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Abstract

The first phase of the CNTRICs initiative focused on the identification of cognitive constructs

from human and animal neuroscience that were relevant to understanding cognitive deficits in

schizophrenia, as well as promising task paradigms that could be used to assess these constructs

behaviorally. The current phase of CNTRICs has the goal of expanding this initial work by

including measures of brain function that can augment these behavioral tasks as biomarkers to be

used in the drug development processing. Here we review many of the psychometric issues that

need to be addressed in regards to the development and inclusion of such methods in the drug

development process. In addition, we review quality assurance concerns, issues associated with

multi-center trials, concerns associated with potential pharmacological confounds on imaging

measures, as well as power and analysis considerations. Although review is couched in the context

of the use of biomarkers for treatment studies in schizophrenia, we believe the issues and

suggestions included are relevant to the entire range of neuropsychiatric disorders as well as to a

wide range of imaging modalities (i.e., fMRI, PET, ERP, EEG, TMS, NIR, etc.), and are relevant

to both pharmacological and psychological intervention approaches.

The first phase of the CNTRICs initiative focused on the identification of cognitive

constructs from human and animal neuroscience that were relevant to understanding

cognitive deficits in schizophrenia, as well as promising task paradigms that could be used

to assess these constructs behaviorally. The current phase of CNTRICs has the goal of

expanding this initial work by including measures of brain function that can augment these

behavioral tasks as biomarkers to be used in the drug development process. A relatively

recent review by Breier (1) highlights the fact that biomarker development is one of the most

pressing needs for current central nervous system drug development, as it is a critical

© 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

Corresponding Author: Deanna M. Barch, Ph.D. Departments of Psychology, Psychiatry and Radiology Washington University Box
1125, One Brookings Drive St. Louis, MO. 63130 Phone: 314-935-8729 Fax: 314-935-8790 dbarch@artsci.wustl.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Biol Psychiatry. Author manuscript; available in PMC 2014 June 27.

Published in final edited form as:
Biol Psychiatry. 2011 July 1; 70(1): 13–18. doi:10.1016/j.biopsych.2011.01.004.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



component of timely and efficient drug evaluation (1). The NIH website defines a biomarker

as “A characteristic that is objectively measured and evaluated as an indicator of normal

biologic or pathogenic processes or pharmacological responses to a therapeutic

intervention.” This definition is broad and makes it clear that such measures could include

receptor binding studies, functional magnetic resonance imaging (fMRI),

electroencephalography (EEG), event-related potentials (ERP), and magneto-

electroencephalography (MEG).

Breier's review highlighted three important roles for biomarkers in drug development. A

first role for biomarkers is in dosage development and target validation. Historically, the

pharmaceutical industry has focused on the use of PET technology for this type of

biomarker, with an emphasis on examining dose-related occupancy of brain receptor sites as

evidence that the drug has reached its intended target, an often invaluable piece of

information in interpreting the results of negative trials. However, for many targets, there are

no appropriate ligands available for such studies. As such, measures of changes in functional

brain activation (fMRI, ERP, etc.) in response to task conditions ranging from simple

sensory stimulation to cognitive challenge can also serve as indicators that the drug has

modulated a target brain region(s) of interest (2). Further such fMRI (or ERP) measures can

also serve in a second role for biomarkers, namely as surrogate outcome measures that may

allow early evaluation of the eventual efficacy of a drug on longer term outcomes (1). In

principle, valid biomarkers should enhance the drug discovery process by providing critical

“proof of principle” evidence in early phase 2 trials. Recent work by Lewis and colleagues

highlighted the promise of cognitive neuroscience measures in this role, and demonstrated

that a novel GABAergic agent enhanced performance and cortical oscillations during

performance of tasks designed and validated in the cognitive neuroscience literature (3). Yet

a third important role for biomarkers is to help identify which people are most likely to

benefit from a drug, or to identify more homogenous samples of participants that enhance

power to detect significant effects.

The current paper will focus on psychometric and quality assurances issues related to using

non-invasive measures of brain function such as fMRI, EEG, ERP and MEG as biomarkers

during one or more phases of the drug development process, with the goal of reviewing the

extent literature and offering suggestions regarding potentially useful approaches for

addressing these challenges in future studies. In large part, the issues raised in this review

pertain to all types of measures of brain function. For ease of presentation, we will couch

our discussion primarily in terms of fMRI. However, we in no way mean to imply that these

issues are any more or less important for fMRI than for any of the other methods available

for measuring brain function associated with cognitive performance. Further, we believe the

issues and suggestions included here are relevant to the entire range of neuropsychiatric

disorders, and are relevant to both pharmacological and psychological intervention

approaches.

We think that the discussion of various psychometric and quality assurance considerations

will make more sense if couched in the context of a specific concrete example. Our example

will be the use of fMRI to measure brain function associated with one of the constructs and

tasks identified as relevant for translation in the first phase of the CNTRICs initiative: goal
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maintenance as measured by the Dot Probe Expectancy (DPX) task, a variant of the AX-

CPT task (4).

Reliability

One of the most critical psychometric considerations for a measure to be used as a

biomarker is reliability. The term “reliability” refers to the repeatability or consistency of a

measure's values across a set of observations from research participants. It is important to

emphasize that reliability refers to the ability of a measure to consistently distinguish

among, or reproduce the rank ordering of, individuals on a particular trait over repeated

assessments, assuming that individuals do not undergo any true change between

assessments. As such, reliability is only defined with respect to a set of observations from a

sample or population—it does not describe the precision or accuracy of a measure for a

single individual (5, 6). Moreover, reliability is not an absolute property of a measure; rather

it is a property of the measurements obtained using that measure in a sample drawn from a

particular population. Because the true variation among individuals varies across

populations, the same measure can yield reliable measurements in one population but not in

another.

The supplemental data section contains a formal definition of reliability using classical test

theory (CTT). In practice, reliability coefficients are calculated as intraclass correlation

coefficients using variance component estimates derived from analysis of variance models

(7). In such models, a factor is included to estimate “person” variance based on scores

averaged over the various measurement conditions (e.g., test occasions, raters), and this

person variance provides an estimate of true score variance. When person variance is large

relative to the total variance of the measurements, measurement error is relatively small and

reliability is high. Based on these definitions, it should be clear that poor reliability can

result from large error variance, small person variance, or both.

Based on classical test theory, several types of reliability have been developed, each based

on different approaches to estimating measurement error variance. Reliability coefficients

based on internal consistency, such as coefficient alpha (8), estimate measurement error

based on variation across the instances of measurement, or items, for measures that employ

multiple items. Test-retest reliability coefficients estimate measurement error based on

variation across measurement occasions. In the context of our DPX example, internal

consistency reliability would refer to the degree to which the different instances of high and

low goal maintenance trials provide similar values of Blood Oxygen Level Dependent

(BOLD) activity across subjects. Test-retest reliability would refer to the degree to which

similar overall estimates of BOLD activity associated with high or low goal maintenance

trials are obtained from a group of subjects across different timepoints, assuming that the

cognitive function being measured has not undergone any true change over the test-retest

interval examined.

Reliability is critical because it sets an upper limit on a measure's validity as defined by its

concurrent association with other measures of the same or theoretically related constructs or

by its predictive association with related constructs measured in the future. This is because it
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is impossible for a measure to correlate more highly with a validity criterion (e.g., some

other measure of goal maintenance besides the DPX, or BOLD activity associated with a

different task that requires goal maintenance or related executive functions) than it correlates

with itself (i.e., reliability), unless the same measurement error has contaminated both the

measure of interest and the validity criterion with which it is being correlated (i.e., correlated

measurement error). Thus, a measure with low reliability will be limited in its capacity to

predict individual differences on other measures of interest. See supplemental materials for

an additional discussion of reliability and measurement of change over time.

Framing Questions About Reliability

It does not make sense to ask a question such as “what is the reliability of fMRI, or MEG, or

ERP, in general”. This is because reliability will vary as a function of the specific task (e.g.,

DPX versus another measure of goal maintenance), the specific contrast within the task

(e.g., high goal maintenance trials alone, the comparison of high versus low goal

maintenance trials, etc.), the specific voxels or brain regions assessed (e.g., responses in

visual cortex versus dorsolateral prefrontal cortex) and the specific dependent measure (e.g.,

average activity in a specific region, the peak voxel with a region, etc.). Further, reliability

will differ as a function of the methods or analysis approaches used. Finally, as already

noted, reliability is sample and population specific—one cannot assume that a measure that

is reliable in a sample of normal healthy subjects will be equally reliable in a patient

population.

A growing number of studies have examined ways of assessing the test-retest reliability of

imaging data (9-11). Such studies have used a wide variety of statistics and approaches to

this question, with a consequently wide variety of results, ranging from good to excellent

reliability (12-15) to moderate to poor reliability (16-20). Many such studies have used

various forms of correlation coefficients, including Pearson and intraclass correlation

coefficients (ICCs)(7), to assess test-retest reliability (based on Classical Test Theory

assumptions) across scan sessions. Although these measures can be useful in many contexts,

as pointed out by Zandbelt (21), such measures (Pearson's r, relative ICCs) can give high

values when the rank ordering of subjects is stable across sessions, even when large changes

in the absolute value of an estimate has occurred. If one wishes to establish reliability for

purposes in which the absolute value of the activation is important (e.g., a situation in which

the absolute value has some specific interpretation in terms of impairment, etc.), then one

should use an absolute value ICC estimate that allows “main effects” that influence the

measures for all subjects to count against a measure's reliability estimate (see (7)). However,

in many situations such main effects (e.g., those due to practice effects or equipment

changes that influence all individuals equally) do influence the measures reliability in the

context of the scientific questions being addressed (e.g., is there a greater change in

activation in one treatment group versus another). In such cases, a relative ICC estimate is

appropriate n the context of classical test theory, reliability is a unitary construct that does

not explicitly distinguish among different sources of measurement error. This can result in

considerable variability in the reliability coefficients estimated for a measure if there are

different sources of error across different studies. One way to address this concern is to

adopt the framework of Generalizability Theory (G-Theory), an approach that allows one to
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explicitly address multiple sources of measurement error that affect the reliability – or

generalizability – of fMRI activations (22, 23).

Generalizability Theory Framework

Generalizability Theory (G-Theory) was developed as an extension and expansion of

classical test theory to explicitly recognize and model the multiple sources of measurement

error that can influence a measure's reliability, providing the flexibility to assess a number of

sources of error but to estimate reliability with respect to only those sources that will be

relevant to one's particular research question and study design (22-25). Please see

supplemental materials for more discussion of the relationship between G-Theory and ICCs

based on classical test theory. In G-theory, these different sources of error variation are

referred to as “facets.” Each facet is defined by a set of similar measurement conditions,

sampled from some larger “universe of admissible observations”. While we typically

employ only a subset of measurement conditions for a given facet to estimate a person's true

score (called a “universe score” in G-theory), our interest is in generalizing this estimate to

the person's mean score over the entire universe of admissible observations for this

measurement facet. In G-theory, the objects of measurement (typically persons) are sampled

from a “population”, and the variability among persons is referred to as “universe score

variance”. G-theory explicitly makes use of an analysis of variance framework, treating as

factors, and estimating variance components, for: 1) the main effect of each facet of

measurement; 2) the main effect of persons (or whatever one considers to be the object of

measurement); and 3) the various interaction effects. In the context of a typical fMRI

reliability or “generalizability” study, such facets could include task run, test session (e.g.,

time 1 versus time 2), or even site if one is conducting a multi-site trial. In our DPX

example, we might have 10 participants (the objects of measurement sampled from a

specific population), 8 “runs” of the DPX task with high and low goal maintenance trials

interleaved (the task run facet), each person might be tested at each of two different

university scanners (the site facet), undergoing a scan session on two occasions separated by

a few days at each scanner site (the test occasion facet). An analysis of this type of

generalizability study design would focus on a dependent measure of interest, such as

activity associated with high goal maintenance trials, either in specific brain regions or on a

voxel-by-voxel basis. Such an analysis would allow one to estimate the variance in the

dependent measure associated with the effect of persons, the effect of each of the

measurement facets, and all of their interactions (except for the highest order interaction,

persons × run × occasion × site, which is confounded with residual error in the ANOVA

model). Ideally, the variance associated with persons would be high in relation to the

proportion of the total variance in the data, and the variance associated with factors such as

task run, occasion, site, and the various interactions, would be low. Such results would

indicate that the fMRI paradigm applied to the population of interest is reliable across task

runs, occasions, and sites.

In G-Theory, the results of an initial generalizability study are intended to be used to inform

the design of the subsequent primary research study - referred to as a “decision study” -for

which one needs to make choices about issues such as the number of task runs, the number

of measurement occasions, etc. A researcher can use the data from a generalizability study
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to determine which choices would give sufficient reliability for the question at hand. There

are several important advantages in conducting such a generalizability study, despite the

added time, effort, and expense. An obvious advantage is that it could be a waste of money

to conduct a trial with measures of unknown reliability, as failure to find significant effects

in a clinical trial may be due to an ineffective treatment or it may be due to unreliable

outcome measures that cannot detect treatment effects over and above the random

fluctuations in the measures over time. Indeed, allowing the task design to be informed by

data from a generalizability study could potentially lead to design of a shorter task (e.g.,

fewer task runs) than one might otherwise have used, thereby saving time and money and

minimizing subject burden. For example, in our DPX example described above, although 8

task runs were employed in a generalizability study, the generalizability analyses could

indicate that 4 runs will yield a sufficiently reliable measure for the purposes of the planned

substantive (i.e., decision) study. An excellent example of such an initial generalizability

study is the one by Yendiki and colleagues, which was designed to inform the design of a

much larger multi-site study by clarify the choice of tasks and the number of runs per task

(26).

Conducting reliability (generalizability) studies

There are a number of important considerations in designing generalizability studies. Here

we focus on the issues of group versus individual levels of activation, and the unit of

measurement. See the supplemental materials for a discussion of the choice of participants

and test-retest time frame.

Group Versus Individual Level of Activation

Some studies intended to demonstrate “reliability” of a measure have simply shown that

group means do not show significant change from test to retest. This does not explicitly

address the question of measurement reliability. For example, with respect to fMRI, Caceres

and others (9, 21) point out that stable group level activations can be observed over time

even when there is a great deal of change in how individual subjects contribute to that group

activation. In planning treatment studies or other longitudinal studies, our interest is

typically focused on measuring individual differences and their changes over time; group

level activations are not particularly informative about the dependability or reliability of our

measurements for the purposes of tracking individual differences over time.

The Unit of Measurement

A number of studies have examined some sort of summary statistic of brain activation for

each individual, such as the mean or median beta weight in a functionally defined or a priori

ROI (e.g., 15) for fMRI studies, or a component's peak amplitude or latency assessed at one

or more leads or sensors in an EEG or MEG study. With respect to fMRI, a second

possibility is to compute reliability for individual voxels, generating voxel-wise maps of

reliability coefficients for the entire brain. Caceres and colleagues recently completed a

study that compared four different approaches to assessing ROI level reliability in an fMRI

study. The first was a novel approach that used the median of the ICC distribution across

voxels within an ROI (medICC). The second was the beta weight (contrast) value for an
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individual subject at the voxel with the largest group level statistic (17) (ICCmax). The third

was the median contrast value within an ROI for a subject (15) (ICCmed). The fourth was an

intra-ROI measurement that provided information on the consistency of the spatial

distribution of activation within an ROI (16)(ICCv). The results of these comparisons

suggested that the ICCv was strongly influenced by smoothing in the data and that ICCmax

had the lowest ICC values and was strongly influenced by smoothing and cluster size (see

(9) for more detail). MedICC and ICCmed had relatively similar ICC values, but ICCmed

was more influenced by smoothing and cluster size than medICC, while medICC was more

influenced by head movement than ICCmed. See supplemental materials for a discussion of

additional approaches to assessing reliability that treats voxels rather than subjects as the

objects of measurement.

The above discussion focuses on evaluating the reliability of activation in individual ROIs or

single voxels on the one hand.. However, the field has been increasingly interested in

multivariate analyses of fMRI data. Caceres examined reliability for a “network” measure of

activation (defined as the network activated in a group analysis), and found that the

reliability of this metric was higher than for many (though not all) of the individual brain

regions (9). As such, it is possible that analysis approaches that focus on identifying brain

networks associated with task performance may have higher reliability than assessments of

individual ROIs, something that deserves greater examination in future studies. For

example, measures of functional connectivity (either task or resting state) may have higher

reliability than activation of individual regions, although this hypothesis awaits empirical

evaluation.

Quality assurance considerations

Some aspects of quality assurance for imaging biomarkers are relatively obvious, such as

ensuring that the correct acquisition parameters and procedures are used for all protocols.

However, there are a number of other considerations that are equally important, but for

which clear inclusion/exclusion criteria are less obvious. Here we discuss behavioral

performance and multi-site issues. See the Supplemental Materials for a discussion of signal

to noise, movement, equipment stability, and how such issues should be conceptualized

from the perspective of Generalizability Theory.

Behavioral Performance

Variation in behavioral performance levels can influence the level and pattern of brain

activity even in the absence of any pharmacological or psychological intervention (27-29).

As such, it is highly important to take task difficulty issues into consideration when

choosing paradigms and control groups, and to have good practice and training procedures

that ensure that participants understand the task and the response demands prior to scanning.

Further, one may need to set a criterion for the level of performance participants must

achieve in order for their data to be included in any analyses. One quantitative approach to

this issue is to formally compute the level of chance performance for one's paradigm and to

determine what level of performance an individual needs to achieve in order to perform

significantly above chance. The potential disadvantage to this approach that it is possible

that one's intervention for cognition may actually help participants better understand how to
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perform a cognitive task. Thus, excluding those individuals performing poorly at the start of

the trial could eliminate precisely those individuals who are most likely to benefit from the

intervention.

A second concern associated with behavioral performance is that changes in performance

across the course of a trial may confound interpretations of changes in brain activity (27-29).

This is of particular concern if practice effects are confounded with events within the

clinical trial, such that the first testing session is always off drug and the second is on drug

(or post intervention). Of course, including a no-intervention control group and using

parallel task versions when available helps address this concern. However, it would help to

reduce any confound between practice effects and the intervention of interest in order to

maximize sensitivity to true change and to reduce the influence of this confound. One way

to do this is to use something akin to a multiple baseline approach. The largest practice

effects in many cognitive paradigms tend to occur between the first and second time that a

person completes a task, as the first session allows them to understand the task and establish

a strategy. In such a multiple-baseline approach, participants would come in for a full

behavioral testing session prior to the first imaging session in order to increase the

likelihood that participants are on a more stable part of the learning curve at the start of the

first imaging session. In addition, one can use behavioral performance as a covariate in

analyses of the imaging data in order to elucidate the degree to which changes over time in

functional brain activity relate to changes in behavioral performance.

Multi-site Considerations

Ideally, one would use identical equipment for task presentation and data acquisition across

sites, although the degree to which differences in such factors influence the imaging data

may depend on the nature of the task paradigm. In addition, training procedures and task

presentation procedures need to be highly standardized across sites, with little room for

individual experimenter or testor variability. A number of groups have also published papers

on power and sample size in multisite studies (30), ways in which data can be analyzed to

reduce site differences, (31, 32) and ways that site differences in signal characteristics (e.g.,

SNR, smoothness) can be taken into account in statistical analyses (26, 33, 34). One

important question for multi-site studies is whether calibration across sites is only necessary

for an initial study, or whether such calibration would need to be conducted anew for each

new study, should the same set of sites conduct multiple studies. If money and time were no

consideration, it would likely be wisest to conduct all calibration procedures anew at the

start of each study, as personnel and equipment can change over time in a way that could

influence site performance.

Potential Drug-Related Confounds

Pharmacologically induced confounds may be more of an issue with some methods (e.g.,

fMRI) than with other methods (e.g., EEG/MEG). Iannetti and Wise have provided a cogent

and comprehensive review of these issues (35). These researchers outlined three processes

that can be influenced by pharmacological manipulations that could mediate observed

changes in BOLD activity: 1) a direct influence on neural activity (what we typically hope to

measure); 2) an influence on the processes that signal blood vessels that control cerebral
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blood flow (CBF): 3) an influence on the processes that modify vascular reactivity. To

assess and estimate which of these influences is driving any observed change in BOLD,

Iannetti and Wise suggest including the following in any pharmacological fMRI study: 1) a

control task not expected to be influenced by the pharmacological intervention; 2) measures

of changes in cerebral blood flow and vascular reactivity; and 3) assessments of arousal,

cardiac pulsation and respiration. Please see the supplemental materials for a more detailed

discussion.

Power and Analysis Considerations

Sample Size and Power

There are major advantages in terms of power to within-subject designs that compare the

same individual on and off the intervention. This approach is highly feasible in proof of

concept type trials that use a single dose design in which the order of placebo versus drug

can be counterbalanced across participants. However, this approach is less feasible in studies

with longer term administration of a pharmacological agent or intervention in which it may

be not be possible to counterbalance the “on” and “off” imaging days. In these situations, it

may be necessary to have a control group that does not receive the intervention. In such

designs, power concerns need to take into account the between subject nature of the design.

Many of the published discussions of power in fMRI studies focus only on within-subject

designs, and reliance on those sample size suggestions (36, 37) will greatly overestimate the

power than one has for a between-subject design (38). Fortunately, recent work has outlined

the power considerations and sample sizes necessary for such between group designs (30).

However, it should be noted that effect sizes are sometimes difficult to determine in

complex designs where one is looking at changes across conditions and time. As such, one

may also need to design a study to be able to detect the minimum effect size that is likely to

be clinically relevant and power the study to detect this effect size, even if one hopes the

obtained effect size will be larger. This concern is particularly pertinent in studies conducted

as part of the drug development process, as failing to find a significant and potentially

clinical important effect due to low power could derail the development of a promising

mechanism.

Analysis Approach and Power

In studies using measures of functional brain activity, the choice of analysis approach can

have a major impact on power. With almost all imaging methods, exploratory analyses can

involve examining many different voxels or electrodes. The need to control Type 1 error in

such analyses can often greatly reduce power and increase the risk of Type II errors. As

such, researchers should consider taking a tiered approach to data analysis that starts with

the most highly powered approach. In fMRI studies, a highly powered approach is to use a

priori identified regions of interest (ROIs) and to analyze only the mean values for all voxels

included in any individual ROI. The advantage of this approach is that it necessitates

relatively few comparisons, requires relatively little correction for multiple comparisons,

and is very theoretically driven. However, the disadvantage is that you can choose the wrong

size or location of the ROIs, and miss detecting real changes in functional activation in

response to the intervention.
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The next most powerful approach would be to use such a priori ROIs as masks, but to

examine each voxel within the mask using some appropriate correction for the number of

comparison within or between ROIs. This approach is still more highly powered than a

whole brain exploratory analysis, as one is conducting fewer comparisons than in a whole-

brain analysis. Further, this approach may be less sensitive to misspecification than the

“whole” ROI approach since it allows for the detection of significant changes in subregions

of the masking ROIs. The least powerful approach is to do some type of whole brain

exploratory analysis, which typically requires a rather stringent correction for multiple

comparisons (39), but avoids any pitfalls associated with an inaccurate prediction of the

location of brain activity changes in response to the intervention.

Summary

The inclusion of measures of brain activity during cognitive performance has the promise of

enhancing the drug discovery process and potentially allowing us to develop effective and

targeted treatments for impaired cognition in schizophrenia. However, there are a number of

psychometric and methodological challenges that need to be addressed in order to make the

use of these measures feasible, easy to implement, and resistant to confounds in

interpretation. While these challenges will necessitate time and effort on the part of the field,

they are not insurmountable and are well worth the effort in terms of the potential payoff.

We hope that this review helps to highlight some of the key methodological and conceptual

challenges that remain, as well as providing useful suggestions for subsequent studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

Dr. Barch has received grants from the NIMH, NIA, NARSAD, Allon, Novartis, and the McDonnel Center for
Systems Neuroscience. Dr. Mathalon has received research grants from the NIMH, NARSAD, AstraZeneca, and
GlaxoSmithKline and has been a paid consultant for Pfizer.

References

1. Breier A. Developing drugs for cognitive impairment in schizophrenia. Schizophr Bull. 2005;
31:816–822. [PubMed: 16150959]

2. Cho RY, Ford JM, Krystal JH, Laruelle M, Cuthbert BN, Carter CS. Functional neuroimaging and
electrophysiology biomarkers for clinical trials for cognition in schizophrenia. Schizophrenia
Bulletin. 2005; 31:865–869. [PubMed: 16166611]

3. Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, et al. Subunit-selective modulation
of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry.
2008; 165:1585–1593. [PubMed: 18923067]

4. Barch DM, Berman MG, Engle R, Jones JH, Jonides J, Macdonald A 3rd, et al. CNTRICS final task
selection: working memory. Schizophr Bull. 2009; 35:136–152. [PubMed: 18990711]

5. Rogosa DR, Brandt D, Zimowski M. A growth curve approach to the measurement of change.
Psychological Bulletin. 1982; 92:726–748.

Barch and Mathalon Page 10

Biol Psychiatry. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6. Rogosa DR, Willett JB. Understanding correlates of change by modeling individual differences in
growth. Psychometriika. 1983; 50:203–228.

7. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychological
Bulletin. 1979; 86:420–428. [PubMed: 18839484]

8. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometriika. 1951; 16:297–
334.

9. Caceres A, Hall DL, Zelaya FO, Williams SC, Mehta MA. Measuring fMRI reliability with the
intra-class correlation coefficient. Neuroimage. 2009; 45:758–768. [PubMed: 19166942]

10. Raemaekers M, Vink M, Zandbelt B, van Wezel RJ, Kahn RS, Ramsey NF. Test-retest reliability
of fMRI activation during prosaccades and antisaccades. Neuroimage. 2007; 36:532–542.
[PubMed: 17499525]

11. Zandbelt BB, Gladwin TE, Raemaekers M, van Buuren M, Neggers SF, Kahn RS, et al. Within-
subject variation in BOLD-fMRI signal changes across repeated measurements: quantification and
implications for sample size. Neuroimage. 2008; 42:196–206. [PubMed: 18538585]

12. Specht K, Willmes K, Shah NJ, Jancke L. Assessment of reliability in functional imaging studies. J
Magn Reson Imaging. 2003; 17:463–471. [PubMed: 12655586]

13. Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, et al. Intrasubject reproducibility of
presurgical language lateralization and mapping using fMRI. Neurology. 2003; 60:969–975.
[PubMed: 12654961]

14. Aron AR, Gluck MA, Poldrack RA. Long-term test-retest reliability of functional MRI in a
classification learning task. Neuroimage. 2006; 29:1000–1006. [PubMed: 16139527]

15. Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, et al. Test-retest and
between-site reliability in a multicenter fMRI study. Hum Brain Mapp. 2008; 29:958–972.
[PubMed: 17636563]

16. Raemaekers M, Vink M, zandbeldt BB, van Wezel RJ, Kahn R, Ramsey NF. Test-retest reliablity
of fMRI activation during prosaccades and antisaccades. Neuroimage. 2007; 36:532–542.
[PubMed: 17499525]

17. Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL, et al. Test-retest reliability
of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J
Psychiatry. 2001; 158:955–958. [PubMed: 11384907]

18. Wei X, Yoo SS, Dickey CC, Zou KH, Guttmann CR, Panych LP. Functional MRI of auditory
verbal working memory: long-term reproducibility analysis. Neuroimage. 2004; 21:1000–1008.
[PubMed: 15006667]

19. Wagner K, Frings L, Quiske A, Unterrainer J, Schwarzwald R, Spreer J, et al. The reliability of
fMRI activations in the medial temporal lobes in a verbal episodic memory task. Neuroimage.
2005; 28:122–131. [PubMed: 16051501]

20. McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability
in fMRI: an examination of intersession differences. Neuroimage. 2000; 11:708–734. [PubMed:
10860798]

21. zandbeldt BB, Gladwin TE, Raemaekers M, van Buuren M, Neggers SF, Kahn R, et al. Within-
subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and
implications for sample size. Neuroimage. 2008; 42:196–206. [PubMed: 18538585]

22. Cronbach LJ, Nageswari R, Gleser GC. Theory of generalizability: A liberation of reliablity
theory. The British Journal of Statistical Psychology. 1963; 16:137–163.

23. Cronbach, LJ.; Gleser, GC.; Nanda, H.; Rajaratnam, N. The dependability of behavioral
measurements: Theory of generalizability for scores and profiles. John WIley; New York: 1972.

24. Brennan, RL. Generalizability Theory. Springer-Verlag; New York: 2000.

25. Shavelson, RJ.; Webb, NM. Generalizability Theory: A Primer. Sage Publications; Newbury Park,
CA: 1991.

26. Yendiki A, Greve DN, Wallace S, Vangel M, Bockholt J, Mueller BA, et al. Multi-site
characterization of an fMRI working memory paradigm: reliability of activation indices.
Neuroimage. 2010; 53:119–131. [PubMed: 20451631]

Barch and Mathalon Page 11

Biol Psychiatry. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



27. Van Snellenberg JX, Torres IJ, Thornton AE. Functional neuroimaging of working memory in
schizophrenia: task performance as a moderating variable. Neuropsychology. 2006; 20:497–510.
[PubMed: 16938013]

28. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological
dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex. 2000;
10:1078–1092. [PubMed: 11053229]

29. Gur RC, Gur RE. Hypofrontality in schizophrenia: RIP. Lancet. 1995; 345:1383–1384. [PubMed:
7760605]

30. Suckling J, Barnes A, Job D, Brenan D, Lymer K, Dazzan P, et al. Power calculations for
multicenter imaging studies controlled by the false discovery rate. Hum Brain Mapp. 2010;
31:1183–1195. [PubMed: 20063303]

31. Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance
imaging? Ann N Y Acad Sci. 2010; 1191:133–155. [PubMed: 20392279]

32. Bosnell R, Wegner C, Kincses ZT, Korteweg T, Agosta F, Ciccarelli O, et al. Reproducibility of
fMRI in the clinical setting: implications for trial designs. Neuroimage. 2008; 42:603–610.
[PubMed: 18579411]

33. Friedman L, Glover GH. Reducing interscanner variability of activation in a multicenter fMRI
study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage. 2006;
33:471–481. [PubMed: 16952468]

34. Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover G, et al. Test-retest and
between-site reliability in a multicenter fMRI study. Human Brain Mapping. 2008; 29:958–972.
[PubMed: 17636563]

35. Iannetti GD, Wise RG. BOLD functional MRI in disease and pharmacological studies: room for
improvement? Magnetic Resonance Imaging. 2007; 25:978–988. [PubMed: 17499469]

36. Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies:
statistical power analyses. J Neurosci Methods. 2002; 118:115–128. [PubMed: 12204303]

37. Mumford JA, Nichols TE. Power calculation for group fMRI studies accounting for arbitrary
design and temporal autocorrelation. Neuroimage. 2008; 39:261–268. [PubMed: 17919925]

38. Suckling J, Ohlssen D, Andrew C, Johnson G, Williams SC, Graves M, et al. Components of
variance in a multicentre functional MRI study and implications for calculation of statistical
power. Hum Brain Mapp. 2008; 29:1111–1122. [PubMed: 17680602]

39. Lieberman MD, Cunningham WA. Type I and Type II error concerns in fMRI research: re-
balancing the scale. Soc Cogn Affect Neurosci. 2009; 4:423–428. [PubMed: 20035017]

Barch and Mathalon Page 12

Biol Psychiatry. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


