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Abstract

Establishing accurate anatomical correspondences is critical for medical image registration.

Although many hand-engineered features have been proposed for correspondence detection in

various registration applications, no features are general enough to work well for all image data.

Although many learning-based methods have been developed to help selection of best features for

guiding correspondence detection across subjects with large anatomical variations, they are often

limited by requiring the known correspondences (often presumably estimated by certain

registration methods) as the ground truth for training. To address this limitation, we propose using

an unsupervised deep learning approach to directly learn the basis filters that can effectively

represent all observed image patches. Then, the coefficients by these learnt basis filters in

representing the particular image patch can be regarded as the morphological signature for

correspondence detection during image registration. Specifically, a stacked two-layer

convolutional network is constructed to seek for the hierarchical representations for each image

patch, where the high-level features are inferred from the responses of the low-level network. By

replacing the hand-engineered features with our learnt data-adaptive features for image

registration, we achieve promising registration results, which demonstrates that a general approach

can be built to improve image registration by using data-adaptive features through unsupervised

deep learning.

1 Introduction

Deformable image registration is very important in many neuroscience and clinical studies

to normalize the individual subjects to the reference space [1, 2]. The principle behind image

registration is to reveal the anatomical correspondences by maximizing the feature

similarities between two images. Thus, image registration often relies on hand-engineered

features, e.g., Gabor filters, to drive deformable registration [3].

However, the pitfall of these hand-engineered image features is that they are not guaranteed

to work well for all image data, especially for correspondence detection. For example, it is

not effective to use the responses of Gabor filters as the image features to help identify the

point in the uniform white matter region of MR (Magnetic Resonance) brain images.

Accordingly, learning-based methods have been proposed recently to select a set of best

features from a large feature pool for characterizing each image point [4, 5]. The criterion is
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usually set to require the feature vectors on the corresponding points to be (1) discriminative

against other non-corresponding points and (2) consistent with the corresponding points

across training samples [4, 6]. Then the learnt best features can often improve the

registration accuracy and robustness. However, the current learning-based methods require

many known correspondences in the training data, which have to be approximated by certain

registration methods. Thus, besides being stuck in this chicken-and-egg causality dilemma,

these supervised learning-based methods could also be affected by the quality of provided

correspondences due to limited accuracy of employed registration methods.

To address these limitations, we aim to seek for the independent bases derived directly from

the image data by unsupervised learning. Specifically, we first consider a feature space

consisting of all possible image patches. Then, we aim to learn a set of independent bases

that are able to well represent all image patches. Next, the coefficients derived from the

patch representation by these learnt bases can be regarded as the morphological signature to

characterize each point for correspondence detection.

Inspired by the recent progress in machine learning, we adopt a stacked convolutional ISA

(Independent Subspace Analysis) method [7] to learn the hierarchical representations for

patches from MR brain images. Generally speaking, ISA is an extension of ICA

(Independent Component Analysis) to derive image bases for image recognition and pattern

classification [8]. To overcome the limitation of high dimensional data in video processing,

Le et al. [7] introduced the deep learning techniques such as stacking and convolution [9] to

build a layered convolutional neural network that progressively performs ISA in each layer

for unsupervised learning. In our application, we deploy the stacked convolutional ISA

method to learn the hierarchical representations for the high-dimensional 3D image patches,

thus allowing us to establish accurate anatomical correspondences by using hierarchical

feature representations (which include not only the low-level image features, but also the

high-level features inferred from large-scale image patches).

To show the advantage of unsupervised feature learning in image registration, we integrate

our learnt features, from 60 MR brain images, into multi-channel demons [10] and also a

feature-based registration method [11]. Through the evaluation on IXI dataset with 83

manually labeled ROIs and also the ADNI dataset, the performances of both state-of-the-art

registration methods have been improved substantially, compared with their counterpart

methods using hand-engineered image features. These results also show a general way of

improving image registration by using hierarchical feature representations through

unsupervised deep learning.

2 Method

2.1 Motivations

Since there are no universal image features that can work well with all image data, learning-

based methods were recently developed to learn the best features for all image points to

guide registration. Specifically, in the training stage, all sample images are first registered to

the particular template by a certain state-of-the-art registration algorithm. Then, the

correspondences from the estimated deformation fields are regarded as ground truth. Next,
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the procedure of feature selection is performed on each point to pick up the best features, so

that the similarities between corresponding points can be preferably increased [4]. In the

application stage, each subject point has to be pre-calculated with all kinds of features used

in the training stage, and then its correspondence is established by using the learnt best

features for each target template point under registration.

However, these learning-based image registration methods have the following limitations:

1) The correspondences provided for training may be inaccurate. A typical example for

elderly brain images is shown in the top row of Fig. 1, where the deformed subject

image (Fig. 1(c)) is far from well-registered with template (Fig. 1(a)), especially for the

ventricles. Thus, it is difficult to learn meaningful features for allowing accurate

correspondence detection.

2) The best features are often learnt only at the template space. Once the template image

is changed, the whole learning procedure needs to be redone, which is time consuming.

3) Current learning-based methods are not straightforward to include new image

features for training, unless repeating the whole training procedure again.

4) Considering the computational cost, the best features are learnt only from a few types

of image features (e.g., only 3 types of image features, each with 4 scales, as used in

[6]), which limits the discriminative power of the learnt features.

To overcome the above limitations, we propose the following unsupervised learning

approach to learn the hierarchical representations for image patches.

2.2 Unsupervised Learning by Independent Subspace Analysis

Here, we use xt to denote a particular image patch, which is arranged into the column vector

with length L, i.e., . The superscript t = {1,…,T} denotes the index of

all T image patches from the training MR brain images. In the classic feature extraction, a

set of filters W = {wi}i=1,…,N are hand-designed to extract features from xt, where each wi is

a column vector  and totally N filters are used. A certain feature can

be computed by the dot product of xt and wi, i.e., st,i = xt☉wi.

ISA is an unsupervised learning algorithm that automatically learns the basis filters {wi}

from image patches {xt}. As an extension of ICA, the responses st,i are not required to be all

mutually independent in ISA. Instead, these responses can be divided into several groups,

each of which is called independent subspace [8]. Then, the responses are dependent inside

each group, but dependencies among different groups are not allowed. Thereby, similar

features can be grouped into the same subspace to achieve invariance. We use matrix V =

[vi,j]i=1,…,L,j=1,…,N to represent the subspace structure of all observed responses st,i, where

each entry vi,j indicates whether basis vector wi is associated with the jth subspace. Here, N

denotes for the dimensionality of subspace of response st,i. It is worth noting that the matrix

V is fixed when training ISA [7].
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The graphical depiction of ISA is shown in Fig. 2(a). Given image patches {xt} (in the

bottom of Fig. 2(a)), ISA learns optimal W (in the middle of Fig. 2(a)) via finding

independent subspaces (indicated by the pink dots in Fig. 2(a)) by solving:

(1)

where  is the activation of particular xt in ISA.

The orthonormal constraint is used to ensure the diversity of the basis filters {wi}. Batch

projected gradient descent is used to solve Eq. 1, which is free of tweaking with learning

rate and convergence criterion [7]. Given the optimized W and any image patch y, it is

straightforward to obtain the activation of y in each subspace, i.e., ξ(y) = [pj(y; W,

V)]j=1,…,N. Note that ξ(y) is regarded as the representation coefficient vector of a particular

patch y with the learnt basis filters W, which will be used as the morphological signature for

the patch y during the registration.

To ensure the accurate correspondence detection, multi-scale image features are necessary to

use, especially for the ventricle example shown in Fig. 1. However, it also raises a problem

of high-dimensionality in learning features from the large-scale image patches. To this end,

we follow the approach used in video data analysis [7] by constructing a two-layer network,

as show in Fig. 2(b), for scaling up the ISA to the large-scale image patches. Specifically,

we first train the ISA in the first layer based on the image patches with smaller scale. After

that, a sliding window (with the same scale in the first layer) convolutes with each large-

scale patch to get a sequence of overlapped small-scale patches (shown in Fig. 2(c)). The

combined responses of these overlapped patches through the first layer ISA (a sequence of

blue triangles in Fig. 2(b)) are whitened by PCA and then used as the input (pink triangles in

Fig. 2(b)) to the second layer that is further trained by another ISA. In this way, high-level

understanding of large-scale image patch can be perceived from the low-level image

features detected by the basis filters in the first layer. It is apparent that this hierarchical

patch representation is fully data-adaptive, thus free of requirement on known

correspondences.

The basis filters learnt in the first layer, from 60 MR brains, are shown in Fig. 3, where we

show only a 2D slice to represent each 3D filter. Most of them look like Gabor filters that

can detect edges in different orientations. Given the stacked 2-layer convolutional ISA

network, the input image patch y is now extracted in a large scale. The hierarchical

representation coefficient ξ(y) is calculated as follows: (1) extract a set of overlapped small-

scale patches from y by sliding window (Fig. 2(c)); (2) calculate the response of each small-

scale patch in the 1st layer ISA; (3) combine the responses in step (2) and further reduce the

dimension by learnt PCA; (4) calculate the response in the 2nd layer ISA as the hierarchical

representation coefficients ξ(y) for patch y. In registration, we extract image patch in the

large scale for each underlying point and use ξ(y) as the morphological signature to detect

correspondence. Here, we use normalized cross correlation as the similarity measurement

between two representation coefficient vectors. The performance of our learnt features is
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shown in Fig. 1(f), where, for a template point (indicated by red cross in Fig. 1(a)), we can

successfully find its corresponding point in the subject image even with large ventricle.

Other hand-engineered features either detect too many non-corresponding points (when

using entire intensity patch as the feature vector in Fig. 1(d)) or have too low responses and

thus miss the correspondence (when using SIFT features in Fig. 1(e)).

2.3 Improving Deformable Image Registration with Learnt Features

Without loss of generalization, we show two examples of integrating the learnt features by

ISA into the state-of-the-art registration methods. First, it is straightforward to deploy multi-

channel demons [12] by regarding each channel with the element in ξ(y). Second, we replace

the hand-engineered attribute vector (i.e., local intensity histogram) in a feature-based

registration method, i.e., HAMMER [11]1, with our learnt features, while keeping the same

optimization mechanism for deformable registration. In the following, we will show the

registration improvement for these two methods after equipping with our learnt features.

3 Experiments

In this section, we demonstrate the performance of unsupervised learning method by

evaluating the registration accuracy w/o learnt features. Specifically, we use 60 MR images

from ADNI dataset (http://adni.loni.ucla.edu/) for training. For each image, we randomly

sample ~15,000 image patches, where the patch size for the 1st and 2nd layers are 13 × 13 ×

13 and 21 × 21 × 21, respectively. The number of learnt basis filters in the 1st layer and the

dimensionality of subspace in the 2nd layer are N = 300 and N = 150, respectively.

Therefore, the overall dimensionality of morphological signature ξ(y) used for registration is

150 for each image patch y.

For comparison, we set diffeomorphic demons [2] and the HAMMER registration method

[11] as the baseline methods. Next, we integrate the learnt image features into each channel

of multi-channel demons and also replace the hand-engineered image features in

HAMMER, which are denoted below as M+ISA, and H+ISA, respectively. Since PCA is

also an unsupervised dimensionality reduction method by calculating the Eigen vectors, we

further integrate the PCA-based dimension-reduced image patches with multi-channel

demons (M+PCA) and HAMMER (H+PCA), in order to show the better performance by

deep learning. To keep similar number of features as ISA, we deploy PCA on 7 × 7 × 7

patches and keep >70% energy of image patches.

3.1 Experiment on IXI Dataset

IXI dataset2 consists of 30 subjects, each with 83 manually delineated ROIs. FLIRT in FSL

software package (http://fsl.fmrib.ox.ac.uk) is used to perform affine registration for all

subjects to the template space. Then, these images are further registered with 6 above

methods, respectively. In this way, we can calculate the Dice ratio for each of 83 ROIs, and

also their overall Dice ratio. Specifically, the overall Dice ratios are 78.5% by Demons,

75.2% by M+PCA, 79.0 by M+ISA, 78.9% by HAMMER, 75.4% by H+PCA, and 80.1%

1Source code can be downloaded at http://www.nitrc.org/projects/hammerwml
2http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets

Wu et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://adni.loni.ucla.edu/
http://fsl.fmrib.ox.ac.uk
http://www.nitrc.org/projects/hammerwml
http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets


by H+ISA, respectively. The detailed Dice ratios in 10 typical brain structures are also

shown in Fig. 4. It is clear that the registration accuracy is improved by the learnt image

features, compared to the baseline methods. The performances by M+PCA and H+PCA are

worse than the baseline methods, because PCA assumes Gaussian distribution of image

patches and may be not able to model the actual complicated patch distribution.

Furthermore, we apply the paired t-test on Dice ratios by the above 6 registration methods.

We found that M+ISA and H+ISA have significant improvements over their respective

baseline methods (p<0.05) in 37 and 68 out of 83 ROIs in IXI dataset.

3.2 Experiment on ADNI Dataset

In this experiment, we randomly select 20 MR images from ADNI dataset (different with the

training images). The preprocessing steps include skull removal, bias correction, and

intensity normalization. All subject images are linearly registered with template image by

FLIRT. After that, we deploy 6 deformable registration methods to further normalize all

subjects onto the template space. First, we show the Dice ratios on 3 tissue types (ventricle,

gray mater, and white matter) by 6 registration methods in Table 1, where H+ISA method

achieves the highest Dice ratio as in IXI dataset. It is worth noting that Demons achieves

very high overlap (although still lower than H+ISA), because its registration is guided by

intensities which are also used for tissue segmentation in our experiment (by FAST in FSL

software package). Thus, it is not very fair for the feature-based registration method,

although H+ISA still gets best.

Second, since ADNI also provides the labeled hippocampi, we further compare the overlap

ratio of hippocampus by the registration methods using different features, i.e., our learnt ISA

features and PCA features. Taking HAMMER as example, H+ISA achieves overall 2.74%

improvement, compared to both H+PCA and HAMMER which have similar performance.

On the other hand, M+ISA achieves overall 0.19% 0.24% improvements compared to M

+PCA and the original Demons, respectively. We also apply the paired t-test upon M+ISA

v.s. Demons and H+ISA v.s. HAMMER, and found that only H+ISA has significant

improvement (p < 0.05) over the baseline method (HAMMER).

4 Conclusion

We have presented using the unsupervised learning method to explore the optimal image

features for deformable image registration. In particular, a stacked convolutional ISA

network is built to learn the hierarchical basis filters from a number of image patches in the

MR brain images, thus the learnt basis filters are fully adaptive to both global and local

image appearances. After incorporating these learnt image features into the existing state-of-

the-art registration methods, we achieved promising registration results, showing that a

general registration approach could be built by using hierarchical and data-adaptive features

through unsupervised deep learning.
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Fig. 1.
(a-c) Comparison of template, subject, and deformed subject. (d-f) Similarity between a

template point (indicated by red cross) and all subject points, measured with hand-

engineered features (d, e) and the features learnt by unsupervised learning, respectively.
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Fig. 2.
Graphical depiction of ISA and the stacked convolutional ISA network
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Fig. 3.
The learnt bases filters (13 × 13) in the first layer from 60 MR brain images
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Fig. 4.
Dice ratios for 10 typical ROIs in IXI dataset
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Table 1

The Dice ratios of VN, GM, and WM on ADNI dataset. (unit: %)

Methods Ventricle Gray Matter White Matter Overall

Demons 93.2 78.0 89.7 86.9

M+PCA 84.5 71.6 80.5 78.9

M+ISA 88.9 76.5 87.8 84.4

HAMMER 91.5 72.5 82.4 82.1

H+PCA 90.6 71.9 83.5 82.0

H+ISA 95.0 78.6 88.1 87.3
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