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SUMMARY

We introduce an explicit set of metrics for human activity based on high-density acceleration recordings
from a hip-worn tri-axial accelerometer. These metrics are based on two concepts: (i) Time Active, a
measure of the length of time when activity is distinguishable from rest and (ii) AI, a measure of the rela-
tive amplitude of activity relative to rest. All measurements are normalized (have the same interpretation
across subjects and days), easy to explain and implement, and reproducible across platforms and software
implementations. Metrics were validated by visual inspection of results and quantitative in-lab replication
studies, and by an association study with health outcomes.
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1. INTRODUCTION

A commonly used outcome measure in aging research is the capacity to engage in activities of daily living
(ADLs), or sentinel behaviors required to live independently. Conventional methods for measuring ADLs
include self-reported questionnaires or clinician ratings based on observed behavior (Feinstein and others,
1986; McDowell and Newell, 1987), which have several limitations. First, self-reported activity may be
subject to recall bias, which can be accentuated by the decline of cognition and memory. Second, these
measurements provide only a snapshot of an individual’s daily activity, while detailed minute by minute
information is often missing. Thus, there is an increasing need for unbiased, detailed measurements of sen-
tinel behaviors that describe the underlying functional capacity of the individual and are not confounded
by uncontrollable bias and measurement error. One possible solution is using wearable computing devices,
which allow collection of real-time, densely sampled information on movement. These devices could
serve as silent, unbiased, tireless, and non-obtrusive recorders of actual human activity in a real-world
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context. However, translating information from high-volume and complex data from wearable sensors into
acceptable measurements can be done only by careful standardization and transformation to guarantee the
validity and reproducibility of the measurements. In contrast, current measurements produced by software
that accompanies these devices are expressed either in “activity counts” or Metabolic Equivalent of Task
“MET” units. The most commonly used device, Actigraph, produces activity counts that, while formally
defined (ActiGraph), do not have a clear interpretation, and may not capture sufficient variability in older
subjects. The MET units are even more problematic as they are based on population calibration equations
that are severely biased at the subject level and in older adults. We propose data normalization and a set of
novel, explicit, and interpretable metrics that can be used in medical and epidemiological studies.

Wearable sensors for different types of activity are deployed in an increasing number of studies
(Boyle and others, 2006; Bussmann and others, 2001; Grant and others, 2008; Sallis and others, 2009;
Welk and others, 2000). Here, we are concerned with accelerometers worn either in-field or in-lab by
older, community-dwelling adults. Our focus is providing a set of simple activity measurements from ultra
large, high-density accelerometry data, and providing evidence in support of their validity and useful-
ness in epidemiological studies. Some metrics have been proposed to extract and summarize information
from accelerometry data, especially in sleep studies (Jean-Louis and others, 1996; Blood and others, 1997;
Kushida and others, 2001; Mishima and others, 1998). All these studies have focused on gross summary
statistics such as: ratios of sleep/wake duration, total sleep time, proportion of wake time after sleep onset,
etc. Such summaries allow researchers to apply standard statistical methods, though they over-simplify
the data. Another group of metrics focuses on reducing the raw 3D accelerometry data to a 1D proxy of
subjects’ activity along time. One such example is the “activity count”, which converts the raw three-axis
acceleration measurements through various proprietary algorithms developed by accelerometer manufac-
turers. Based on activity counts, many studies categorize activities into different groups with sedentary,
light, moderate, and vigorous intensity according to predefined thresholds, and obtain proportions of time
spent doing each type of activity (Puyau and others, 2002; Lee and Paffenbarger, 2000; Treuth and others,
2004). There are several limitations when using “activity counts”. Indeed, the definition differs from man-
ufacturer to manufacturer and may even differ with regard to the same manufacturer when a new device
is released. Thus, it is unclear whether activity counts are comparable (Ancoli-Israel and others, 2003;
Stephen and Spiro, 2001). The interpretation of “activities count” is provided by some manufacturers. For
example, the Actigraph describes the process as “ActiGraph’s original activity monitor, the 7164 model,
utilized a mechanical lever capable of measuring the change in acceleration with respect to time (g/s, where
g is gravity or 9.806 m/s2). To suppress unwanted motion and enhance human activity, the acceleration sig-
nal was passed through an analog band-pass filter, the output of which yields a dynamic range of 4.26 g/s
(±2.13 g/s) at 0.75 Hz (center frequency of the filter). Using a sample rate of 10 samples-per-second, this
filtered signal was then digitized into 256 distinct levels by an 8-bit solid-state analog-to-digital converter,
producing 4.26 g/s per 256 levels or 0.01664 g/s/count (each level is considered one count). When each
filtered sample is multiplied by the sample window of 0.1 s, a resolution of 0.001664 g/count is achieved”.
While this is an excellent technical description, it leaves many questions unanswered. First, it is unclear
exactly what are the formulas and whether they are applied to each axis separately or combined. Second,
the transition between the quasi-continuous signal and the number of g’s in 1 s is not defined; this is a
function that reduces 30 numbers (tri-axial at 10 Hz sampling) into one number. Third, methods funda-
mentally depend on many software parameters as well as on the sensitivity of the chip. Small changes in
thresholds, sampling rates, chip sensitivity, or number of count levels can lead to dramatic batch effects
within and, especially, between manufacturers. Fourth, only on rare occasions are devices validated in real
data or using replication. Fifth, the interpretation of a count is, probably, “some one-epoch summary of
the acceleration that is between 0.01664 and 0.03328 g/s”, whose utility in a large observational study
remains to be debated. We conclude that “activity counts” are actually not counting activities or steps as
their name implies; instead they are a proxy of the acceleration within a time interval. The missing piece
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is a paper like the one we are putting forth here; we are currently unaware of any paper starting from raw
data and building explicitlyeither “activity counts” or other explicit metrics. Our paper has the following
goals: (i) to propose an explicit data processing pipeline for high-dimensional accelerometer data; (ii) to
present a transparent, interpretable, and implementable set of metrics; (iii) to validate these metrics via
visual inspection, replicated in-lab experiments, and association studies with health outcomes.

We used data from older adults who were fitted with a high-definition three axis accelerometer
“Shimmer” (O’Donovan and others, 2009; Burns and others, 2010) and asked to perform standard activi-
ties in a laboratory under observation. Then, subjects were asked to wear those devices for five consecutive
days during normal activity. To analyze the massive free-living data (>18 million observations per sub-
ject), we processed and summarized the data into several metrics that are intuitive and reproducible. Special
attention was given to normalization to ensure comparability of measurements across subjects and visits.
We investigated the validity and reproducibility of these new measurements and their association with
self-reported health status.

2. DATA COLLECTION

2.1 Study population

Community-dwelling men and women were recruited from an ongoing cohort study on the multilevel
determinants of cognitive function in older adults, The Baltimore Memory Study (BMS, AG19604, Brian
Schwartz, PI). For the LIFEmeter substudy, 125 older adult subjects were recruited and enrolled after
BMS visit 4 or 5. The purpose of the LIFEmeter substudy (AG027481, Thomas A. Glass, PI) was to
develop and test a sensor platform for capturing enacted function in older adults. Enrolled subjects were
brought into a lab setting, given an interview, and asked to perform a series of standard activities under
observation wearing a waist-mounted pouch containing several sensors. Next, subjects were asked to wear
the LIFEmeter array during waking hours for three to five consecutive days, removing the device during
showering, swimming, and sleeping.

2.2 Data description

Our data are generated using ShimmerTM Unit by Shimmer Research (Burns and others, 2010), mounted
on subjects’ waists. The device uses a standard tri-axial accelerometer chip found in many cell phones
and other devices (Freescale MMA7361) and records acceleration in three mutually orthogonal directions
with a sample rate of 10 Hz. The output consists of three voltage time series, which are proxy measures of
acceleration. The time series exhibit complex variability in overall level, amplitude, frequency, correlation,
and patterns along the time course of different activities.

Figure 1 displays two 2.5-min data segments representing the raw three-axis accelerometer data
from two subjects, labeled 3208 and 3056. Many studies (Bai, 2011; Bussmann and others, 2001;
Bao and Intille, 2004; Kozey-Keadle and others, 2011; Ravi and others, 2005; Welk and others, 2000)
found that lack of accelerometer motion, which is a rough proxy for actual human activity, is charac-
terized by low variation around stable constants for each of the three-time series. Using a simple method
that will be described in this paper we have estimated periods of inactivity and shaded them in light-gray.
An inspection of the time series for subject 3208 (upper panel in Figure 1) indicates that there are many
periods of inactivity, each with a different length. Moreover, the accelerometer seems to be sensitive to
different types of inactivity. Indeed, compare the light-gray block starting immediately after minute 103
with the one starting immediately after minute 104.5. There is low variability in both blocks, but the times
series colored in light-gray and mid-gray have switched their mean levels. This probably indicates that the
person is resting in different postures (e.g. on a chair vs. standing). Areas that were estimated to be active
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Fig. 1. Two panels (from Subject 3208 and Subject 3056) of the raw three-axis accelerometer data with Active vs.
Inactive prediction results. Each axis is illustrated in a different gray scale. The x-axis stands for the time (in minute)
from the first observation and the y-axis shows values of the raw output from the accelerometer. The inactive time
periods (according to our algorithm which is also described in this section) are shaded in light-gray.

display a wide range of variation both in terms of patterns and amplitude of the signal. Inspecting such
short time series is not dissimilar to listening to a new language, where we hear obvious patterns without
having a clue about what is being said. However, it is quite easy to know when the person is not talking.
A similar principle will be applied to identify periods of inactivity, by predicting areas of low variability
above background.

We start by introducing notation. The observed data are a collection of three time series repre-
senting proxies of acceleration in three orthogonal axes. Denote the data (sample rate f = 10 Hz) by
Xi (t) = {Xi1(t), Xi2(t), Xi3(t)}T, t = 1, 2, . . . , Ti , where Ti is the length of the accelerometer time series
for Subject i . In this paper, we used field data from 34 subjects and each subject was observed for 4–5
days. So i = 1, 2, . . . , 34 and Ti is very large. For example, for a complete 5-day recording Ti = 4 320 000.
Here, we will be working directly with the raw voltage data, though our methods apply as well to data
expressed in gravity units. Indeed, if Xi (t) is the collection of voltage time series, then the gravitation
data can be obtained by the formula (Shimmer Research, 2012) gi (t) = R−1 · K −1 · [Xi (t) − bi (t)]. Here
gi (t) = {gi1(t), gi2(t), gi3(t)}T is the ratio of acceleration on the three axes to gravity, R−1 is an alignment
matrix, and K −1 is a diagonal matrix specifying the sensitivity of the sensor along each axis. In the remain-
der of the paper, we focus on Xi (t) and not on gi (t). As our normalization procedure is a combination of
several linear transformations of the raw signals, explicit formulas can be obtained for gi (t), as well.

We introduce a new time series, Li (t) ∈ {0, 1}, as the time series of labels, which describe whether
the Subject i is estimated to be “active” or “non-active” at each time point t . Non-active time includes
both the time when the subject was resting while wearing the device and the time when the subject took
the device off. Thus, Li (t) = 1 if Subject i is active at time point t and Li (t) = 0 otherwise. Li (t) is
observable either by study team members or from detailed diaries. In our study, we observe Li (t) only
during in-lab sessions and not during the in-home data collection. We treat Li (·)’s as an unknown variable
to be estimated during in-home monitoring. Bai (2011) introduced a method to classify accelerometry
time series into active and non-active, which is essentially estimating the time-series of labels Li (t). This
method applies a threshold on standard deviation in each 1-s interval. More specifically, for each time point
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Fig. 2. The density curves of standard deviations for all (34) subjects in different gray scale. The upper panel contains
density curves of the original standard deviations and the lower panel contains density curves of standard deviations
greater than C = 10. The vertical black lines in both panels are at x = 10.

t of Subject i , let σi (t) = {σi1(t) + σi2(t) + σi3(t)}/3, where σim(t) (m = 1, 2, 3) is the standard deviation
of the mth axis of the acceleration time-series Xim(t), Xim(t + 1), . . . , Xim(t + H − 1) in a window of
length H . Here, we use a window of length H = 10, which corresponds to 1 s. We found this window
size to work well in practice, as it reasonably corresponds to the temporal scale of human activity. More
precisely, σim(t) = [

∑H−1
h=0 {Xim(t + h) − (1/H)

∑H−1
k=0 Xim(t + k)}2/H ]1/2. We will not use notation that

depends on the window size, as H = 10 is fixed throughout this paper. Also, we do not use hats to indicate
that standard deviations are estimated, as we are primarily focused on prediction and algorithmic signal
extraction and not on inference.

Once the subject-time specific standard deviation, σi (t), of the signal is computed, the activity label
time series is estimated as Li (t) = 1 if σi (t) > C and 0 if σi (t) � C . Here C is a threshold value that
does not depend on the subject and is estimated from the data. Here, we investigate the impact of various
choices of C and are especially interested in finding whether a common threshold is reasonable for all
subjects. The threshold C will depend on the scale and type of output used in the analysis. As our data
were collected in millivolts, C is also expressed in millivolts. If data Xi (t) were expressed in g’s, we
could also specify C in g’s. We have tried threshold approaches for both type of signals and obtained
indistinguishable results; this should not be surprising given the one-to-one and monotonic relationship
between the millivolt and g scales.

To further investigate the threshold, we calculated the standard deviation, σi (t), for each of the 34
subjects in each 1-s interval. For each subject, we produced a smooth histogram of standard deviation
values collapsed over time. The top panel in Figure 2 displays these 34 density curves for all subjects,
each in a different gray scale. A feature of these curves is that they all have a high-peak centered roughly
around the same value (2–3 mV) with much of the mass concentrated between 1 and 7 mV. The reason is
that people spend a lot of time resting. These plots suggest that a cut-off point of C = 10 mV could separate
active from inactive periods in all subjects. For example, the light-gray shaded areas indicating inactive
periods in Figure 1 are obtained using this decision rule. We have checked several other thresholds between
8 and 15 mV and they provided similar results. The reason is that there are few activities that are visually
identifiable and correspond to a standard deviation in the range [10, 15] mV. While some ambiguity is likely
to remain even after careful visual inspection of each time series, we conclude that C = 10 mV works well
for our data set.

All histograms have long tails, which correspond to visually identifiable activities. As accelerometer
time series are likely to be dominated by inactive periods, the top panel in Figure 2 does not display
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enough detail to understand subject-to-subject differences in activity intensity (AI). Thus, the bottom panel
displays the cumulative distribution function for standard deviations above C = 10 mV. We focus on the
curve that is on top of the other curves. A value of 0.7 of the cumulative distribution function at 20 mV
indicates that about 70% of standard deviation values that are higher than 10 mV are between 10 and
20 mV. This implies that this person has lower intensity movements compared with the other subjects. If
a subject-specific curve is higher for a given subject, it indicates that the first subject has lower level of
activities across the range of observed activities. The fact that the curves do not seem to cross each other
indicates a reasonable finding: if subjects tend to have fewer low-intensity movements, they also tend to
have fewer high-intensity movements. This is consistent with an elderly population, though it should not
be surprising to find similar patterns in other age ranges. Once the active or non-active labels Li (t)’s are
estimated, there were many possibilities for estimating various types of metrics to describe the rest of the
data. We start by dividing the entire recorded time period of Subject i into two sets of time points, T A

i
and T I

i , corresponding to active and inactive time periods. Specifically, ∀t ∈ T A
i , Li (t) = 1 and ∀t ∈ T I

i ,
Li (t) = 0.

3. ACCELEROMETER METRICS DEFINITION

In this section, we introduce several metrics that were found to be sensible and feasible to compute.
We denote by Ji the number of days when Subject i is observed, while Ti is the total number of time
points where the subject is observed. The number of days, Ji , varies between 3 and 5, whereas Ti is in
the millions. We denote by t0

i j the time index for start of day j , which has a total of Ti j data points.
For subject i on day j, we propose to extract the following 5D vector of univariate signals labeled
Di j = (Ti j , TAMi j , TAVi j , AIMi j , AIVi j ). Here Ti j is the length of time for the period estimated to be
the wake time and can depend on the particular day, j , because some days have shorter recording times or
missing data. The variable “Time Active Mean”, TAMi j , represents the fraction of total time awake, Ti j ,
that was estimated to be active (non-rest). The variable “Time Active Variability”, TAVi j , represents the
variability of the active/non-active process. The last two variables, “AI Mean” (AIM) and “AI Variability”
(AIV), are similar to TAMi j , TAVi j , but focus on the actual intensity of movement (amplitude of signal)
instead of the binary measurement active/non-active. We chose these five measurements only for sim-
plicity, though they could be produced at much higher resolution, such as minute, hour, or time of day. A
concern with reducing data sets of such complexity to a few summary measurements is whether this reduc-
tion is too aggressive. To alleviate this concern, we introduce two additional measurements, “Cumulative
Relative Time Active (CRTA)” and “Cumulative Relative AI (CRAI)”. These measurements are calculated
at every time point and preserve all the original information. In this paper, we use them for visualization
purposes, establish their characteristics, and defer their analysis to future publications.

3.1 Time active

After Li (t), the labels denoting whether Subject i is active at time t , were predicted for all subjects, they
can be used to calculate each subject’s “Time Active” within intervals of interest. To be specific, for Sub-
ject i , we first partition the whole time course Ti into non-overlapping windows of length W , with the
total number of windows equal to K = [Ti/W ], where [x] denotes the highest integer smaller than x .
The window size can be anything, though here we focus on W = 900 s, which corresponds to 15 min. For
a fixed time window of length W , we define the Time Active, TAi (k), for every k = 1, . . . , [Ti/W ] as
TAi (k) = ∑W

s=1 Li {W (k − 1) + s}/W , which is the proportion of time declared active in the time window
[(k − 1)W + 1, kW ] using the 10 mV threshold on the 1-s window standard deviation. This measure is use-
ful because it: (i) is explicitly measuring the active time in a particular time window without combining
it with the intensity of activity during the same period; (ii) is easy to compute and reproduce given the
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original raw data; (iii) is interpretable across subjects and devices; (iv) is expressed on a 0–1 scale; and (v)
is not dependent on black-box software.

Figure 3 displays the original tri-axial acceleration 15-min time series plots for Subject 3092 in panels
1 and 2. We display only 15 min of the raw accelerometer data, as showing the entire 5-day period would
be daunting and quite useless for visual inspection. In contrast, the Time Active plot in the bottom panel
provides a simple visualization tool for the entire duration of the study. In the bottom panel, the Time
Active (TA ∈ [0, 1]) bars of every 15-min interval for the same subject are in light gray (TA � 0.3),
mid-gray (0.3 < TA < 0.7), or dark gray (TA � 0.7). Note that, for example, a light gray bar means that
the subject movement was distinguishable from inactivity according to the 10-mV threshold for up to
15 × 0.3 = 4.5 min out of the corresponding 15-min period. This plot corresponds to the 5-day period
when Subject 3092 wore the device. As the raw and time active data are linked, one can always go back
to a particular specific period for further visual inspection. TA has several long sections (i.e. between
days) where it is zero, most likely during sleeping when the subject placed the device on a table. To
better understand the data transformation, we placed two boxes, each with a vertical light gray bar in the
background, in the third panel. Each vertical light gray bar represents a 15-min period; the corresponding
raw data are shown in the panels 1 and 2. Plots indicate that the data transformation is quite sensible.
Indeed, the first framed time period of Subject 3092 has much lower time active values (0.01 vs. 0.76)
compared with the second framed time period. This difference can be easily observed by comparing the
upper panel and mid panels in Figure 3.

3.1.1 Scalar summaries of time active. The TAM is TAMi j = ∑Ti j

s=1 Li (s + t0
i j − 1)/Ti j , which is the

average number of active periods, and TAVi j =
√∑Ti j

s=1{Li (s + t0
i j − 1) − TAMi j }2/Ti j , which is the stan-

dard deviation of the active periods for Subject i on day j . The two measurements, TAMi j and TAVi j are
complementary. Indeed, a subject with large TAMi j and small TAVi j would tend to have long periods of
activity with few rests; a subject with small TAMi j and large TAVi j would tend to be less active but with
short and sustained activity periods.

3.1.2 Cumulative relative time active. Using the time active, TAi (k), is not straightforward. Indeed, a
quick inspection of the third panel in Figure 3 provides a reasonable summary, but leaves many questions
unanswered: (i) how to handle the “spiky” nature of the data; (ii) what to do about the de-synchronized
behavior both within and between subjects; and (iii) how to preserve the complex nature of the data without
losing interpretability? To answer these questions, we follow the idea introduced for displays of actigraphy
data by Symanzik and Shannon (2008). We introduce the CRTAi j (t) = ∑t

s=1 Li (s + t0
i j − 1)/Ti j , which

is the fraction of active periods up to time t of day j for Subject i out of the total time awake, Ti j . This
approach provides a much smoother representation of the data while maintaining all the information. As
the accelerometer is taken off during sleep, time can easily be partitioned into sleeping (non-wearing) and
being awake (wearing).

Figure 4 (top panels) provides the CRTA for three different days for three subjects. Functions are
displayed with respect to the proportion of time, (s + t0

i j − 1)/Ti j × 100%, from the start of the day.
Figure 4(b) indicates that Subject 3056’s has similar CRTA patterns for the 3 days. This subject is quite
active in the middle of the day, which is indicated by the synchronized jumps in the day-specific curves
around the 30–50% section of the x-axis. Moreover, the solid curve is higher, suggesting that Subject
3056 spent more time being active on Day 1 than on either Day 2 or Day 3. Figure 4(c) suggests a different
activity pattern for Subject 3092. On Day 1 and Day 2, the subject shared a similar CRTA pattern, but with
different end points. After a large jump around 10% of Day 1, the solid curve remains roughly parallel to
the dashed curve. This suggests that Subject 3092 had a short but active period after getting up on Day 1,
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Fig. 3. Two periods of raw data (panels 1 and 2), TA bars for Subject 3092 (panel 3). Each TA bar has a value between
0 and 1, and is colored light gray (TA � 0.3), mid-gray (0.3 < TA < 0.7), or dark gray (TA � 0.7). Panels 1 and 2
correspond to the light gray bars in the box frames depicted in panel 3. Panel 4 displays 3-day AI for Subjects 3029,
3056, and 3092. AI bars are colored light gray, mid-gray, or dark gray according to their TA values as in panel 3.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Top panels: CRTA for Subject 3029 (a), 3056 (b), and 3092 (c). Bottom panels: CRAI for Subjects 3029 (d),
3056 (e), and 3092 (f). There are three curves in each plot, each representing 1 day. These curves are either compressed
or stretched so that they display CRTA or CRAI in the scale of percentage time of the day, instead of actual time.

but spent the rest of the day with an active/inactive pattern similar to that of Day 2. In contrast, on Day
3, the subject did not spend much time being active until the middle of the day, but then became very
active for the rest of the day, leading to a high TA for that day. Such trends and differences seem obvious
in Figure 4, but are hard to note in Figure 3.

3.2 Activity intensity

Time active is a measure of how long the person was active without information about how intense the
activity was. Here, we propose measurements that describe the entire spectrum of activity intensities. We
estimate “AI” as the standard deviation of the raw accelerometer signal relative to the standard deviation
in the signal during non-wearing or rest. Thus, AI will be expressed in sigma units, where sigma is the
variation of the time series during non-wearing or rest. This approach has the potential to mitigate some
of the inherent problems associated with accelerometer measurements. First, data will be normalized on a
scale that can be interpreted in units of intensity of activity relative to the systematic noise (non-wearing
time variability of the signal). This may reduce device- and day-specific systematic deviations in measure-
ments. Second, measurements from the same type of accelerometer from different people and locations are
more comparable and have similar interpretation: observed variability relative to signal variability when
the device is not perceptively moving. Third, the approach automatically mimics human information pro-
cessing. Indeed, a human observer would naturally focus on areas of high, moderate, and low variability;
AI quantifies this qualitative process.
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We define σi (t) = {σi1(t), σi2(t), σi3(t)} as the local standard deviation at time point t calculated
in each 1-s interval (H = 10). We estimate the average standard deviation of each axis during rest as
σ̄im = ∑

t∈Ti
σim(t)I {Li (t) = 0}/∑

t∈Ti
I {Li (t) = 0}. The summation t ∈ Ti stands for each time point t

in the rest period Ti . The average standard deviation σ̄i = {σ̄i1(t), σ̄i2(t), σ̄i3(t)} quantifies the device-
specific variation when the device is either not worn or the person is at rest. We estimate σ̄i using the
periods when the subject was sleeping or resting. AI is defined as AIi (t) = max([{σi1(t) − σ̄i1}/σ̄i1 +
{σi2(t) − σ̄i2}/σ̄i2 + {σi3(t) − σ̄i3}/σ̄i3]/3, 0). Thus, AIi (t) ∈ [0,+∞) and is the difference between the
current observed standard deviation σi (t) and the average standard deviation σ̄i during non-wearing/rest
periods Ti , relative to σ̄i . The truncation at zero is done to ensure that every standard deviation below the
average standard deviation at non-wearing is set to zero and that there are no negative AI values. We used
the average variability in non-wearing/rest periods as reference because it characterizes the systematic
variability of the device.

AI is a complement to TA, which only focuses on time spent while active without information about how
active the subject is. For example, walking and running continuously for 15 min give the same TA (which
is 1 because the subject is active during the whole period), but have completely different AI. Running has
much higher levels of acceleration variation compared with walking, which is characterized by a larger
AI for running. To illustrate this, the bottom panel in Figure 3 displays AI for three subjects (3029, 3056,
and 3092). Each bar stands for AI in a 1-s interval and is colored by their TA values (TA � 0.3: light
gray; 0.3 < TA < 0.7: mid-gray; TA � 0.7: dark gray). The AI and TA plots for Subject 3092 indicate
that AI has a similar temporal pattern, though spikier and on a different scale. To better understand the
complementarity of AI and TA, it is worth taking a closer look at the AI plot for Subject 3092. In the middle
of Day 3, there are two areas with dark gray bars (TA � 0.7) among many mid-gray bars. In the TA plot
they are obvious, whereas in the AI plot they are not. Thus, Subject 3092 was performing low to moderate
intensity activities continuously during the dark gray periods, while in-between the subject performed a
series of high-intensity activities but with more rest periods.

3.2.1 Scalar summaries of AI. Once AI is introduced, the AIM is defined as AIMi j =∑Ti j

s=1 AIi (s + t0
i j − 1)/Ti j , which is the average AI for day j of Subject i . Similarly, the AIV is

AIVi j =
√∑Ti j

s=1{AIi (s + t0
i j − 1) − AIMi j }2/Ti j , which is the standard deviation of AI. These measure-

ments are similar to TA, though they focus more on the levels of activity and less on whether or not the
subject moved.

3.2.2 Cumulative relative AI. Similar to CRTA, we introduce CRAIi j (t) = ∑t
s=1 AIi (s + t0

i j − 1)/Ti j ,
which is the cumulative sum of AI of Subject i up to time t in day j . Recall that AIi (t) is a measure of how
much larger is the variability of the accelerometer time series data in a time window centered at t relative to
its variability at non-wearing time periods. Thus, AIi (t) is a proxy for the instantaneous intensity of human
movement as measured at the hip by an accelerometer. Thus, CRAIi j (t) is a proxy measure of cumulative
energy measured at the hip during movement up to time t of the day. To mitigate the effect of different
lengths of day, we divide this cumulative sum by Ti j . The bottom panels in Figure 4 display CRAIi j (t) for
the same three subjects shown in the top panels. However, CRAI does provide something different. For
example, in Figure 4(e), Subject 3056 had almost the same pattern of CRAI on Day 1 and Day 3. However,
the solid curve in Figure 4(b) remains higher than the dotted one, indicating that the subject spent much
more time being active on Day 1. The dotted curve catches up with the solid one in Figure 4(e) at around
35% time of the day, while the corresponding dotted curve in Figure 4(b) does not. A possible explanation
is that Subject 3056 performed more intense activities late in the morning on Day 3 than on Day 1, with
some rest in between. Since CRTA on Day 3 was reduced by rest, the CRAI was equal for the 2 days.
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4. EVALUATION OF METRICS

We evaluate the validity of AI and Time Active by comparing the metrics across subjects and activities.
We then conduct an exploratory data analysis of the association between the proposed metrics with demo-
graphic factors and self-report quality of life (QOL) variables.

4.1 Validation of metrics

To validate the TA and AI metrics, we focus on the replication part of the study and compare the metrics
within- and between subjects for the same observed activity. In addition to the free-living data collec-
tion, the subjects were also instructed to wear the device during two lab sessions. During each session,
they were asked to perform a supervised battery of activities that included: walking, stair climbing, chair-
standing, and lying on a bed. The start and end times of each activity were recorded by a lab technician; see
Bai and others (2012) for a more detailed description. For a subgroup of 10 subjects, we chose two types
of activities, walking and chair-standing, to perform this comparison. For each lab session, we chose two
replicates of walking and three replicates of chair-stands. Figure 5 displays the raw data for these activities
for Subjects 3056 and 3092. The left-hand side of Figure 5 displays four repetitions of walking for each
subject, while the right-hand side displays two repetitions of chair-standing, each with three chair-stands.

Methods described in Section 2.2 were used to classify the entire time series into “active” and “non-
active”. The estimated inactive periods (shaded in light gray) are highly informative as the human observer
only noted when the chair-standing activity started without detailed information about the exact between-
activity duration. For walking, the entire period was classified as “active”, as it should be. We start by
defining the AI as “the total acceleration at a particular time point after removing global average accelera-
tions relative to rest”. Thus, any device designed to measure the AI in an unbiased way is a valid instrument.
Of course, we do not actually have AI and it is hard to check whether instruments are biased. Instead, we
settle for the next best thing: checking measurement reproducibility across repetitions of the same activity
and across devices.

The probability density functions of AI during walking and chair stands are shown in Figure 5. AI
is calculated for every second and displayed as black bars under the corresponding raw-data plots. The
densities of AI during walking are quite consistent within- and between-subjects. Similar results were found
for all 10 subjects with in-lab data. The density curve of AI for chair-stands is different, though it displays
a lot of similarity within subjects with more variability across subjects. The difference in histogram shapes
between walking and chair-standing is probably due to the fact that chair-standing consists of three different
sub-activities: resting, standing-up, and sitting-down. The AI for chair-stands is low during inactive periods
and high during active periods. AI during these sub-activities were quite similar within subjects across
visits. In supplementary material available at Biostatistics online, we also show results comparing walking
normally and briskly. Results indicate that both median and standard deviation of AI increases across
subjects when switching from normal to brisk walking. To quantify these differences, we calculated the
intraclass correlation (ICC) for walking and chair-stands. For walking the replicates are the median AI
for the first and second walking period in each visit for each of the 10 subjects, respectively. The ICC for
median AI for walking was 0.92. For chair-stands, we manually identified the exact periods of the first,
second, and third replicates of chair-stands in each visit. Within each replicate, we calculated the mean AI
for visit 1 and 2. The ICC for mean AI for chair-stands was 0.83.

4.2 Association with health outcomes

We now conduct an exploratory data analysis on 34 subjects from the LifeMeter study who had at least
three complete days of accelerometer recordings. We investigate the possible association of TAM, AIM,
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Fig. 5. The plots for the metrics validation for Subject 3056 and Subject 3092 during two different visits. In each visit,
there are two replicates of walking and three replicates of chair-stands. The raw data during these periods as well as
the AI were plotted below the probability density curves of AI. In the plots of raw signals and plots of AI, each gray
grid stands for 1 s. A lot of similarities of AI can be observed within and across subjects, while the modes of the
distributions are very close. Also, AI picked up the change of variability of the signal during sudden movements such
as standing-up-from-chair and assigned low values to the resting periods (both standing and sitting).
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TAV, and AIV with several different covariates: Marital Status (Marstat), Sex, Self-Reported General
Health (SRH), QOL, Age, Education (Edu), and Weekend. The age range of the 34 subjects (25 females:
Sex = 1) was between 59 and 80, with a mean age of 68.9. Marital status is labeled as: married, separated,
divorced, widowed, never married; “married” is the baseline category. Education, SRH, and QOL are all
treated as 0/1 variables. For education, 0 stands for having gone to high school or less (20 subjects), and
1 stands for having gone to some college or more (14 subjects). For SRH and QOL, 1 is for overall poor
ratings (18 subjects for SRH and 21 for QOL) and 0 is for overall good ratings (16 subjects for SRH and
13 for QOL); “weekend” is 1 for a weekend day and zero otherwise.

Figure S1 in supplementary material available at Biostatistics online displays the measurements for
each of 3 days plotted vs. covariates; results for different regression models are shown in Table S1 of
supplementary material available at Biostatistics online. Models were fit using generalized estimating
equations with an exchangeable assumption for days within subject. Several significant predictors were
identified: sex (women were found to have longer time active and higher variability in intensity), age
(older individuals had lower AIM and variability), SRH (worse health status was associated with less
activity), and being divorced (was associated with less activity). The weekend effect was not found to
be significant (p-value > 0.5) in this data set. Separate models for women confirmed both the negative
effect of worse SRH and of being divorced. We found a significant association between age and all four
outcomes, indicating that, as age increases, both the activity level and variability decreases. Women who
were never married tend to spend more time being active and exhibit a higher variation in TA. Similar
results were found when SRH was replaced with QOL. The full analysis is provided in supplementary
material available at Biostatistics online.

5. DISCUSSION

We provide a transparent, easy to use, and reproducible normalization approach to extract and summa-
rize relevant metrics from raw tri-axial accelerometry data. Having a simple, explicit formula is a sine-
qua-non for further refinements if the needed general discussion among researchers and users is to take
place; we have provided a first step in the direction of increased transparency. Most importantly, the AI and
TA measures have two built-in fail-safes: (i) using raw tri-axial accelerometer data allows future integration
of data from multiple studies and platforms and (ii) using normalization with respect to sedentary and non-
wear periods will likely mitigate small and moderate batch effects. Evaluating AI and other accelerometry
measurements is difficult in the entire population, though validation in well-defined sub-populations is
probably the right approach. Our perspective is different from the current scientific practice that “acceler-
ation is a measure of energy expenditure” or that “acceleration is a measure of a level of activity”. Indeed,
we consider that an accelerometer measures acceleration in three different directions at a particular part
of the human body. R code is available by request and will be made available at supplementary material
available at Biostatistics online.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGMENTS

Conflict of Interest: None declared.

http://biostatistics.oxfordjournals.org


Normalization and extraction of interpretable metrics 115

FUNDING

The project described was supported by Grant Number R01EB012547 from the National Institute of
Biomedical Imaging and Bioengineering and R01NS060910 from the National Institute of Neurologi-
cal Disorders and Stroke. This work represents the opinions of the researchers and not necessarily that of
the granting organizations.

REFERENCES

ACTIGRAPH. What are counts? https://help.theactigraph.com/entries/20723176-What-are-counts- (accessed 26 April
2013).

ANCOLI-ISRAEL, S., COLE, R., ALESSI, C., CHAMBERS, M., MOORCROFT, W. AND POLLAK, C. (2003). The role of
actigraphy in the study of sleep and circadian rhythms. American academy of sleep medicine review paper. Sleep
26(3), 342–392.

BAI, J. (2011). Accelerometer-based prediction of activity for epidemiological research, [Master’s Thesis]. Johns
Hopkins University.

BAI, J., GOLDSMITH, J., CAFFO, B., GLASS, T. A. AND CRAINICEANU, C. M. (2012). Movelets: a dictionary of move-
ment. Electronic Journal of Statistics 6, 559–578.

BAO, L. AND INTILLE, S. S. (2004). Activity recognition from user-annotated acceleration data. Proceedings of the
2nd International Conference on Pervasive Computing, Linz/Vienna, Austria, 21–23 April 2004. Berlin: Springer,
pp. 1–17.

BLOOD, M. L., SACK, R. L., PERCY, D. C. AND PEN, J. C. (1997). A comparison of sleep detection by wrist actigraphy,
behavioral response, and polysomnography. Sleep 20, 388–395.

BOYLE, J., KARUNANITHI, T., WARK, T., CHAN, W. AND COLAVITTI, C. (2006). Quantifying functional mobility
progress for chronic disease management. 28th Annul Conference of the IEEE Engineering in Medicine and Biol-
ogy Society, IEEE, New York, 30 August 2006–3 September 2006. Engineering in Medicine and Biology Society,
pp. 5916–5919.

BURNS, A., GREENE, B. R., MCGRATH, M. H., O’SHEA, T. J., KURIS, B., AYER, S. M., STROIESCU, F. AND CIONCA,

V. (2010). Shimmer TM—a wireless sensor platform for noninvasive biomedical research. IEEE Sensors Journal
10(9), 1527–1534.

BUSSMANN, J. B., MARTENS, W. L., TULEN, J. H., SCHASFOORT, F. C., VAN DEN BERG-EMONS, H. J. AND STAM,

H. J. (2001). Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behavior Research
Methods, Instruments, & Computers 33(3), 349–356.

FEINSTEIN, A. R., JOSEPHY, B. R. AND WELLS, C. K. (1986). Scientific and clinical problems in indexes of functional
disability. Annals of Internal Medicine 105, 413–420.

GRANT, P. M., DALL, P. M., MITCHELL, S. L. AND GRANAT, M. H. (2008). Activity-monitor accuracy in measuring
step number and cadence in community-dwelling older adults. Journal of Aging and Physical Activity 16, 204–214.

JEAN-LOUIS, G., VON GIZYCKI, H., ZIZI, F., FOOKSON, J., SPIELMAN, A., NUNES, J., FULLILOVE, R. AND TAUB,

H. (1996). Determination of sleep and wakefulness with the actigraph data analysis software (adas). Sleep 19,
739–743.

KOZEY-KEADLE, S., LIBERTINE, A., LYDEN, K., STAUDENMAYER, J. AND FREEDSON, P. S. (2011). Validation of wear-
able monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise 43(8), 1561.

KUSHIDA, C. A., CHANG, A., GADKARY, C., GUILLEMINAULT, C., CARRILLO, O. AND DEMENT, W. C. (2001). Compar-
ison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients.
Sleep Medicine 2, 389–396.

https://help.theactigraph.com/entries/20723176-What-are-counts-


116 J. BAI AND OTHERS

LEE, I.-M. AND PAFFENBARGER, R. S. (2000). Associations of light, moderate, and vigorous intensity physical activity
with longevity. American Journal of Epidemiology 151(3), 293–299.

MCDOWELL, I. AND NEWELL, C. (1987). Measuring Health: A Guide to Rating Scales and Questionnaires. New York:
Oxford University Press.

MISHIMA, K., HISHIKAWA, Y. AND OKAWA, M. (1998). Randomized, dim light controlled, crossover test of morning
bright light therapy for rest-activity rhythm disorders in patients with vascular dementia and dementia of alzheimers
type. Chronobiology International 15, 647–654.

O’DONOVAN, K. J., GREENE, B. R., MCGRATH, D., O’NEILL, R., BURNS, A. AND CAULFIELD, B. (2009). Shimmer: a
new tool for temporal gait analysis. Engineering in Medicine and Biology Society, 2009. EMBC 2009. 31st Annual
International Conference of the IEEE, Minneapolis, Minnesota, USA, 2–6 September 2009. IEEE, pp. 3826–3829.

PUYAU, M. R., ADOLPH, A. L., VOHRA, F. A. AND BUTTE, N. F. (2002). Validation and calibration of physical activity
monitors in children. Obesity Research 10, 150–157.

RAVI, N., DANDEKAR, N., MYSORE, P. AND LITTMAN, M. L. (2005). Activity recognition from accelerometer
data. Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence, Pittsburgh,
Pennsylvania, 9–13 July 2005. AAAI Press, pp. 1541–1546.

SALLIS, J. F., SAELENS, B. E., FRANK, L. D., CONWAY, T. L., SLYMEN, D. J., CAIN, K. L., CHAPMAN, J. E. AND KERR,

J. (2009). Neighborhood built environment and income: examining multiple health outcomes. Social Science &
Medicine 68(7), 1285–1293.

SHIMMER RESEARCH. (2012). Shimmer 9DoF Calibration Application—User Manual. Shimmer Research. V 1.0b.

STEPHEN, W. AND SPIRO, J. R. (2001). Comparing different methodologies used in wrist actigraphy. Sleep Review,
Summer, 40–42.

SYMANZIK, J. AND SHANNON, W. (2008). Exploratory graphics for functional actigraphy data. 2008 JSM Proceedings,
Denver, Colorado, 3–7 August 2008.

TREUTH, M. S., SCHMITZ, K., CATELLIER, D. J., MCMURRAY, R. G., MURRAY, D. M., ALMEIDA, M. J., GOING, S.,

NORMAN, J. E. AND PATE, R. (2004). Defining accelerometer thresholds for activity intensities in adolescent girls.
Medicine & Science in Sports & Exercise 36, 1259–1266.

WELK, G. J., BLAIR, S. N., JONES, S. AND THOMPSON, R. W. (2000). A comparative evaluation of three accelerometry-
based physical activity monitors. Medicine & Science in Sports & Exercise 32, 489–497.

[Received December 17, 2012; revised July 31, 2013; accepted for publication July 31, 2013]


