclinical and large epi-
demiologic studies. Low HDL-C level was identified as 
a robust predictor of  lipid peroxidation irrespective of  
gender, age, obesity and inflammatory or metabolic bio-
markers in the Styrian Juvenile Obesity/ Early DEteC-
Tion of  Atherosclerosis study employing 797 participants 
aged from 5 to 50 years[46]. However, HDL is highly 
heterogeneous and the atheroprotective functions of  the 
different HDL subpopulations are not completely under-
stood. Furthermore, current data indicate that therapeuti-
cally increased HDL-C levels per se do not always corre-
late with enhanced HDL functions in vivo[47,48].

Of  note, accumulation of  free, unesterified choles-
terol can lead to crystal formation both in vitro and in 
vivo[49]. Crystalized cholesterol in atherosclerotic plaques 
was shown to activate the NLR family, pyrin domain con-
taining 3 (NLRP3) inflammasome complex by employing 
the complement system, thereby leading to the release of  
proinflammatory cytokine IL-1β[50,51]. Cholesterol crystals 
were mainly found in advanced plaques, however the in-
flammatory responses caused by NLRP3 inflammasome 
activation might represent an important trigger in disease 
progression and could thus represent an important phar-
maceutical target[52].

NEOPTERIN FORMATION
Neopterin, a marker of  immune system activation, is pro-
duced by GTP-CH-Ⅰ in macrophages and dendritic cells 
(DC)[53,54] and has emerged as an important independent 
and predictive marker in cardiovascular risk assessment[6]. 
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LDL from oxidation under certain conditions[79,80]. Ne-
opterin may also enhance the effects of  ONOO- in the 
processes of  protein nitration[81]. This pro-oxidant prop-
erty of  neopterin indicates a potential involvement in the 
antimicrobial and antitumoral action of  macrophages[82]. 
The property of  neopterin to interfere with and enhance 
the effects of  various ROS might be of  central relevance 
also in atherogenesis.

Inflammation-associated oxidative stress may lead to a 
rapid consumption of  circulating antioxidants. In patients 
with CAD, higher neopterin concentrations were associ-
ated with a decline in levels of  several antioxidant com-
pounds and vitamins such as ascorbic acid, α-tocopherol, 
lycopene, lutein and zeaxanthin[5].

TRYPTOPHAN BREAKDOWN
In parallel to neopterin formation, other IFN-γ-dependent 
pathways are activated during cellular immune response 
such as tryptophan breakdown by IDO. IDO catalyzes 
the rate-limiting step in the conversion of  tryptophan 
(Trp) and other indole derivates to kynurenine (Kyn)[83] 
and is induced in monocyte-derived macrophages but also 
in fibroblast, endothelial and epithelial cells[84,85] (Figure 

1). Both expression and activity of  the haeme-containing 
enzyme IDO is sensible to redox-regulation and IDO en-
zyme itself  can exert antioxidant activity by scavenging of  
O2

-[86,87]. The estimation of  Kyn to Trp ratio (Kyn/Trp), 
expressed as μmol kynurenine per mmol tryptophan, can 
be used as measure of  IDO enzyme activity both in vitro 
and in vivo[60,88]. Simultaneous measurement of  immune 
activation markers such as neopterin, IFN-γ or soluble 
interleukin receptors, allow to relate circulating Trp levels 
with inflammation-induced IDO activity, as also hepatic 
tryptophan 2,3-dioxygenase (TDO) could degrade Trp. 
TDO, however, is regulated via tryptophan content and 
steroid hormones such as glucocorticoids[89,90], while IDO 
is strongly induced in response to several pro-inflamma-
tory stimuli such as IFN-γ, TNFα or LPS[55,85].

Depletion of  the essential amino acid Trp contributes 
to the development of  an antiproliferative environment 
and represents an effective antimicrobial and antitumoral 
strategy[91]. Also T cell proliferation depends on Trp avail-
ability, thus IDO activation is a metabolic checkpoint of  
immunoregulation[92]. IDO activity is crucially involved in 
the control of  T cell proliferation and in the generation 
of  regulatory T cells, and thus in the suppression of  au-
toimmune responses and promotion of  tolerance[92,93].

Table 1  Selected studies investigating neopterin concentrations in cardiovascular disease patients

Ref. Condition n Result

Melichar et al[64], 1994 AMI   13 Increased urinary neopterin
Anwaar et al[65], 1999 Acute cerebral ischemia or 

transient ischemic attack, 
1-yr follow-up 

  59
  (57)

Increase of plasma neopterin after acute cerebral ischemia

Tatzber et al[66], 1991 Different clinical stages of 
atherosclerosis

  61 Elevated plasma neopterin in about 50% of hospitalized patients 
undergoing conservative or surgical therapy, higher neopterin levels 
were overrepresented in patients with higher Frederickson type

Weiss et al[67], 1994 Cross-sectional community-based 
screening study (Ischemic Heart 
Disease and Stroke Prevention Study, 
Bruneck, Italy)

561
(total)

Serum neopterin correlated with the extent of carotid atherosclerosis

Schumacher et al[68], 1997 AMI
Stable CAD

  21
  62

Neopterin levels were highest in AMI patients but also elevated in 
those with CAD

Gurfinkel et al[69], 1999 Unstable angina pectoris 
(non-Q-wave AMI)

  52
  (26)

Serum neopterin correlated with score of atherosclerotic extension 
(angiography)

Zouridakis et al[70], 2004 Chronic stable angina pectoris 124 CAD progression correlated with increased neopterin and high-
sensitivity C-reactive protein  as well endothelial activation markers

Avanzas et al[71], 2005 Patients with chronic stable chest 
pain undergoing diagnostic coronary 
angiography, 1-yr follow-up

297 Elevated serum neopterin correlated with adverse coronary events 
during follow-up (17.2%)

Kaski et al[72], 2008 NSTE ACS (unstable angina and 
NSTE MI), 6-mo follow-up

397
(147,250)

Baseline neopterin in unstable angina and NSTE MI comparable, 
increased neopterin was associated with adverse cardiac events

Johnston et al[73], 2006 ACS (treatments: medication, 
uncoated or rapamycin-eluting 
coronary stents) and stable CAD

  70
  (35,
   25,
   10)
  36

Serum neopterin correlated with thrombolysis in myocardial 
infarction; mean changes in serum neopterin higher in uncoated stent 
group

Barani et al[74], 2006 Critical limb ischemia, 1-yr follow-up 232 Neopterin was elevated in patients with atrial fibrillation or flutter 
and with ischemic electrocardiogram changes which were at risk for 
adverse cardiac events

Ray et al[75], 2007 ACS (PROVE IT–TIMI 22) 2-yr follow-
up

       3946 Increased neopterin was associated with increased risk of death and 
of acute coronary events after ACS

NSTE: Non-ST-segment elevation; PROVE IT-TIMI: PRavastatin or atorVastatin Evaluation Infection Therapy-Thrombolysis In Myocardial Infarction; AMI: 
Acute myocardial infarction; MI: Myocardial infarciationnon; CAD: Coronary artery disease; ACS: Acute coronary syndrome. Table adapted and extended 
from Fuchs et al[6].
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Metabolic control by reduction of  Trp levels may 
slow down hematopoiesis in addition to other proinflam-
matory stimuli by affecting the growth and differentiation 
of  erythroid progenitor cells. In line with this, in patients 
with inflammation-induced anemia, Kyn/Trp was found 
to inversely correlate with haemoglobin levels[94,95].

Accelerated Trp breakdown was reported in patients 
with coronary heart disease[96] and IDO activity corre-
lated significantly with several risk factors for atheroscle-
rosis in the Cardiovascular Risk in Young Finns Study[97]. 
Niinsalo et al[98] reported that IDO activity positively 
correlated with carotid artery intima/media thickness, an 
early marker of  atherosclerosis, although this association 
did not remain significant after adjustment with classical 
risk factors in this patient group.

In inflammatory diseases including CVD, a concur-
rent increase of  neopterin production and tryptophan 
degradation is usually observed. The prognostic ability of  
neopterin is likely to relate to the association with IFN-γ 
in the atherogenic process[6]. IDO-mediated tryptophan 
breakdown is suggested to be responsible for several ad-
ditional aspects observed during disease progression[29], 
e.g., the development of  depression. Because tryptophan 
is a precursor for the biosynthesis of  serotonin, the low-
ered tryptophan availability under inflammatory condi-
tions may limit serotonin formation and thus enhance the 
susceptibility for lowered mood and depression[99]. Of  
note, development of  depressive symptoms have been as-
sociated with increased CAD risk and poor prognosis[100]. 
Estimation of  Trp breakdown rate could contribute to a 
better understanding of  the interplay between inflamma-
tion, metabolic syndrome, mood disturbance, and ane-
mia, all previously described as significant predictors of  
an unfavorable outcome in patients with CVD[101].

NITRIC OXIDE
NOS converts L-arginine into citrulline, thereby syn-
thesizing NO. Free NO can migrate through cell 
membranes by diffusion, and although it relatively low 
reactivity, NO is a potent antioxidant molecule that can 
protect from ROS damage[102]. However, NO is a free 
radical, and can undergo oxidation to nitrite and nitrate, 
react with O2

- to form ONOO-, or bind to transition 
metals[103]. NO signaling is strongly concentration de-
pendent and although endogenous NO is essentially 
involved in many physiological processes and beneficial 
in a variety of  circumstances, its reaction products may 
mediate nitrosative and oxidative stress. However, NO 
products can have also protective effects. In plasma, 
NO circulates primarily complexed in S-nitrosothiol 
species[104] that are suggested to be a transport and buf-
fer system that controls intercellular NO exchange. 
S-nitrosylation of  the proteome is a unique form of  
posttranslational modification that can have significant 
consequences for protein function and cell phenotype. 
In particular in the cardiovascular system, S-nitrosothiols 
were shown to exert many actions, including promoting 

vasodilation, inhibiting platelet aggregation, and regulat-
ing Ca(2+) channel function of  myocytes[105]. The impact 
of  S-nitroso but also N-nitroso protein formation on the 
reduction of  free NO under inflammatory conditions in 
vivo has still to be investigated[106,107].

Endothelial and neuronal NOS are constitutively ex-
pressed and produce NO at low concentrations, while in-
ducible NOS is activated, e.g., in macrophages of  several 
species in response to pro-inflammatory stimuli giving 
rise to higher NO output[108]. Endothelial dysfunction, 
e.g., vasodilation and/or platetelet inhibition, a key feature 
of  early atherosclerosis, is associated with the reduced 
availability of  endothelium-derived NO[109]. Defects in 
NO production, metabolism and response have been de-
scribed to be responsible mechanisms.

In the presence of  O2
-, ONOO- formation may be a 

factor that limits NO bioavailability. Beside being strongly 
vasoconstrictory, ONOO- has been shown to oxidize the 
NOS cofactor BH4, thereby leading to eNOS uncoupling 
and O2

- production[110], thus starting a vicious cycle (Fig-
ure 1). Reduced vascular BH4 levels were found in rat and 
mice models of  atherosclerosis and diabetes[111].

High NO output and generation of  reactive nitrogen 
species via iNOS contribute to cytocidal defense strate-
gies in inflammation. However, although this has been re-
ported for several species, including mice, until now, large 
output of  NO by iNOS could not be equally demonstrat-
ed in human macrophages[112,113]. Human macrophages 
produce neopterin at the expense of  BH4, and low BH4 
leads to NOS enzyme uncoulpling. Furthermore, the 
pro-oxidant properties of  neopterin may compensate for 
deficient NO and ONOO- production[114].

Of  note, NO inhibits IDO expression and function by 
reversibly binding to the active site heme[115]. Induction of  
IDO and NOS in IFN-γ-mediated inflammatory response 
is suggested to be functionally cross-regulated[116]. The 
absence of  NO-mediated immunoregulation may support 
enhanced IDO activity at the site of  inflammation.

POTENTIAL ROLE OF TH2 RESPONSES 
IN CVD
Th1 responses are in general proinflammatory and 
known to be proatherogenic, while Th2 cells are usually 
involved in helmintic and allergic responses. The role of  
Th2 cells in atherosclerosis seems to be very complex and 
even contradictory. A potential protective role of  Th2 re-
sponse is discussed in few studies[117,118], while Ait-Oufella 
et al[24] assume a potential proatherogenic function of  Th2 
cells within the complex interaction theater of  CD4+ T 
cell subsets in atherosclerosis. Thus, the exact role of  the 
Th2 response remains to be elucidated based on an im-
proved understanding of  the complex interplay between 
Th1, Th2, and other T cell populations such as Th17 and 
Tregs within the atherosclerotic scenario[18,24]. Overall, Th 
cell subset polarization in atherosclerosis is less distinct in 
humans compared to mice[119].

High cholesterol diet of  ApoE(-/-) mice with differ-
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ent T cell subset polarization resulted in increased devel-
opment of  atherosclerosis in the aortic root and abdomi-
nal aorta in mice with predominantly Th1-like immune 
responses [ApoE(-/-) BL/6 mice] in comparison to ani-
mals with Th2 predominance [ApoE(-/-) BALB/c][120]. A 
potential of  IL-4 to limit Th1 cell responses and reducing 
lesion size was observed in several murine atherosclerotic 
models[121,122].

Only recently, Engelbertsen et al[123] reported an as-
sociation between Th2 immunity and reduced risk of  
MI, as high numbers of  Th2 cells were associated with 
decreased mean common carotid intima-media thickness, 
reduced risk of  AMI in women and IL-4 was indepen-
dently associated with reduced risk of  CVD. Although 
some limitations, as, e.g., differences in lymphocyte num-
ber between healthy man and women or the use of  long-
term cryo-conserved cells, this study provides first hints 
for the clinical importance of  an improved understand-
ing of  Th2-type responses in CVD. However, again in 
contrast to these positive, protective attributes, Shimizu 
et al[124] suggested a role for Th2 cells and cytokines in the 
promotion of  arterial aneurysm formation.

ANTIOXIDANTS IN CVD THERAPY
Oxidative stress triggers inflammation and endothelial 
disruption in atherogenesis. A number of  studies showed 
that exogenous antioxidants can modulate endothelium-
dependent vasodilation responses, endothelium-leukocyte 
interactions as well as balance between pro- and anti-
thrombotic properties[125]. Accordingly, antioxidant ther-
apy was suggested to beneficially interfere with develop-
ment and progression of  atherosclerosis.

Th1/Th2 balance is crucially dependent on redox-
events; while Th1 responses prevail at oxidative condi-
tions, Th2 responses were shown to be supported by “an-
tioxidative stress”[126]. Thus, disequilibrium of  Th1/Th2 
cytokines may be involved in CVD as a mechanism of  
immunotoxicity. As Th1 and Th2 reactions crossregulate 
each other to balance immune responses[127], suppression 
of  Th1-type response by antioxidants would favour Th2-
type reactions. Of  note, several types of  antioxidant were 
shown to reduce IFN-γ-stimulated tryptophan degrada-
tion and neopterin in peripheral blood mononuclear cells 
in vitro[87,128].

A number of  studies reported an inverse relation-
ship between plasma antioxidants, or total antioxidant 
capacity and cardiovascular diseases[5,15]. Low intake of  
antioxidants, in particular of  vitamins, was suggested to 
be associated with an increased risk of  CVD[129,130]. Thus, 
the finding of  an inverse correlation between concen-
trations of  antioxidant compounds and vitamins and 
disease risk could relate to an increased requirement for 
antioxidant molecules during inflammatory diseases and 
insufficient supply with these compounds may further 
accelerate disease process. However, this assumption has 
not been conclusively proven in clinical trials and is still 
controversially discussed in the literature[131-134]. Likewise, 

equivocal effects of  antioxidant supplementation with vi-
tamin E, beta-carotene, alpha lipoic acid, coenzyme Q10, 
alone or in combination, on cardiovascular health were 
reported[135].

Major effects were expected from vitamin E therapy. 
Due to its fat-solubility, vitamin E is part of  cell mem-
branes and lipoprotein particles, where it counteracts 
oxidation events. Vitamin E-mediated protection from 
oxidative stress and atherosclerotic plaque formation has 
been shown both in vitro and in mouse models. However, 
while in several clinical trials vitamin E supplementation 
lead to a reduction of  risk of  fatal and nonfatal AMI, 
others reported even a slight increase of  mortality upon 
high dose vitamin E treatment[136]. Thus, no final sugges-
tion can be made about the impact of  vitamin E supple-
mentation and even recent metanalysis including a large 
trial number lead to inconsistent results[137].

So far, although a general association of  low vitamin 
levels and oxidative stress related conditions is estab-
lished, no clear evidence for a beneficial effect of  vitamin 
supplementation exists. The association between vitamin 
deficiency in patients and disease symptoms is suggested 
to result mainly from the inflammation-associated con-
sumption of  oxidation-sensitive vitamins[29,132,138], which 
may lead to a variety of  secondary effects.

Apart from being part of  the antioxidant defense 
system, some vitamins act as enzyme cofactors. Low 
B vitamin availability (B6, B12 and folic acid) leads to 
impaired remethylation of  homocysteine to methionine 
and thus to homocysteine accumulation, as they are es-
sential cofactors in homocysteine-methionine metabo-
lism. Increased homocysteine levels were found to be 
associated with arteriosclerotic outcomes and risk of  
stroke in elderly individuals[139], and are considered as an 
independent risk marker for CVD[140]. However, lowering 
homocysteine levels by B-vitamin supplementation failed 
to demonstrate beneficial effects in CVD[141]. Also, in 
open-label study with demented patients on B vitamins, a 
decline of  homocysteine has been observed, while neop-
terin levels were not affected[142]. Recent data indicate that 
homocysteine accumulates secondarily due to heightened 
oxidative stress associated with immune activation[143-145]. 
Thus, also the impact of  the selected marker has to be 
critically evaluated when assessing the effect of  vitamin 
supplementation.

A broader understanding of  antioxidant action is 
clearly warranted. Beside their direct effects in the pre-
vention of  biomolecule oxidation by being oxidized 
themselves, several antioxidants mediate a variety of  
effects that are of  longer duration, as they may induce 
signaling changes in the biological system[146]. However, 
a variety of  drugs may act also as antioxidants, thus anti-
oxidant vitamins could interfere with pharmaco-relevant 
signaling pathways. This is of  particular relevance for 
multi-target drugs such commonly used statins.

A major aim in the treatment of  atherosclerosis is 
the prevention of  LDL oxidation. Lipid-lowering com-
pounds such as statins and niacin (vitamin B3, nicotinic 
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acid) are in use for a long time, alone or together, for car-
diovascular protection in patients with coronary disease 
and low plasma levels of  HDL[147]. However, combina-
tion therapies with other antioxidant vitamins seemed 
even to counteract the beneficial effect of  statin/niacin 
therapy[147,148].

Statins are inhibitors of  3-hydroxy-3methylglutaryl-
co-enzyme A (HMG-CoA) reductase, and their lipid-
lowering effects are suggested to reduce the risk of  
coronary heart disease[149], although therapeutic efficacy is 
controversially discussed[150].

The primary mechanism of  statin action is suggested 
to be the reduction of  LDL cholesterol, but several clini-
cal trials indicate that statins exert pleiotropic effect that 
contribute to therapeutic efficacy. Statins act as effective 
antioxidants by inhibiting generation of  ROS, but also 
by interfering with NOX and NOS, antioxidant enzymes, 
lipid peroxidation and LDL cholesterol oxidation[151]. In 
in vitro studies with vascular smooth muscle and mono-
nuclear cells, treatment with atorvastatin could reduce 
NF-κB activation and expression of  pro-inflammatory 
cytokines and chemokines[152]. In human peripheral 
blood mononuclear cells and in monocytic cell lines, 
atorvastatin was shown to suppresses stimulation-in-
duced neopterin formation and tryptophan degradation, 
suggesting that both immunoreactivity of  T cells and of  
monocyte-derived macrophages are down-regulated by 
this statin[153]. Treatment with several statins could pro-
mote Th2 polarization of  CD4+ T cells primed in vitro 
with anti-CD3 antibody and splenic antigen-presenting 
cells[154]. These findings strongly suggest that statins 
contribute to the regulation of  Th1/Th2 cell balance 
also in vivo. In endothelial cells, statins were shown to be 
involved in restorative processes by increasing NO-bio-
availability and promoting re-endothelialization[155]. Of  
note, lovastatin was able to prevent neopterin-induced 
activation of  human coronary artery endothelial cells in 
vitro by interfering with NF-κB activation and decreas-
ing expression of  cellular adhesion molecules and TF[77]. 
Furthermore, lovastatin reduced C-reactive protein 
-induced NF-κB activation in human umbilical vein 
endothelial cells[156]. Beside NF-κB, activation of  inflam-
matory transcription factors activator protein 1 and hy-
poxia-inducible factor 1 alpha were shown to be down-
regulated in human endothelial and vascular smooth 
muscle cells upon treatment with HMG-CoA reductase 
inhibitors[157]. In line with the reported antioxidant and 
anti-inflammatory properties, statin use has been associ-
ated with lower neopterin levels in patients[158,159].

The influence on redox-balance and Th1-type 
signalling pathways such as neopterin formation and 
tryptophan breakdown has been described for a variety 
of  (potentially) cardioprotective antioxidant drugs and 
vitamins, e.g., aspirin[160], atorvastatin[153], vitamins C and 
E[161] and seems to be a common mechanism at least in 
vitro. Furthermore, circulating vitamin E was shown to 
increase upon statin therapy[162,163]. Thus, due to infer-
ences with common pathways, therapeutic efficacy might 
change when combining several antioxidant drugs and 

supplements.
Furthermore, antioxidant composition may differ 

between patients, and estimation of  antioxidant profiles 
before therapy could be useful to select candidate pa-
tients that would profit from antioxidant therapies[164,165] 
and to avoid overdosage. Excessive antioxidant consump-
tion may lead to adverse reactions ranging from favoring 
of  Th2-type responses such as allergy and asthma to 
an increase of  mortality[166-168]. So far, for patients who 
respond well to statin/niacin therapy, additional supple-
mentation might only be advantageous when nutritional 
deficiencies are still detectable, however this hypothesis 
has to be investigated in more detail.

Another question is, if  moderate vitamin deficien-
cies cannot be better (and safer) regulated by changes of  
lifestyle factors, e.g., by increasing the consumption of  
antioxidant-rich food.

NUTRITION, ANTIOXIDANTS AND CVD
The strong relationship between redox-status, immune 
response and metabolism is supported by the close as-
sociation of  metabolic diseases such as diabetes, obesity 
and metabolic syndrome with CVD[169]. Tissues that are 
important in metabolism are suggested to have an evolu-
tionary potential to mediate inflammatory responses[170]. 
Metabolic and immune response pathways are closely 
cross-regulated to respond to the energetic demands 
necessary during immune activation. Several metabolic 
and immune cells show similarities on genetic and func-
tional level, e.g., pre-adipocytes can transdifferentiate 
into macrophages[171] and activate similar transcriptional 
responses[172].

In contrast to classical activation of  the immune sys-
tem, e.g., by infection or tissue injury, inflammation may 
also be induced by metabolic triggers. So called metaflam-
mation or para-inflammation is crucially involved in the 
development of  chronic diseases such as diabetes, fatty 
liver disease and CVD[172,173].

A variety of  dietary factors are able to produce car-
diometabolic imprints that predispose to disease develop-
ment. E.g., increased consumption of  trans fatty acids 
(TFA) is supposed to activate pathways that are linked to 
insulin resistance syndrome. High TFA intake was found 
to be associated with harmful changes in serum lipids, 
systemic inflammation, endothelial function, and pro-
spective observational studies demonstrated strong posi-
tive associations with the risk of  MI, coronary heart dis-
ease death, and sudden death[174]. Changes of  traditional 
nutrition patterns, as it is the case, e.g., in India, where 
“Westernization” led to an increase in uptake of  sugar, 
salt, high fat diary products, and TFA-rich food, are sug-
gested to be at least partially responsible for an about 
3-fold increase in the prevalence of  CVD and diabetes in 
the latter part of  the 20th century[175].

But also excessive intake of  antioxidants is a burden 
of  modern life due to the omnipresence of  preserva-
tives, food colorants and vitamin supplements in the 
“Western diet”. Although still nutritional deficiencies 
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may exist for some specific vitamins or other anti-
oxidants, overall antioxidant stress may favour a Th2 
environment by suppressing Th1 responses (Figure 2). 
In combination with high caloric diet and low physi-
cal activity, this may contribute to the development of  
obesity[133]. Food additives such as sodium benzoate, 
propionic acid, sodium sulfite, sorbic acid and curcumin 
were shown to suppress Th1-type immune response in 
vitro[176]. Antioxidant food additives also interfere with 
satiety saturation circuits, as they have shown to inhibit 
leptin release in cultured lipopolysaccharide-stimulated 
murine adipocytes in a dose- and time dependent man-
ner[177]. Lowering the amount of  circulating leptin is 
suggested to contribute to a obesogenic environment, 
as the reduced satiety effect in turn could lead to com-
pensatory antioxidant craving and thus even more food 
intake[133]. Leptin is considered as a proinflammatory 
cytokine with proatherogenic features, as it increases 
monocyte chemoattractant protein-1 and endothelin-1 
secretion by endothelial cells, enhances oxidative stress, 
promotes migration and proliferation of  smooth muscle 
cells and increases platelet aggregation, thus facilitating 
thrombosis[178]. In the initial phase of  obesity-related 
inflammation, leptin is predictively associated with in-
terleukin 6 plasma levels in juveniles[179]. However, leptin 
resistance, which later develops during obesity, does also 
favor atherogenesis.

Obesity-related immune mediated systemic inflam-
mation was found to be associated with the development 
of  the metabolic syndrome and altered Trp metabolism. 
However, across lifespan from juvenility to adulthood, 
differences in the Trp breakdown rate were observed. 
While juvenile overweight/obese individuals showed a 
decreased to unaltered Kyn/Trp ratio in comparison to 
normal weight controls, obese adults had significantly 

elevated Kyn serum levels and an increased Kyn/Trp 
ratio[180]. Thus, while in younger patients Th2-type re-
sponses might be favored, potentially due to the high an-
tioxidant intake, overwhelming inflammation with Th1-
type cytokines may predispose for the development of  
atherosclerosis in adult age.

Epidemiological observations suggest that consump-
tion of  certain foods rich in bioactive compounds, e.g., 
vitamins E and C, polyphenols and carotenoids such as 
lycopene and beta-carotene, and coenzyme Q10, is asso-
ciated with decrease of  atherosclerotic risk and such an-
tioxidant-rich diet is supposed to be particularly effective 
in the early stages of  atherosclerosis by preventing LDL 
oxidation and the oxidative lesion of  endothelium[181,182]. 
However, a balanced died cannot always be translated 
into clinical benefit, despite its beneficial impact on hu-
man health.

There is accumulating evidence about the importance 
of  maternal diet and early nutrition on different epigen-
etic mechanisms that promote the susceptibility to the 
development of  metabolic diseases in adulthood, such as 
metabolic syndrome, insulin resistance, type 2 diabetes, 
obesity, dyslipidaemia, hypertension, and also CVD. Of  
note, both under-and overnutrition have been associated 
with adverse responses[183,184]. Several studies indicate that 
impaired foetal growth, and/or in utero exposure to risk 
factors, especially maternal hypercholesterolaemia, may 
be relevant for the early onset of  cardiovascular damage. 
Translational studies support this hypothesis; however, a 
direct causality in humans has not been ascertained[185].

The influence of  epigenetic mechanisms on the 
developmental induction of  chronic diseases raises the 
possibility that nutritional or pharmaceutical interven-
tions may be used to modify long-term cardio-metabolic 
disease risk and combat this rapid rise in chronic non-
communicable diseases[186].

CONCLUSION 
Adaptive and innate immune responses are centrally 
involved in the chronic inflammatory process, which 
leads to destabilization of  atherosclerotic lesions, these 
processes are tightly connected to metabolic factors, 
which are essentially influenced by life style and also the 
genetic/epigenetic frame. Inflammation-induced oxida-
tive modifications contribute to all important clinical 
manifestations of  CVD such as endothelial dysfunction 
and plaque disruption. However, due the poor perfor-
mance of  antioxidant strategies in limiting atherosclerosis 
and cardiovascular events, it remains to be answered if  
oxidative modification is causal for the initiation or is an 
injurious response to atherogenesis[96]. Disease underlying 
interactions are too complex and the understanding is too 
fragmentary that clear, reliable therapeutic recommenda-
tions can be given[101].

The strong interconnection of  metabolic and inflam-
matory pathways suggests that metabolically induced 
inflammatory processes should be considered as early, 

Antioxidant stress                                  Oxidative stress

Th1 >> Th2

Tissue injury
Inflammation

Homeostasis
Redox balance

  Metabolic
dysregulation

Th2 >> Th1

Figure 2  Dysregulation of redox- and Th1/Th2-balance in the course of 
atherogenesis. Excessive antioxidant intake in combination with other risk fac-
tors such as high caloric diet and low physical exercise lead to suppression of 
Th1-type immunity, thereby favoring Th2-associated development of allergies 
and asthma and promoting juvenile obesity. Factors such as high blood pres-
sure and hyperlipidemia lead to shear stress and tissue injury. Inflammatory 
reactions are associated with high reactive oxygen species generation, which 
results in immunotoxicity due to oxidation of biomolecules (lipids, proteins, etc.).
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or even primary events[171]. Many data support that there 
is a large time span between initial pathological changes 
and the onset of  clinical manifestations. This time frame 
could be used for preventive strategies, however a better 
understanding of  disease development and more sensi-
tive detection methods would be a prerequisite.

A detailed knowledge on inflammatory and redox-
regulated processes would also allow a better adaption of  
treatment regimes. Stable biochemical markers are neces-
sary to control disease courses and treatment efficacy. 
In this context, e.g., neopterin is a useful indicator of  the 
immune activation status and oxidative stress[6] and Kyn/
Trp ratio accounts for aspects of  immunoregulation via 
IDO and represents an important metabolic checkpoint. 
Normalization of  tryptophan metabolism represents an 
important goal to improve the outcome of  patients suf-
fering from CVD, whereby treatments with IDO inhibi-
tors such as 1-methyl tryptophan could be considered[101]. 
However, IDO is well known for its immunosuppressive 
properties, and its inhibition by medications may also 
lead to adverse effects.

Also several antioxidant drugs, botanical extracts, 
phytocompounds and vitamins but also food-contained 
preservatives and colorants have been shown to negative-
ly interfere with IDO[87,166]. Both inhibition of  enzymatic 
activity as well as downregulation of  activatory signals 
may lead to a normalization of  tryptophan breakdown 
ratio. Thus, nutrition might be considered as a major fac-
tor that influences tryptophan metabolism and underlying 
inflammation in a more gentle and balanced manner than 
medication.

Measurement of  tryptophan and kynurenine concen-
trations, and calculation of  the Kyn/Trp ratio are impor-
tant predictors of  an unfavourable outcome in patients 
with CVD. It will be important to investigate if  these 
parameters can provide a basis for more successful and 
precise biologically grounded therapeutic protocols to 
further reduce cardiovascular morbidity and mortality[101]. 
Combined measurements of  multiple markers, such as 
additional determination of  lipoproteins, NO metabo-
lites, BH4 and plasma antioxidants, will also be helpful 
to understand redox-regulation in health and disease and 
may allow to discriminate best between different clinical 
diagnostic categories and to evaluate treatment strategies.

In summary, a general evaluation of  the effect of  
an “antioxidant therapy” is not possible at the moment. 
While vitamin supplementation might be beneficial un-
der certain circumstances, a variety of  studies indicate 
no or even adverse effects when administered alone and 
even more when used in combination with lipid-lowering 
agents. However, also for statin and niacin treatment a 
panel of  adverse effects has been described[187,188]. Al-
though antioxidant supplementation may have some ben-
efit to counteract secondary symptoms, their role in CAD 
seems to be of  moderate importance[145]. Surveillance of  
the antioxidant status before and during therapy would 
allow seek out patients that could benefit from vitamin 
supplementation[164,165]. Impact of  lifestyle factors such as 
nutrition and physical exercise, however, has turned out 

as a major factor in CVD prevention and also in influenc-
ing treatment efficacy.
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