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Nitric oxide signaling

Nitric oxide (NO) is a highly diffusible, free radical signaling molecule that is produced by

the endothelial NO synthase enzyme, which converts L-arginine and molecular oxygen into

L-citrulline and NO [1, 2]. Nitric oxide diffuses from the endothelium to the smooth muscle

where it binds with high affinity to the heme group of soluble guanylate cyclase, which in

turn catalyzes the conversion of guanosine triphosphate (GTP) to cyclic guanosine

monophosphate (cGMP) [3]. Nitric oxide signaling is largely paracrine, with potential

endocrine effects limited by its radical nature and extremely high reactivity with other heme

containing proteins such as hemoglobin and myoglobin [4]. When NO encounters

oxyhemoglobin in blood or oxymyoglobin in cardiomyocites it reacts at rates near the

diffusion limit to form nitrate and methemoglobin (dioxygenation reaction) [5,6]. It will also

react with the deoxyhemes of these proteins to form iron-nitrosyl-complexes, which can

release NO but quite inefficiently via the oxidative denitrosylation reaction [7]. These two

reactions, dioxygenation and iron-nitrosylation, prevent NO from forming in the

endothelium and diffusing to distant organ targets, such as the heart, intestine, kidney, brain

or liver.

Despite the strict paracrine limitations imposed by this chemistry, a number of studies

suggested that endocrine NO signaling is possible. The Kubes group showed that NO

delivered by inhalation to cats could improve blood flow and limit inflammation in the cat
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intestine subjected to ischemia-reperfusion (I/R) injury [8]; Gladwin and Cannon later

showed that this was possible in the human circulation [6]. Many subsequent studies have

shown that inhaled NO could rescue distal organs from I/R injury and infarction. In fact,

upregulation of eNOS selectively in the heart could rescue the liver from I/R injury [9].

However, free NO cannot account for these effects based on the short half life of NO in

blood, on the order of 2 milliseconds or less [10].

Many investigators have examined reaction products of NO in blood, attempting to devine

the mediator of endocrine NO signaling. While S-nitroso-albumin and S-nitrosohemoglobin

were first proposed as endocrine NO metabolites, the levels of these species even during NO

inhalation are quite low, using validated chemiluminescent detection methods [4]. Human

studies with NO inhalation suggested that the NO oxidation product nitrite (NO2
-) increases

significantly, with arterial levels higher than venous levels, suggesting this anion could

account for the effect [4, 6, 11]. Unlike authentic NO, nitrite has a half life in mammals

approaching 60-minutes [12]. Infusions of nitrite in humans and animal models indicated

that nitrite was a potent vasodilator and cytoprotective agent that could mimic all the

observed effects of NO inhalation [13-16]. Recent studies have carefully repleted nitrite

levels to those observed with NO inhalation and produced similar reductions in organ

infarction volumes, confirming the role of nitrite as the endocrine effector of inhaled NO

[17].

Elusive endocrine mediator of remote ischemic preconditioning

Another line of investigation suggests the existence of an endocrine mediator of organ

cytoprotection during remote ischemic preconditioning (rIPC). The idea that a signal

transduction exists between the local site of remote ischemia and the myocardium was

demonstrated by Przyklenk et al. in the early 1990’s. They found, using a canine model, that

brief episodes of ischemia and reperfusion in the circumflex coronary artery reduce the size

of the myocardial infarct arising from the occlusion of the left anterior descending artery

[18]. This form of myocardial protection was subsequently found to occur with “remote”

ischemia and reperfusion of non-cardiac organs. Transient ischemia of a variety of tissues

such as kidney, small bowel, liver, skeletal muscle and even brain induces a systemic

protective effect against the subsequent extended I/R injury of the myocardium [19-21].

Such phenomenon was termed “preconditioning at a distance” [22] and appears to be highly

conserved across species. Animal studies with transplanted hearts further support the role of

a circulating substance or a group of transduction mediators with protective effects against

I/R injury. Remote limb preconditioning of a pig that received a donor heart was able to

reduce myocardial infarct size [23] and hearts excised from a rat that had been subjected to

remote limb preconditioning experienced a smaller infarct size when subjected to sustained

I/R on a Langendorff-apparatus [24].

The finding that a reperfusion period of the remote preconditioned organ is required after the

brief ischemia suggests that the reperfusion period may be needed to “washout” a humoral

factor generated by the preconditioning ischemia, which is then transported to the heart [21].

Many experimental studies have attempted to identify the nature of the endocrine mediators

circulating in the blood stream which conveys the preconditioning signal from the remote
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organ to the heart [25-27]. However the actual identity of the humoral mediator remains

unknown.

NO and cardioprotection

There is a large body of literature describing the protective properties of NO as an element

of the cytoprotective factor, despite the limitations of endocrine movement to a remote site.

Endogenous NOS-derived NO appears to play a pivotal role in mediating the protective

effect of hindlimb rIPC in reducing liver damage and this is abrogated by treatments with

the NO scavenger cPTIO and inhibited in the endothelial NO synthase knockout mouse [28].

Tokuno et al. [20] have implicated iNOS activation as a trigger for delayed rIPC of the heart

using cerebral ischemia as preconditioning stimulus. The cardioprotective effect was seen 24

hours later and was absent in iNOS knockout mice. Further studies demonstrated that NO is

necessary for the development of ischemia-induced delayed protection against both

myocardial stunning and myocardial infarction [29]. While it is clear that NO synthase and

NO appears to participate in the process of rIPC, the mechanism for NO transport to a

distant site in this process, and the very nature of the “endocrine” rIPC mediator has

remained a mystery.

Nitrite as endocrine mediator of rIPC

In the current issue of Circulation Research, Rassaf and colleagues investigate the

mechanism of remote ischemic preconditioning (rIPC) and explore the possible identity of

the circulating “endocrine” mediator [30]. They first find in human studies that, similar to

the case with inhaled NO exposure, the levels of plasma nitrite increase after shear mediated

eNOS activation during brachial artery occlusion and release (reactive hyperemia). This is

caused by eNOS activation with NO formation and oxidation to the more stable nitrite. They

confirm this by blocking the high flow shear associated with reactive hyperemia by using

partial 50% compression of the brachial artery following ischemia. This is a very creative

control, allowing for regional ischemia without the shear-induced activation of eNOS and

formation of intravascular nitrite.

They then do remote ischemia preconditioning (rIPC) studies in the legs of mice and show

that nitrite levels increase. Inhibition of NO with PTIO or in eNOS KO mice, prevents the

rise in nitrite and rIPC effects on myocardial infarction. This association is mechanistically

confirmed by infusions of nitrite to match elevated levels observed with rIPC. Finally, they

infuse human plasma with and without rIPC into the isolated heart model of IR and show

that elevations in nitrite (removed with acidified sulfanilamide and repleted) account for

effects. Overall, the studies are highly translational and utilize creative methodologies to test

a major pathway in biology, the process and effector of remote ischemic preconditioning.

Myoglobin as nitrite reductase

While these studies suggest that nitrite forms during rIPC and travels in the plasma to the

heart, how is it then converted in the heart back into cytoprotective NO? During ischemia

nitrite is reduced to NO and N2O3 by different nitrite reductase enzyme systems [31,

32].Mitochondrial NO and S-nitrosothiols formed from nitrite dynamically and reversibly
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inhibit complex I during reperfusion, which limits ROS formation from complex I and III

[33, 34]. This ultimately prevents the opening of the mitochondrial permeability transition

pore and the release of cytochrome c. It has recently been shown that the site of nitrosation

is on Cys 39 of the ND3 subunit of complex I [34]. A number of enzymes are required to

convert nitrite into NO during organ ischemia. For example, in the heart, deoxygenated

myoglobin acts as a functional nitrite reductase [35] (Figure 1). Nitrite-dependent NO

formation is significantly decreased in myoglobin deficient hearts [36] and nitrite

administration reduces myocardial infarction with abrogated effects in the myoglobin

knockout mice [37]. In the current study Rassaf and colleagues show that the effect of rIPC

is inhibited in the myoglobin knock-out mouse, providing further support that the endocrine

mediator of this effect is nitrite, which is produced in the extremity, travels in blood to the

heart, where it is reduced by myoglobin to produce NO.

Conclusion

A potential limitation of the current study is the reliance on mouse models of myocardial

infarction to test the cytoprotective effects of nitrite. A recent clinical trial was presented at

the 2013 American Heart Association meetings investigating the therapeutic effects of nitrite

in ST-elevation myocardial infarction (STEMI) showed that sodium nitrite administered

prior reperfusion does not reduce infarct size [38]. Evaluation of the full results of this trial

will be required to understand the dose, timing, plasma nitrite levels achieved and fidelity of

the study design. However, these results are likely to raise questions as to the relevance of

findings from mouse models of ischemia-reperfusion injury to human disease.

In summary, this study provides compelling evidence that limb ischemia causes metabolic

vasodilation that leads to increased blood flow and shear-force on the endothelium of

conductance blood vessels to activates eNOS. Activated eNOS produces NO which is

oxidized in plasma to nitrite. Nitrite then circulates as the endocrine mediator of rIPC and

travels to the heart. Finally, when the heart is subjected to ischemia the nitrite is then

reduced by deoxymyoglobin to form NO in the cardiomyocyte, limiting cellular injury and

infarction.
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Figure 1.
Mechanisms of nitrite-mediated cytoprotection. In the cardiomyocytes nitrite is reduced to

NO by reactions with deoxy-myoglobin and then can react with and inhibit complex I of the

mitochondrial electron transport chain. This inhibition is reversible and occurs immediately

during reperfusion to limit reactive oxygen species formation and to prevent the release of

cytochrome c. Figure adapted from Bueno et al, “Nitrite signaling in pulmonary

hypertension: mechanisms of bioactivation, signaling, and therapeutics.” Antioxidants &

redox signaling, 2013. 18(14): p. 1797-809.
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