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Abstract — This paper is based upon the ‘Charles Lieber Satellite Symposia’ organized by Manuela G. Neuman at each of the 2009–
2012 Research Society on Alcoholism (RSA) Annual Meetings. The presentations represent a broad spectrum dealing with alcoholic
liver disease (ALD). In addition, a literature search (2008–2013) in the discussed area was performed in order to obtain updated data.
The presentations are focused on genetic polymorphisms of ethanol metabolizing enzymes and the role of cytochrome P4502E1
(CYP2E1) in ALD. In addition, alcohol-mediated hepatocarcinogenesis, immune response to alcohol and fibrogenesis in alcoholic
hepatitis as well as its co-morbidities with chronic viral hepatitis infections in the presence or absence of human deficiency virus are dis-
cussed. Finally, emphasis was led on alcohol and drug interactions as well as liver transplantation for end-stage ALD.

Charles Saul Lieber, 1931–2009

INTRODUCTION

Charles S. Lieber was a pioneer of modern research on alcohol
and alcohol-induced liver damage. Still in the 1950s it was
believed that alcoholic cirrhosis is primarily due to malnutri-
tion and not to the toxic effect of ethanol itself. Indeed, the cir-
rhosis of the alcoholic patient was called nutritional cirrhosis.
With time strong epidemiological and experimental evidence
has led to the recognition of the key toxic role of alcohol in the
pathogenesis of alcoholic liver disease (ALD). It is the merit
of Charles Lieber that ethanol by itself was identified as a hep-
atotoxin. Clinical and experimental inconsistencies with a
view that alcoholism leads to cirrhosis only as a result of the
associated malnutrition led to a series of experimental studies
which have clearly demonstrated that alcohol is a hepatotoxin
and that the toxicity of alcohol plays a major role in the eti-
ology of cirrhosis in alcoholics.
One of Dr Lieber’s most important discoveries was the de-

scription of a new pathway for alcohol metabolism: the cyto-
chrome P450 2E1 (CYP2E1) dependent microsomal ethanol
oxidizing system (MEOS). The elucidation of this pathway
has contributed to the identification of many mechanisms
responsible for alcohol-drug interaction, alcohol-mediated car-
cinogenesis, alcohol-associated changes in the intermediary

metabolism and alcohol-related organ damage. The patho-
logical consequences of chronic alcohol abuse are multifactor-
ial and multisystemic. Although, some questions in the
pathogenesis of ALD remain still. It has been shown that a
variety of factors acting in concert are responsible for the toxic
action of alcohol. Therefore, the amount of alcohol consumed,
the pattern of drinking, genetics, gender, age, the presence of
other types of liver disease, interactions with drugs and xeno-
biotics, the use of vitamin A may modulate ALD.
Alcohol consumption is still a major health problem in

many countries. Though alcohol consumption in Europe
decreased in the 1999, it increased in a high level between
2004 and 2006 with variation among the countries.
Binge-drinking especially at young age became the major
health problem in Europe and also in several countries alco-
holism contributes to morbidity and mortality. The present
review focuses in several aspects related to alcohol toxicity in
humans and shows how many aspects of ALD initiated and
discovered by Charles Lieber has been extended and clarified
by others in the last decades.

ALCOHOL METABOLISM AND ALCOHOLIC
LIVER DISEASES

Samir Zakhari, Radu M. Nanau, Manuela G. Neuman

The alcohol dehydrogenase pathway and mitochondrial injury

The major alcohol metabolic pathway in the liver involves the
oxidative metabolism via the cytosolic enzyme alcohol de-
hydrogenase (ADH) (Lieber et al., 1994). ADH metabolizes
alcohol to acetaldehyde, a highly toxic molecule. Acetaldehyde
is further metabolized by mitochondrial aldehyde dehydrogen-
ase (ALDH) (Josan et al., 2013). Alcohol oxidation results in
reduction of the coenzyme nicotinamide-adenine-dinucleotide
(NAD+ to NADH). Mitochondrial NADH is then oxidized to
the electronic transport chain. Acetaldehyde binds to macromo-
lecules including nucleic acids, lipids and proteins leading to
autoimmunity (Klassen et al., 1995).
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Since both NADH metabolism and acetaldehyde metabolism
take place in the mitochondria, it is not surprising that excessive
alcohol consumption leads to deficient mitochondrial nicotina-
mide-adenine-dinucleotide content, morphological changes in
the mitochondria and alcoholic steatosis. Mitochondrial abnor-
malities have been described (Zimmerman, 1968) including dis-
tortion of shape and disorientation of cristae (Neuman et al.,
1999a,b) as well as the occurrence of megamitochondria
(Horvath et al., 1973). Mitochondrial dysfunction can contrib-
ute to the development of fatty liver (Feinman and Lieber,
1999). Mitochondria utilize and break down fatty acids as part
of cellular respiration. The link between obesity, physical in-
activity, alcohol consumption and type 2 diabetes is well estab-
lished. Steatosis is considered as a risk factor that contributes to
ALD and its degree of steatosis shows a good correlation with
the severity of liver damage (McCullough and Falck-Ytter,
1999).

The cytochrome P402E1-dependent microsomal pathway
and morphologic changes

In addition to the classical ADH pathway, a second pathway
known as the microsomal ethanol oxidizing system (MEOS)
also participates in alcohol metabolism, and is catalyzed by
CYP2E1 (Lieber and DeCarli, 1968, 1970). This pathway has
an enormous importance not only with respect to alcohol me-
tabolism but also with respect to the toxic side effect asso-
ciated with CYP2E1 induction (Lieber, 2004). CYP2E1 is
located in the microsomes as well in the mitochondria (Bansal
et al., 2010). The ultrastructural proliferation of the smooth
endoplasmic reticulum after alcohol consumption was the
morphological adaptation to chronic alcohol consumption par-
allel by the functional adaptation of CYP2E1 induction. Other
morphological features of ALD are the alcoholic hyaline or
Mallory Denk bodies (Mallory, 1911; Biava, 1964; Porta
et al., 1965; Zimmerman, 1968; Yokoo et al., 1972; Denk
et al., 1981; French, 1981; Cameron and Neuman, 1999).
From a morphological perspective, early hepatocyte changes
include accumulation of membrane-bound fat droplets, prolif-
eration of the smooth endoplasmic reticulum and gradual dis-
tortion of mitochondria (Cameron and Neuman, 1999;
Neuman et al., 1999a,b). Lipid accumulation in ALD is
largely macrovesicular and is comprised of neutral triglycer-
ides. In addition, some histological findings such as perivenu-
lar fibrosis, and the presence of both microvesicular and
macrovesicular fat, may be associated with an unfavorable
prognosis in steatosis patients who have not yet developed cir-
rhosis (Worner and Lieber, 1985; Cameron and Neuman,
1999; Lefkowitch, 2005).

Genetic aspects of alcohol metabolism

Genetics and ethnicity play important roles in alcohol con-
sumption and metabolism, as well as in the development of
ALD, as indicated by family, twin, and adoption studies.
Evidence suggesting genetic predisposition derives from the
demonstration that the concordance of cirrhosis among mono-
zygotic twins was more than twice that among dizygotic ones
(Wilsnack et al., 2009). A DH and ALDH provide important
predisposition factors for alcohol-dependent sensitivity and
more importantly ALD. Multiple forms of ADH are expressed
by different organs. The liver expresses a majority of these

forms which include class I (ADH1A, ADH1B and ADH1C),
class II (ADH4), class III (ADH5), class IV (ADH7) and class
V (ADH6) (Lai et al., 2013; Zuo et al., 2013). The frequency
of class I ADH alleles varies in different populations. Thus, it
is still an open question whether polymorphism in ADH1B
and 1C plays a role in alcohol-associated disease.
The one significant genetic polymorphism in the ALDH2

gene results in the allelic variants ALDH2*1 and ALDH2*2.
The latter of which is associated with a virtually inactive
enzyme. Presence of the low activity ALDH2*2 allele defines
a deficient phenotype, which is present in ~50% of Taiwanese,
Han-Chinese and Japanese populations. On the other hand, a
much lower frequency of this allele was found among
Mongolian and Elunchun individuals in a Chinese population
(Li et al., 2012). Class I ADH and ALDH2 play a central role
in alcohol metabolism. These genotypes modify the suscepti-
bility of developing alcoholism and various types of tissue
damage (Birley et al., 2009). The activity of ADH and ALDH
isozymes also contribute to alcohol-induced damage.
Alcoholic cirrhosis is reduced by 70% in populations carrying
the ALDH2*2 allele (Li et al., 2012), while individuals with
the ADH3*1 allele have an increased risk of developing breast
cancer from moderate amounts of alcohol (Mao et al., 2012).
ALDH2*1, 2 heterocygots have also an increased risk of
esophageal cancer.
In addition, CYP2E1 is also polymorphic with two alleles

coding for protein with high and low activity, respectively
(Oneta et al., 2002; Stickel and Oesterreicher, 2006). Progression
to ALD among heavy drinkers may be affected by the presence
of the mutant CYP2E1 c2 allele (Grove et al., 1998). Both het-
erozygosity for CYP2E1 c2 allele and homozygosity for
ADH3*2 allele are independent risk factors for ALD in alcohol
abusers (Lee et al., 2001). Nevertheless, controversy surrounds
these relationships (Lee et al., 2001; Okamoto et al., 2001; Vidal
et al., 2004). Zintzaras et al. (2006) further concluded in a
meta-analysis of 50 association studies of ADH2, ADH3,
CYP2E1 and ADLH2 polymorphisms that the information cur-
rently available is not enough to show a strong relationship and
more rigorous studies are required.
Besides ethanol-mediated toxicity via ADH, ALDH and

CYP2E1 metabolism resulting in acetaldehyde, NADH pro-
duction and oxidative stress, elevated levels of lipopolysac-
charides (LPS) have also been detected in blood of alcoholics
(Bode et al., 1987). It has been hypothesized that the increased
levels of LPS contribute to the development of ALD by stimu-
lating inflammatory cytokines. Alcoholics might develop tol-
erance to the chronic endotoxemia. In addition, increased
translocation of endotoxin may have an important role (Bode
and Bode, 2005).

CYP2E1 IN ALCOHOLIC LIVER DISEASE AND
ALCOHOL-MEDIATED HEPATOCARCINOGENESIS

Sebastian Muller and Helmut Karl Seitz

Chronic alcohol consumption induces CYP2E1 by stabilizing
it from degradation by the proteasome (French et al., 2011).
This increase in CYP2E1 has been reported not only in the
liver but also in extrahepatic tissues such as the mucosal cells
of the gastrointestinal tract (Seitz et al., 1979, 1982) and in the
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pancreas (Norton et al., 1998). This induction may already
occur with relatively low doses of chronic alcohol consump-
tion such as 40 g/day and after 1 week and increases with
time. However, it has to be emphasized that due to inter-
individual variations not all subjects included in this study
experienced the same magnitude of CYP2E1 induction (Oneta
et al., 2002).
CYP2E1 induction by chronic alcohol consumption results

in a variety of complex cellular effects with enormous clinical
significance. These include an increase in alcohol metabolism,
increased production of reactive oxygen species (ROS) such as
OH− and H2O2, with increased cellular toxicity resulting in
ALD and stimulating carcinogenesis (Seitz and Stickel, 2007),
and interactions with various drugs, xenobiotics and carcino-
gens (Neuman et al., 1999a; Seitz and Stickel, 2007;Whitcomb
and Block 1994; Zimmerman 1981), increased degradation of
retinol and retinoic acid and the generation of alcohol-induced
fatty liver (Liu et al., 2002). CYP2E1-induced oxidative stress
also mediates the interaction between alcohol and other mole-
cules such as xenobiotics, procarcinogens and retinoids (Seitz
and Stickel, 2007).
ROS can directly damage proteins and deoxy-ribo-nucleic

acid (DNA). Alternatively, ROS can bind to proteins, generat-
ing neoantigens that lead to an antibody response that may in-
fluence ALD. However, most important is the effect of ROS on
lipid peroxidation leading to the formation of products such as
4-hydroxynonenal (4-HNE) and malondialdehyde. 4-HNE by
itself may also bind to DNA nucleotides such as cytosine and
adenosine, resulting in the generation of highly mutagenic and
carcinogenic exocyclic etheno-DNA adducts (Moriya et al.,
1994; Nair et al., 2010). CYP2E1 induction correlates well with
the degree of hepatic fat, inflammation and fibrosis in a recent
study of 90 patients with various degrees of ALD. Moreover,
chronic alcohol consumption leads to an increase in CYP2E1
levels in the liver and in the human esophagus (Millonig et al.,
2011). CYP2E1 is induced in esophageal mucosa of chronic
alcoholics and this induction correlates with the amount of
alcohol consumed over the lifetime. This is in contrast to the
liver where no correlation between the amount of alcohol intake
and CYP2E1 induction is found. Furthermore, in esophageal bi-
opsies of these patients, CYP2E1 induction correlates signifi-
cantly with 4-HNE and also with exocyclic etheno-DNA
adducts. This could be one mechanism by which alcohol
induces cancer in the upper aerodigestive tract, especially in the
esophagus (Millonig et al., 2011).
In a carcinogenesis experiment with Sprague-Dawley rats,

alcohol was administered chronically for 10 months after a
single application of a small dose of the carcinogen diethylni-
trosamine (20 mg/kg body weight) with or without chlor-
methiazole. CYP2E1 induction, associated with increased
cellular proliferation rate, increases levels of nuclear factor-κB
(NF-κB). 65 nuclear protein and glutathione-S-transferase, as
well as positive foci presenting as precancerous lesions, are
found after 1 month of feeding (Chavez et al., 2011). In add-
ition, four out of five animals developed liver adenomas after
10 months of feeding. When chlormethiazole is given
adenoma production is completely prevented (Chavez et al.,
2011). This again shows that CYP2E1 is an important factor in
hepatocarcinogenesis since its inhibition by chlormethiazole
prevents hepatocarcinogenesis and normalization of retinoids
(Liu et al., 2002).

ALCOHOLIC LIVER DISEASE IN THE PRESENCE
OF CHRONIC VIRAL HEPATITIS C INFECTION

Manuela G. Neuman

Viral hepatitis C (HCV) and viral hepatitis B (HBV) infection,
as well as their co-morbidity with alcohol abuse are the
foremost causes of chronic liver disease globally. Co-factors
influencing HCV disease outcomes include age, gender and
alcohol consumption, as well as immunologic and genetic
factors. Hepatic oxidative stress results among others in over-
production of pro-inflammatory cytokines which in turn cause
cellular stress and contributes to the development and progres-
sion of ALD (Neuman, 2003; Ambade and Mandrekar, 2012).
Cytokines and chemokines are among the most prevalent
factors known to contribute to alcoholic tissue injury, particu-
larly in the liver (Neuman et al., 1998). Endotoxin may induce
TNF-α expression in liver cells, thereby producing additional
inflammation. TNF-α is highly elevated in chronic and acute
ALD (Neuman et al., 2012a). In a recent study, Nguyen-Khac
et al. (2010) shows no genetic differences in TNF-α receptors
between alcoholic hepatitis (AH) patients and controls and
thus, it appears that increased TNF-α secretion is a direct con-
sequence of alcohol consumption in AH. A study of Machado
et al. (2009) showed in 104 ALD that the simultaneous
TNFR2 and TNF promoter gene polymorphism represent a
higher risk for ALD. The selective up-regulation of chemo-
kines by alcohol has been implicated in the pathogenesis of
ALD (Neuman, 1999). Chemokines are a group of chemo-
attractant cytokines that enable cell migration. They have bio-
logical activity, regulating several conditions such as liver
inflammation, liver fibrosis and angiogenesis (Neuman,
1999). Neuman et al. (2012a) reported increased IL-8 levels in
patients with ALD, HCV and ALD/HCV when the histology
activity index was high (r = 0.96) but normal IL-8 levels
when the histology activity index was low. IL-8 was shown to
correlate with a number of infiltrated tissue neutrophils in AH
(Sheron et al., 1993). The plasma IL-8 levels correlated with
the severity of hepatic injury (Neuman et al., 2012a).
Moreover, IL-8 has been identified immunohistochemically in
the liver in alcoholic patients (Neuman et al., 2012a).
Similarly, MCP-1 correlates with the number of monocytes
and macrophages infiltrating the portal tract (Marra et al.,
1998). ALD patients had a high plasma MCP-1 level (Degré
et al., 2012). Moreover, the associations between MCP-1 and
liver disease severity, as well as histological lesions, were cor-
related with neutrophil infiltration and IL-8 expression (Degré
et al., 2012).
Hepatic steatosis precedes the development of fibrosis in a

variety of liver diseases, including HCV, ALD and non-
alcoholic fatty liver disease (NAFLD) (McCullough and
Falck-Ytter, 1999; Neuman et al., 2008). A strong relationship
among steatosis, diabetes, insulin resistance, higher body
mass index, alcohol abuse, male gender and older age was
found in a large meta-analysis of HCV patients, while progres-
sion of fibrosis appears to be mediated by inflammation
(Leandro et al., 2006). High levels of pro-fibrinogenic cyto-
kines such as TGF-β and MMPs mediate fibrinogenesis in
HCV and ALD patients (Neuman et al., 2001, 2002a,b;
Murphy et al., 2002). Regardless of whether the hepatic insult
is alcohol or viral hepatitis, repetitive or continuous injury to
liver cells leads to the activation of inflammatory responses.
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Hepatic stellate cells change from a quiescent to an activated
phenotype. This activation process includes a phenotypic
change to a myofibroblast-like cell, with increased prolifer-
ation rate, loss of retinoid stores, and increased production of
ECM proteins (Neuman et al., 1993; Lindquist et al., 2000;
Gäbele et al., 2003). Hepatic stellate cells are the major source
of ECM proteins in hepatic fibrosis, including type I collagen.
In turn, myofibroblasts produce excessive amounts of col-
lagens and ECM proteins and down-regulate MMPs. Also,
ECM and the chemokines CXCR1 and CXCR2 augment the
expression of TIMP-1 and TIMP-2. Enhanced TIMP-1 pro-
duction can further advance proliferation and inhibit apoptosis
of myofibroblasts, leading to continued ECM production and
progressive fibrosis. Progression from fibrosis to cirrhosis is
promoted by the combined effects of HCV infection, alcohol
(toxic metabolites, LPS) and internal factors (genetic predis-
position) (Neuman, 2003). Progressive fibrosis of the hepatic
parenchyma leads to cirrhosis, nodule formation and altered
hepatic function, increasing the risk of liver-related morbidity
and mortality. There is little evidence that viral factors includ-
ing viral load, viral genotype and quasispecies diversity sig-
nificantly affect the risk of progression of liver disease in
patients with ALD (O’Shea, et al., 2010). Instead, host factors
correlate with fibrosis progression, including older age at time
of infection and male gender, as well as co-infection with HIV
or with HCV (Macías et al., 2012). Alcohol is the main factor
associated with the progression of chronic AH to cirrhosis.
Additional factors such as hepatic steatosis, schistosomal
co-infection, iron overload, potentially hepatotoxic medica-
tions and environmental contaminants may also have import-
ant effects (Tsutsumi et al., 1996; O’Shea et al., 2010;
Mathurin et al., 2012).
Neuman et al. (2012a) assessed inflammation and fibrosis

in a multinational study comprising Caucasian patients with
ALD, HCV or ALD/HCV co-morbidity. Liver histology in
individuals with dual pathology (i.e. ALD/HCV co-morbidity)
differs among patients due to each individual’s lifestyle. The
major factors associated with fibrosis progression are older
age at HCV infection and male gender (Neuman et al.,
2012a). In addition, serum levels of certain biomarkers were
assessed in relation to inflammation and fibrosis in biopsies of
patients with ALD, HCV or ALD/HCV co-morbidity. TNF-α
levels increased significantly with increasing severity of in-
flammation. On the other hand, TGF-β and MMP2 levels
increased significantly with increasing degree of fibrosis, as
described by biopsy, regardless of the diagnosed disease.
TGF-β levels were significantly higher in ALD patients com-
pared with HCV patients. Long-established steatosis of grades
3–4 was associated with a higher rate of fibrosis progression
(Neuman et al., 2012a). Fibrosis progression in chronic hepa-
titis patients, including alcohol-induced hepatitis and chronic
HCV, determines the ultimate prognosis. Monitoring of
TGF-β and MMPs provides important insights into fibrosis.
Furthermore, histological findings of hepatic fibrosis and total
hepatic activity index score showed a significant correlation
with serum albumin and platelet count in HCV-infected alco-
holics. Correlation analysis also indicated that hyaluronic acid;
serum albumin and platelet counts are the best predictors of
the severity of liver damage at histology (Neuman et al.,
2012a). In patients with co-morbidity of ALD and HCV,
TNF-α also acts as an important immunomediator. Alcohol
induces pro-inflammatory cytokines that contribute to the

enhancement of the liver damage promoted by HCV (Neuman
et al., 2012b).

ALCOHOL LIVER DISEASE AND HIV CO-MORBIDITY

Manuela G. Neuman, Radu M. Nanau, Michelle Schneider,
Charles Parry, Romina Isip

Human immunodeficiency virus (HIV) infection and
HCV-HIV co-infection can thus play an important role in
alcoholic patients (Neuman et al., 2012a). A clear connection
between alcohol consumptions and HIV disease progression
was established, especially among individuals receiving
highly active antiretroviral therapy (HAART) (Samet et al.,
2003). Alcohol also poses an important medication manage-
ment issue with significant implications with regards to the ef-
fectiveness of HAART in HIV patients, particularly through
modification of liver drug metabolism. A connection between
the adverse drug reactions (ADR) of ART and the toxic effects
of alcohol is possible due to the similar types of injury asso-
ciated with the two classes of drugs. In a recent systematic
review analyzing HIV patients, current alcohol use disorders
have been reported in 8–50% of individuals, with a lifetime
prevalence of 26–60%. However, authors record sporadic
reporting of alcohol use patterns (Neuman et al., 2012b). A
dose–response relationship between alcohol consumption and
HAART non-adherence was shown, with drinkers missing
more medication doses than non-drinkers (Braithwaite et al.,
2005). Alcohol abuse was associated with taking medication
off schedule, as well as missing doses, nonrenewal of medica-
tions prescriptions and active substance misuse (Kalichman
et al., 2012; Neuman et al., 2012b). Alcohol has a substantial
influence on immunologic, virologic and pathologic disease
characteristics in HIV monoinfected individuals and HIV/
HCV co-infected patients (Benhamou et al., 1999). Alcohol
abuse is also often associated with numerous facets of HIV
disease progression, ranging from immune system impairment
to hepatotoxicity (Neuman et al., 2012b). As an immunosup-
pressant, alcohol accelerates HIV disease progression through
direct T cell apoptosis, mitochondrial damage, and inhibition
of T cell responses, natural killer cell activity and macrophage
phagocytic activity (Neuman et al., 2012b). The increase in
serum HCV RNA in habitual drinkers may be involved in the
progression of liver disease (O’Shea et al., 2010).
HIV positivity and excessive drinking are associated with

cirrhosis although it appears that alcohol abuse is the primary
determinant (Castellares et al., 2008). Among these patients,
co-infection with viral hepatitis is a significant risk factor for
the development of cirrhosis (Castellares et al., 2008). In add-
ition, alcohol-induced cirrhosis can result in changes in drug
metabolism in the liver through compromised liver function
(Neuman et al., 2006). Oxidative stress also plays an important
role in hepatotoxicity in HIV-positive drinkers and alcohol
further stimulates ROS formation (Bautista, 2001). Also,
chronic alcohol consumption in HCV- or HIV-infected patient
may synergistically affect the pro-inflammatory cytokine
network, increasing the risk of developing hepatocellular car-
cinoma (O’Shea et al., 2010). HAART can interact with
alcohol or other drugs used for the prevention of opportunistic
infections such as pneumonia, sexually transmitted diseases or
tuberculosis leading to unwanted ADRs (Devito et al., 2006;
Hirbod et al., 2006;Neuman et al., 2012a).

376 Neuman et al.



HIV infection is the main risk factor for the reactivation of
Tuberculosis into active disease. The risk of active
Tuberculosis is elevated in individuals with alcohol abuse
(Lönnroth et al., 2008). Drug-drug interactions are possible
between alcohol, anti-HCV, anti-HBV, anti-HIV and anti-TB
medications (Neuman et al., 2006). This has been especially
reported for isoniazid metabolized by N-acetyltransferase 2
and CYP2E1 (Ellard, 1984). Alcohol and genetic polymorph-
isms could alter the activity of either of these enzymes and
may influence the development of hepatotoxicity or enhance
the toxicity of the isoniazid (Huang et al., 2003).

ALCOHOL AND HISTAMINE H2 RECEPTOR
ANTAGONISTS

Manuela G. Neuman, Radu M. Nanau

Alcohol bioavailability has been shown to be lower when
administered orally than through intravenous injection. This
deviation suggests that alcohol undergoes substantial first-pass
metabolism (Haber et al., 1996; Chiang et al., 2012). Lieber
and colleagues have demonstrated that some histamine H2 re-
ceptor antagonists (H2RA) inhibit both gastric and liver ADH
activity, resulting in decreased first-pass metabolism and
increased blood alcohol levels (Caballería et al., 1991;
DiPadova et al., 1992; Amir et al., 1996). Cimetidine and ra-
nitidine, which are H2RA, can increase the peak levels of
alcohol and the area under the alcohol concentration curve
(DiPadova et al., 1992). It was subsequently determined that
the resulting elevations in blood alcohol levels were unlikely
to exceed legal limits or be clinically relevant in individuals
with adequate nutrition and with moderate social alcohol con-
sumption (Raufman et al., 1993; Weinberg et al., 1998). A
recent in vitro study and computer simulation confirmed that
cimetidine can act either as a competitive or a non-competitive
inhibitor, depending on the class of ADH isozyme.
Cimetidine competitively inhibits class I ADH1, ADH2 and
ADH3, and class IVADH7, while it noncompetitively inhibits
class I ADH2*2 and ADH2*3, and class II ADH4. Cimetidine
also inhibits ALDH activity, namely ALDH1A*1, ALDH2
and ALDH3A*1, indicating that it interferes with both ADH
and ALDH conversion steps in alcohol metabolism (Lai et al.,
2013). Since the cimetidine inhibition of ADH that is involved
in ethanol metabolism is polymorphic, individuals who
possess an ADH with low activity may accumulate an inter-
mediate, which is then activated by CYP2E1 to hepatotoxins.
Thus, the individuals ingesting ethanol and taking cimetidine
in therapeutic doses might develop liver injury.

ALCOHOLIC LIVER DISEASE AND LIVER
TRANSPLANTATION

Manuela Neuman, Lawrence Cohen

ALD is the second leading indication for liver transplantation,
after chronic HCV infection (O’Shea et al., 2010). According
to the United Network for Organ Sharing database, 12.5% of
liver transplant recipients between 1992 and 2001 were
ALD patients. Five-year graft and patient survival of AH and
alcoholic cirrhosis patients were 75 and 73%, and 80 and
78%, respectively, between 2004 and 2010 (Singal et al.,

2012). The 1-year patient survival for liver transplant patients
was shown to be 85.5% in a large sample of liver transplant
recipients (Krawczyk et al., 2012). Many studies have shown
that the patient survival rates, as well as graft survival rates,
are comparable between patients with alcoholic cirrhosis and
patients suffering from other liver conditions (Lucey, 2002;
O’Shea et al., 2010). Post-transplant graft and patient out-
comes are better for patients with alcoholic cirrhosis compared
with patients transplanted for HCV-related cirrhosis and are
similar to other causes of end-stage liver disease and cirrhosis
(Singal et al., 2012). The cumulative 6-month survival rate
was higher among patients who received transplantation
within 2 months compared with individuals who did not
receive the transplant in a sample of 26 patients with severe
AH at high risk of death who showed no response to gluco-
corticoid therapy or presented rapid worsening of liver func-
tion despite medical therapy (P < 0.001) (Mathurin et al.,
2011).
Continued controversy surrounds the ethical issues of pro-

viding orthotopic liver transplantation for alcoholic indivi-
duals. The public gave low priority to alcoholic patients
(Cohen and Benjamin, 1991; Mathurin et al., 2011).
Historically, these individuals are regarded as poor candidates
to compete for the organs with others who are equally ill.
These controversies arise due to an insufficient supply of
donor organs compared with the demand.
Concomitant psychiatric disorders were identified as pos-

sible factors associated with recidivism after liver transplant-
ation in a systematic review (McCallum and Masterton, 2006).
Psychiatric and psychosocial evaluations should be required in
the pre-transplant evaluation of patients, as well as during
post-transplant follow-up, in order to treat alcoholism and
prevent relapse (Varma et al., 2010).

CONCLUSION

Alcohol-induced liver dysfunction spans a diverse array of
topics. Alcohol metabolism involves several enzymes, includ-
ing ADH, ALDH and CYP2E1, while chronic alcohol con-
sumption is an inducer or the latter. Genetic polymorphisms
as well as inter-individual variability in these enzymes mediate
the risk of ALD. Moreover, CYP2E1 is involved in the metab-
olism of various xenobiotics, leading to potential drug–drug
interactions and stimulating carcinogenesis. Alcohol should
also be considered as immunogenic in infectious disease cases.
Another important aspect of ALD disease progression is the
co-morbidity with chronic viral hepatitis leading to increased
fibrosis and inflammation. Further co-morbidities with HIV or
with opportunistic infections such as tuberculosis are relatively
common, while further interaction between alcohol and
co-medications used to treat these conditions can exacerbate the
degree of hepatotoxicity. The effect of alcohol on the adverse
effects of a number of hepatotoxins, secondary to ethanol induc-
tion of cytochrome P-450 is an important additional hazard of
alcohol intake, and suggests an important additional pathway
for alcohol-associated liver damage. The interplay of these
factors may explain the differential susceptibility to the develop-
ment of ALD as well as of adverse drug reactions. A better
understanding of the pathophysiological factors associated with
ALD development by recognizing that ALD is the result of par-
enchymal damage leading to fibrosis, portal hypertension and
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cirrhosis is valuable. In addition to treating the underlying
disease, counseling can help increase alcohol abstinence,
thereby improving the quality of life and increasing survival
rates among ALD patients.
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