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Wepresent a novelmulti-shell position-orientation adaptive smoothing (msPOAS)method for diffusionweighted
magnetic resonance data. Smoothing in voxel and diffusion gradient space is embedded in an iterative adaptive
multiscale approach. The adaptive character avoids blurring of the inherent structures and preserves discontinu-
ities. The simultaneous treatment of all q-shells improves the stability compared to single-shell approaches such
as the original POAS method. The msPOAS implementation simplifies and speeds up calculations, compared to
POAS, facilitating its practical application. Simulations and heuristics support the face validity of the technique
and its rigorousness. The characteristics of msPOAS were evaluated on single and multi-shell diffusion data of
the human brain. Significant reduction in noise while preserving the fine structure was demonstrated for diffu-
sion weighted images, standard DTI analysis and advanced diffusionmodels such as NODDI. MsPOAS effectively
improves the poor signal-to-noise ratio in highly diffusionweightedmulti-shell diffusion data, which is required
by recent advanced diffusion micro-structure models. We demonstrate the superiority of the new method
compared to other advanced denoising methods.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Diffusion weighted magnetic resonance imaging (dMRI) is a versa-
tile tool for in-vivo imaging of anisotropic tissue structure, especially,
but not exclusively in the human brain (Jones, 2010; Mori, 2007). The
diffusionweighted contrast enables various types of analyses to charac-
terize the brain structure of the normal brain, for a broad range of
conditions affecting the brain, or for developmental studies (Johansen-
Berg and Behrens, 2009).

DMRI data consist of a series of 3D image volumes acquired by
applying diffusion weighting magnetic field gradients in various
directions. Depending on the experiment varying gradient strengths
or diffusion times, which determine the b-value of the measurement,
are used (Callaghan, 1991). The diffusion profile obtained from the
diffusion images reveals information about the intra-voxel structure,
see, e.g., Mitra and Sen (1992). This explains the broad interest in
dMRI as it enables measuring tissue properties that exist at the micron
level, whereas the voxel size of a dMRI measurement is only at a milli-
meter level. A wide range of models for the diffusion profile has been
developed, such as the diffusion tensor model (DTI) in Basser et al.
(1994a,b), tensor mixture models (Assaf and Basser, 2005; Behrens
below).

. This is an open access article under
et al., 2003; Tabelow et al., 2012), the orientation distribution function
(Tuch, 2004) and higher order tensor models (Liu et al., 2003; Özarslan
and Mareci, 2003), to name only a small selection. Some models like
DTI can be evaluated based on measurements on a single q-shell,
i.e., for a single b-value, others like Diffusion Kurtosis Imaging (DKI,
Jensen et al., 2005; Tabesh et al., 2011), or methods to estimate the
full diffusion propagator or its radial part (Aganj et al., 2010; Cheng
et al., 2010; Descoteaux et al., 2011; Hosseinbor et al., 2013; Özarslan
et al., 2006) require or benefit from multi-shell data.

Although it is generally accepted that models beyond the diffusion
tensor are needed to adequately describe complex fiber geometries
and compartmentalization in white matter, see e.g. Jones et al. (2013),
most dMRI studies still use the simple diffusion tensor model. One
reason for this inconsistency in the literature is the simple fact that
multi-shell and high angular resolution dMRI data are often mandatory
to obtain stable beyond tensor estimates but are expensive in terms of
scan time and signal-to-noise ratio (SNR). Moreover, SNR inherently
decreases with increasing b-value for the diffusion weighted images.
Thus, noise hampers modeling for dMRI data in general, but for multi-
shell data with high b-values in particular.

Another realization in dMRI from the last years was that high spatial
resolution improves resolving complex fiber structures (Heidemann
et al., 2010; Kamali et al., 2013; Kleinnijenhuis et al., 2012; Zhan et al.,
2012). As the increase in spatial resolution also reduces the SNR, this
further deteriorates the image quality. In order to reduce noise in
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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dMRI data a number of different approaches have been developed
ranging from Gaussian filtering (Westin et al., 1999) over smoothing
procedures in tensor space for DTI (Arsigny et al., 2006; Fletcher,
2004) and ODF space for HARDI (Goh et al., 2011) to denoising algo-
rithms based on partial differential equations (Ding et al., 2005; Duits
and Franken, 2011; Parker et al., 2000), non-local means (Coupe et al.,
2013; Wiest-Daesslé et al., 2008), low-rank approximations of the
data (Cauley et al., 2013; Lam et al., 2013), sparsity (Patel et al., 2011),
and reconstructions in k-space (Haldar et al., 2013) and many others,
see also the references in the latter paper.

Recently, we developed a position-orientation adaptive smoothing
(POAS) algorithm (Becker et al., 2012) based on the propagation-
separation approach (Becker and Mathé, 2013; Polzehl and Spokoiny,
2006). The method directly smooths diffusion weighted images
measured on a single q-shell. It is applied to the dMRI data prior to
any modeling. Hence, it does not introduce a model-specific bias into
the data and any model for dMRI data may be used after smoothing.
The gain in SNR is quite substantial due to the fact that the algorithm
considers the geometric properties of the measurement space. Each
signal value in a diffusion weighted image is associated to its position
in (voxel) space and the (diffusion sensitizing) orientation. Here, ℝ3

stands for the 3D voxel position space and S2 for the unit sphere,
where the diffusion gradient orientations are distributed. Themeasure-
ment space can thus be described by a combined space ℝ3 � S2 . In
Becker et al. (2012), POAS has been proven to be able to reduce noise
in dMRI data without blurring the structural borders in the images
which is a result of its adaptive properties.

This article aims to substantiate and extend the original POAS
proposal in several very important directions. We will start with the
extension to multi-shell data as required by higher order diffusion
models. Basically, the POAS method could be applied separately for
each b-value. However, at high b-values and high spatial resolution
the loss in SNR inhibits POAS to adapt to smaller structures (as will be
shown). Here, we present an extension of the POASmethod by allowing
for simultaneous smoothing on all q-shells. We denote this generaliza-
tionmulti-shell POAS (msPOAS). The new algorithm uses the geometry
of the measurement space and the relatedness of observed values on
different shells.

In addition to themulti-shell extension, significant simplifications to
the algorithm in comparison to the single-shellmethod accelerate it and
improve its practical feasibility. We will present some heuristics and
simulations which support the generalizability of the theoretical prop-
erties in Becker and Mathé (2013) to msPOAS. Finally, we evaluate
msPOAS in very high resolution multi-shell and single-shell dMRI data
at 3 T and 7 T and provide recommendations how to use the method.

Theory

When reconstructing a dMRI-scan, we do not directly observe the
image, which we are interested in. The scanner yields complex-valued
data in k-space, which relate to the signal attenuation due to water
diffusion. For typical Cartesian k-space acquisitions the data are trans-
formed via inverse Fourier transformation to a diffusion weighted
image (Callaghan, 1991). In case of multi-channel RF coils (Roemer
et al., 1990), this image is reconstructed from the data of all coils. The
details depend on the acquisition and image reconstruction methods
among which the most popular ones are SENSE (Pruessmann et al.,
1999) and GRAPPA (Griswold et al., 2002) for parallel imaging or their
non accelerated analogues. The complex-valued signal in image space
is typically transformed to real positive numbers by extracting the
magnitude image and neglecting the phase component. The data are
generally pre-processed to compensate for artifacts due to motion
(Mohammadi et al., 2013; Storey et al., 2007), magnetic field inhomoge-
neities (Andersson et al., 2003; Mohammadi et al., 2012; Ruthotto et al.,
2012), eddy currents (Andersson and Skare, 2002; Jezzard et al., 1998;
Mohammadi et al., 2010) or noise of different origins. The corresponding
methods are applied at different points of the processing pipeline. Our
msPOAS method will be directly applied to the reconstructed diffusion
weighted images to improve and stabilize the subsequent modeling
and analysis of the data. Ideally, it should be executed after all other
pre-processing steps. However, other smoothing should not be
performed prior to msPOAS.

Concept of multi-shell position-orientation adaptive smoothing (msPOAS)

Position-orientation space
MsPOAS is a smoothing procedure in position-orientation space,

i.e. the entire (5-dimensional) measurement space ℝ3 � S2 of dMRI
multi-shell data, which is formed by the (voxel) position v! ∈ ℝ3 and
the (diffusion sensitizing) orientation g! ∈ S2. Compared to standard
3D-adaptive smoothing approaches it gains its strength from the richer
vicinity structure in this higher dimensional space. The extra two
dimensions substantially increase the amount of data that can poten-
tially be pooled within the weighted averages used in msPOAS and
thus increase power of the method.

Adaptation
MsPOAS uses weighted means of image intensity values of

neighboring design points, characterized by voxel position and gradient
orientation, to infer on the expected signal. The adaptation of the
weighting schemes to the inherent intensity structure is established in
an iterativemanner. At each iteration step the estimated signal intensity
at neighboring design points is compared to the intensity at the current
position: An observation at a neighboring point is excluded from the
weighted average, i.e., a zero weight is assigned, if the estimated signal
intensities are significantly different. Using this adaptive weighting
scheme a new estimated signal intensity is calculated for the design
point under consideration. This is conducted for every design point.
With each new iteration, a bandwidth in the design space is increased,
i.e., the vicinity of candidate points is enlarged, permitting the higher
variance reduction and increased stability of estimated intensities.
Decisions on signal intensities being significantly different get more
informative and smaller deviations from a homogeneous intensity
structure can be detected. This establishes a natural, data-driven choice
of adaptive weighting schemes and ensures an optimum relation
between noise reduction and adaptation to the underlying structure.

Extension to multiple shells
The performance of msPOAS is further improved by simultaneous

utilization of all diffusion shells to determine the adaptive weighting
schemes. Information from different shells is combined under the
assumption that intensity deviations on any shell indicate an inhomoge-
neity of the inherent structure. In this way, the determination of the
weighting schemes can benefit from the high-SNR, low-diffusion-
weighting images with low orientation contrast in position space, and
from the low-SNR, high-diffusion-weighting images with high orienta-
tion contrast in orientation space.

Detailed outline of msPOAS

Description of the data
In multi-shell dMRI, one measures values on a regular grid of voxel

v! ∈ V ⊆ ℝ3 for a number B of b-values, b N 0, from a set B. For each

b-value, i.e., for each shell, data Sb v!; g!
� �

is acquired with varying

diffusion gradients g! from a set Gb, which might depend on the
shell. These can be identified with elements of the 2-sphere such

that Gb ⊆ S2 :¼ g! ∈ ℝ3 : g!�� �� ¼ 1
n o

.

Additionally, at least one non-diffusion weighted image S0 is
acquired. In case of several S0-images, we consider the corresponding
mean image Ŝ0. However, for better readability we will use S0 instead
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of Ŝ0 for notation. In the following, we interpret the non-weighted data
S0 as a shellwith b=0and denote the set of b-values including b=0by

B0 := B ∪ {0} and the (artificial) gradient set by G0 :¼ 0
!n o

. Further-

more, we set S0 v!; 0
!� �

:¼ S0 v!
� �

for a common notation of all signal

values.
For msPOAS we view the data as possibly incomplete observations

of a vector-valued function S defined on the measurement space V �
G ⊆ ℝ3 � S2 by

S : V � G j v!; g!
� �

↦ S0 v!ð Þ;Sb1
v!; g!ð Þ;…;SbB

v!; g!ð Þ
� �T∈ℝBþ1

; ð1Þ

where G is the set of all gradient directions measured on any shell
including the artificial direction 0

!
. The vector data structure is

visualized in Fig. 1. Before this function S is well-defined two addi-
tional cases have to be considered.

First, if the gradient schemes Gb do not coincide for all measured
b-values the vector in Eq. (1) will not be completely observed. We

then fill the missing values Sb v!; g!
� �

, for every b ∈ B with g! ∉ Gb by

interpolated values Sb v!; g!
� �

using spherical interpolation.

Second, for g!¼ 0
!

the vector in Eq. (1) is incomplete as well. We
therefore definemean values of the signal on the corresponding shell as

Sb v!; 0
!� �

:¼ Gbj j−1 X
g!∈Gb

Sb v!; g!
� �

;

where |Gb| is the number of gradients measured on the shell with
b-value b. This enables estimation of expected S0 -images in msPOAS.
For details on the spherical interpolation and its application to the signal
vector in Eq. (1), see Appendix A.

For simplicity, we do in the following no longer distinguish between
the original data S and the interpolated data S denoting both by S.
Additionally, we apply the interpolation (Appendix A.1) to the adaptive

estimates eS kð Þ
b defined below, replacing Sb by eS kð Þ

b in the respective
formulas.
a

b

c

Fig. 1.Diffusionweighted data S for an arbitrarily selected slice of themulti-shell data described

weighting gradient g! ∈ S2 and b-value b = 800s/mm2. c) Same slice taken with the same gr
(b + c) has been up-weighted to make all three images visually feasible at once. d) Shows th
in red and green at b= 800s/mm2 and b= 2000s/mm2, respectively. For comparison the non-
of the points to the center of the sphere is the corresponding signal value. Each 3D diffusion we

for a fixed diffusion gradient direction g! ∈ G (if b ≠ 0) and the b-value b ∈ B0. Conversely, th
Initial parameter choices of the algorithm
MsPOAS uses several pre-specified quantities. The adaptive weights

are defined as the product of two kernel functions Kloc and Kad. The
specific choice Kloc is not crucial, see e.g. Scott (1992, Section 6.2.3).
Both kernels should be non-increasing with support [0,1). In our imple-
mentation of the algorithm we use, because of their statistical and
numeric efficiency,

K loc xð Þ :¼ 1−x2
� �

þ
and Kad xð Þ :¼ 1

2−2xð Þþ
for 0 ≤ x b 0:5;
for 0:5 ≥ x:

� �
ð2Þ

In the arguments of both kernels as considered later, a bandwidth
controls the amount of information that is taken into account. The band-
width λ N 0 that will be used in the argument of Kad determines the
amount of adaptivity. As described in Becker et al. (2013, Section 2.5),
it can be chosen independently of the data at hand by simulation. We
give some more details about this choice in the section Choice of
parameters for msPOAS. Depending on the gradient scheme, we use a

pre-specified sequence of increasing bandwidths h kð Þn ok�

k¼0
with h(0) N

0 in the argument of Kloc. The precise choicewhich is used in our imple-
mentation is given in Appendix B.

Furthermore, we fix some appropriate metric δκ : ℝ3 � S2
� �

�
ℝ3 � S2
� �

→ 0;∞½ Þ on the measurement space ℝ3 � S2, which is used

to combine the spatial and spherical diffusion information. Instead of
the discrepancy proposed in Becker et al. (2012) we decided to use
the metric

δκ m1;m2ð Þ :¼ v!1− v!2k þ κ−1arccos g!1; g!2ij;hj
��� ð3Þ

for all ml ¼ v!l; g!lð Þ ∈ ℝ3 � S2, l = 1,2, see Hagmann et al. (2006). This
simplified metric provides left-invariance of msPOAS, as proven in

Becker et al. (2013, Section 2.6). In order to identify each gradient g! ∈
S2 with the opposite direction− g!we consider the absolute value of the
d

inMethods. a) Slice of the non-diffusionweighted data. b) Same slice takenwith diffusion-

adient g! and b-value b = 2000s/mm2. The intensity of the diffusion weighted images in
e data within a single voxel (see arrow) as a 3D plot for all measured diffusion gradients
diffusion weighted value is repeatedly shown as blue point for each gradient. The distance
ighted image (a–c) is fully described by the set Sb v!; g!ð Þf g v!∈V ⊆ ℝ of signals in voxel space

e data in a single voxel v!∈V equals the set S v!; g!ð Þf g g!∈G ⊆ ℝBþ1 of vectors, see (d).
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scalar product g!1; g!2ih . This is in accordance with the symmetry of the
diffusion process.

The parameter κ of the discrepancy δκ(.,.) balances between spatial
and spherical smoothing in the voxel space V ⊆ ℝ3 and the gradient
space G ⊆ S2 . We set κ(k) := κ0/h(k) at iteration step k as already
proposed in Becker et al. (2012, Section 2.5). The precise choice of the
initial value κ0 depends on the data at hand as we discuss in the section
Choice of parameters for msPOAS.

The non-adaptive weights and the location bandwidths
For each b ∈ B0 and all design points m ∈ V × Gb we introduce the

non-adaptive estimator

S kð Þ
b mð Þ ¼

X
n∈V�Gb

w kð Þ
mnSb nð Þ=N kð Þ

m;b ∈ ℝ

with

w kð Þ
mn :¼ K loc δκ m;nð Þ=h kð Þ� �

and N kð Þ
m;b :¼

X
n∈V�Gb

w kð Þ
mn:

This will be used for initialization. For b=0 the locationsm,n∈ V ×
G0 do not carry directional information. In this case, δκ(m,n) can be
replaced by the Euclidean distance v!m− v!nkk in voxel space.

The adaptive weights
For the adaptive estimator, we take advantage of thewhole informa-

tion in the data vector given in Eq. (1). This requires an appropriate
modification of the statistical penalty used for POAS, see Becker et al.
(2012), and the specification of the probability distribution of the
observations, up to some parameter θ. We assume the standardized

signal Sb v!; g!
� �

=σ to be non-central χ distributed

Sb v!; g!
� �

=σ ∼ χ2L0 θð Þ; ð4Þ

with 2L′ degrees of freedom and non-centrality parameter θ. Here, L′ ∈
ℕ denotes the effective number of RF receiver coils and σ N 0 is the
noise standardized deviation. For a detailed discussion of this assump-
tion, see for example Thunberg et al. (2007), Dietrich et al. (2008),
Aja-Fernández et al. (2011), Sotiropoulos et al. (2013), Hutton et al.
(2012), Becker et al. (2013). L′ and σ depend on the image reconstruc-
tionmethod. AlthoughmsPOAS uses a homogeneousσ it could be easily
adapted for spatially varying noise standard deviation.

As in (Becker et al., 2013), we define the statistical penalty for
msPOAS as

s kð Þ
mn :¼

X
b∈B0

eN k−1ð Þ
m;b KL

eS k−1ð Þ
b mð Þ

σ̂
;
eS k−1ð Þ
b nð Þ

σ̂

 !
; ð5Þ

where KL denotes the Kullback–Leibler divergence of two non-central
χ-distributions with respective expectation values. See Appendix C for

its calculation. Here, eN k−1ð Þ
m;b (see Appendix B) relates for each b-value

to the achieved variance reduction using the adaptive weights

ew kð Þ
mn :¼ w kð Þ

mn � Kad s kð Þ
mn=λ

� �
; ð6Þ

where Kad andλ are defined as in the section Initial parameter choices of
the algorithm. The adaptive estimator is then

eS kð Þ
b mð Þ ¼

X
n∈V�Gb

ew kð Þ
mnSb nð Þ=eN kð Þ

m;b:
The algorithm
Finally, we summarize the algorithm for multi-shell position-

orientation adaptive smoothing (msPOAS). The initialization of the
algorithm is done using the non-adaptive estimator for k = 0 (h(0) =
1). Iteration is performed for k steps until some final number of steps
k⋆ is reached.

• Input parameters: Sequence of location bandwidths h kð Þn ok�

k¼0
,

balancing parameter κ(k), adaptation parameter λ N 0.

• Initialization: eS 0ð Þ
b mð Þ :¼ S

0ð Þ
b mð Þ and eN 0ð Þ

m;b :¼ N
0ð Þ
m;b for all m ∈ V × Gb,

b ∈ B0.
• Iteration: For each b ∈ B0 andm :¼ v!m; g!mÞ ∈ V � Gbð do the follow-

ing. Interpolate the missing values of eS k−1ð Þ
b0 mð Þ and eN kð Þ

m;b0 , b′ ∈ B ∖ {b},
according to Eqs. (A.1) and (A.2). Then, calculate the statistical penalty

s kð Þ
mn ¼

X
b∈B0

eN k−1ð Þ
m;b KL

eS k−1ð Þ
b mð Þ

σ̂
;
eS k−1ð Þ
b nð Þ

σ̂

 !

and the adaptive weights

ew kð Þ
mn ¼ K loc δκ kð Þ m;nð Þ=h kð Þ� �

� Kad s kð Þ
mn=λ

� �
for n ∈ V × Gb, the corresponding sum over the adaptive weights

eN kð Þ
m;b ¼ max

k0 ≤k
∑

n∈V�Gb

ew k0ð Þ
mn

 !
;

and the adaptive estimator

eS kð Þ
b mð Þ ¼

X
n∈V�Gb

ew kð Þ
mnSb nð Þ=

X
n∈V�Gb

ew kð Þ
mn:

• Stopping: Stop if k= k∗ and returneS k�ð Þ
b mð Þ for each b∈ B0 and allm∈

V × Gb, else set k := k + 1.

In Fig. 2 we illustrate adaptive weighting schemes obtained for the
single-shell dataset at iteration step k = 20.

Methods

Simulations

In order to provide some more intuition for the behavior of the
algorithm, we show two simple examples on a one-dimensional design
X :¼ 1;…;4000f g. Here, we used the R-package aws (Polzehl, 2013),
where the propagation-separation approach has been implemented
for one-, two- and three-dimensional designs for many classes of
distributions of the observations including those considered in this
paper for msPOAS. We consider a piecewise constant test function
θ1(.) and a piecewise polynomial test function θ2(.). Then, we simulate
observations that follow a non-central chi-distribution with non-
centrality parameter θl(.), l = 1,2 and 2L′ = 4 degrees of freedom,
i.e., Yi ∼ χ4(θl(Xi)) for all Xi ∈ X . Smoothed results were provided
by the function aws() setting hmax :¼ h k�ð Þ

:¼ 4000 and l kern =
“Triangle” using the same kernel functions as in Eq. (2) and setting
λ = 20. The values of the considered test functions compare well with
the parameters in our real data, see the section Experimental data. Sim-
ilar situations have been already considered in Becker and Mathé
(2013) for Gaussian distributed noise. However, until now it was not
clear that these results remain valid for χ-distributed observations as
the theoretical results in Becker and Mathé (2013) were restricted to
one-parameter exponential family distributions.



a

c

b

d

Fig. 2.Adaptiveweighting schemes obtained for the single-shell dataset used in this paper
at iteration step k=20. Weights are shown for the same voxel position of three diffusion
weighted images (a to c) with different gradients and one b0-image (d). The length of the
lines (size of the cross for the b0-image) corresponds to the size of the weights, its
direction corresponds to the gradient direction projected onto the xy-plane. Non-zero
weights also occur for different directions, see for example the central voxel in a).Weights
for points in different slices are not shown. Illustrations are overlayed on estimated image
intensities from the previous iteration centered at the voxel of interest. For an animated
movie showing the development of the weights over iterations for non-adaptive and
adaptive smoothing, see the online version of this paper.
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Experimental data

Dataset 1
We first re-analyzed the dataset from awhole body 7 TMAGNETOM

scanner (Siemens Healthcare) used and described already in Becker
et al. (2012). The scanner was equipped with gradients with a peak
amplitude of 70mT/m and a maximum slew rate of 200 T/m/s (SC72,
Siemens Healthcare, Erlangen, Germany). Diffusionweighting gradients
were applied along 60 different directions at a b-value of 1000 s/mm2. 7
interspersed non-diffusion weighted S0 images were acquired. The
scan was repeated 4 times. An optimized monopolar Stejskal–Tanner
sequence according to Morelli et al. (2010) together with the ZOOPPA
approach described in Heidemann et al. (2012) has been used for the
scan. The experiment was performed using a single channel transmit,
24-channel receive phased array head coil (Nova Medical, Wilmington,
MA, USA). 91 slices with 10% overlap were acquired at a field-of-view
(FoV) of 143 × 147 mm2 resulting in an isotropic high resolution of
800 μm. Further imaging protocol parameters were: TR 14.1 s, TE
65 ms, BW 1132Hz/pixel, ZOOPPA acceleration factor of 4.6. A healthy
adult volunteer was scanned four times using this protocol in one
session after obtaining written informed consent in accordance with
the ethical approval from the University of Leipzig. Total acquisition
time was 65 min. We used the raw diffusion weighted data.
Dataset 2
The second example data was acquired on a 3 T MAGNETOM Trio

scanner (Siemens Healthcare) using a reduced FoV-technique as
described in Heidemann et al. (2010). The FoV was 161 × 58 mm
centered about the motor cortex resulting in an isotropic in-plane
resolution of 1.2 mm. 34 axial slices with 1.2 mm slice thickness and
10% gap were acquired. Diffusion weighted data were acquired at 2
different b-values: b = 800 s/mm2 and b = 2000s/mm2 each with
100 different diffusion gradient directions as suggested by Caruyer
et al. (2011). 20 interspersed S0-images at b = 0 s/mm2 were acquired
with TR 6.1 s, TE 97 ms. One healthy adult volunteer participated in
the study approved by the local ethics committee after giving written
informed consent. The total scan time was 22 min.
Dataset 3
Using the same specifications an additional double-shell dataset was

acquired, with 10 replicated measurements of five selected diffusion
weighted images for a high SNR reference.
Dataset 4
In order to illustrate the properties of the method in the case of

experimental data with more and higher b-values a fourth dataset was
acquired on a 3 T MAGNETOM Trio scanner (Siemens Healthcare) using
a reduced FoV-technique as described in Heidemann et al. (2010). The
FoV was 156 × 60 mm centered about the motor cortex resulting in an
isotropic in-plane resolution of 1.42 mm. 34 axial slices with 1.4 mm
slice thickness and 10% gap were acquired. Diffusion weighted data
were acquired at 3 different b-values: b = 800 s/mm2, b = 2000s/mm2

and b = 3000 s/mm2 each with 70 gradient directions as suggested
by Caruyer et al. (2011). 21 interspersed S0-images at b = 0 s/mm2

were acquired with TR 6.2 s, TE 108 ms. One healthy adult volunteer
participated in the study approved by the local ethics committee after
giving written informed consent. The total scan time was 24 min.
Parameter choices for msPOAS

All datasets were smoothed using the msPOAS method described in
this article. The adaptation bandwidth λ of the procedure was fixed at a
value of 15 (single-shell) and 20 (multi-shell). The number of iteration
stepswas k⋆=12 for all datasets for a suitable balance between compu-
tation time and amount of achieved smoothness.

The number L′ of effective coils, that determines the degrees of
freedomof the non-centralχ-distribution, is usually difficult to estimate
from the data. Fortunately, msPOAS is relatively robust against
misspecification of L′. We therefore used L′ = 2 for the single-shell
dataset (No. 1) to mimic an average influence of two coils to the
resulting distribution, and L′ = 1,4,16 for the second dataset (No. 2)
to analyze the dependence of the results on the choice of L′. We did
not explicitly analyze the dependence of the results on the choice of
the noise varianceσ or on the adaptation bandwidthλ as the qualitative
behavior can be extracted from the definition of the adaptiveweights in
Eq. (6) — see also the discussion in sections on Estimation of data-
dependent parameters and Choice of parameters for msPOAS. The
balancing parameter κ0 was 0.5 for the first and 0.3 for the second
dataset.

We estimated the noise standard deviation σ using the method
described in Becker et al. (2012) and the methods “Bk-M1-χ” and
“Bk-M2-χ” described in Aja-Fernández et al. (2009). The estimates for
σ from the former method are rather independent of L′. For the dataset
acquired at 7 T (No. 1)we consistently got values around 75, for the first
double (No. 2) and the triple-shell datasets acquired at 3 T (No. 4)
values around 30 were estimated. The results from the latter two
methods depended on L′. However, in view of the uncertainty of the
estimation of L′ and based on our experience with variance estimation
in general we decided to use σ = 75 for the single-shell data and σ =
30 for the double and triple-shell data (No. 2 and 4) for our calculations.
The estimated noise level for the double-shell dataset (3 T) with
replicated volumes (No. 3) was σ = 40. Finally we note that based on
these estimates for σ the non-centrality parameter of the considered
χ-distributions is in the range between 0 and 8, therefore we consid-
ered these values in the simulated univariate example, see Fig. 3.
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Fig. 3.Univariate examples for adaptive smoothingof non-centralχ-distributed observations for an optimal and for an extremely large bandwidth. From left to right: Simulateddata based
on local constant non-centrality parameter (NCP), θ1(.), smoothed with location bandwidths h1 = 485,3610, and simulated data with locally smooth NCP, θ2(.), smoothed with location
bandwidths h2 = 81,3610. Observations are presented as green dots, the expected values as blue lines, smoothing results are shown as black lines.
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Comparison with single-shell method

For the first (single-shell) dataset (No. 1)we explicitly compared the
msPOAS results with the results of POAS obtained in Becker et al.
(2012). There, we used λ = 10, κ0 = 0.6, σ = 66, and L′ = 2 in the
corresponding algorithm. The different choices of the adaptation band-
width λ in POAS and msPOAS may result from the explicit coupling of
the S0-images in the adaptation. The simplified discrepancy and the
new approximation of the Kullback–Leibler divergence should have
only a minor impact.

For the second dataset (No. 2) we compared msPOAS with the
results of a simple approach that applies POAS separately to each shell
of the double-shell dataset.

For the POASmethodwe used the same variance estimate σ=30 as
for msPOAS and a medium L′ = 4. For a fair comparison, we chose an
adaptation parameterλ for POASproviding similar results as themsPOAS
approach for the shell at b = 800 s/mm2, i.e., λ = 6. The balancing
parameter κ0 was chosen as 0.3. The recombined smoothed diffusion
weighted data again forms a double-shell dataset.

Comparison with other smoothing methods

We compared the msPOAS results with the results of two other
smoothing methods suitable for dMRI data in general and for data
measured atmultiple b-values in particular usingdatasetNo. 3.More spe-
cifically, we used a non-local means (NLM) method described in Wiest-
Daesslé et al. (2008) and a joint denoisingmethod of all diffusion images
as reported in Haldar et al. (2013), Varadarajan and Haldar (2013). For
both methods implementations are freely available for MATLAB.

For NLM the suggested standard parameters of the method worked
well and were chosen for analysis. For the method from Haldar et al.
(2013), Varadarajan and Haldar (2013) we had to adjust the standard
suggestions to achieve optimal results. Finally we chose ξ = 1, λ = 5.
Note, that the meaning of this parameter λ is completely different
from the corresponding value in msPOAS.

Analysis of the smoothed datasets

For the first two datasets (Nos. 1 and 2) we estimated the diffusion
tensor model, as it is the most widely used in practice and was also
used in our previous report (Becker et al., 2012). The diffusion tensors
were estimated using the non-linear method described in Polzehl and
Tabelow (2009). Then, for the single-shell dataset (No. 1) FA maps
were calculated based on the tensor estimates. For the multi-shell
dataset (No. 2) we also calculated fiber tracks using a streamline FACT
algorithm (Mori et al., 1999) based on diffusion tensor modeling.

For the single-shell dataset (No. 1) we calculated the orientation
distribution function (ODF) following Descoteaux et al. (2007) using
no regularization and spherical harmonics up to sixth order.

Additionally, for thefirst double-shell dataset (No. 2)we estimated a
one-stick-one-ballmodel (Behrens et al., 2003) to evaluate the variability
of directional estimates in amodel that goes beyond the diffusion tensor
model. To do this we used FSL (Smith et al., 2004) and sampled 50
directions for the sticks. The model was evaluated for the original
data, for the msPOAS result, and for the result from the POAS approach.

We analyzed the first double-shell (No. 2) and the triple-shell
dataset (No. 4) using the NODDI model (Zhang et al., 2012). In order
to create a more complicated situation from the triple-shell dataset
(with lower SNR and more uneven sampling), we also considered
a sub-dataset of the triple-shell data by dropping the data from the
b = 2000s/mm2-shell.

Software

For pre-processing of the multi-shell data, i.e., motion and eddy-
current correction, we used SPM (Friston et al., 2006) and the ACID-
toolbox (Mohammadi et al., 2010) (http://www.diffusiontools.
com/). In particular, we registered the ten replicated measurements in
the second double-shell dataset (No. 3) to its corresponding volume in
the dataset using this toolbox.

The computations for msPOAS and POAS, as well as the diffusion
tensor estimates, FA maps, and fiber tracks, were performed with our
R-package dti (Tabelow and Polzehl, 2013) (version 1.1-5). This pack-
age is freely available on CRAN (http://cran.r-project.org). A
detailed description of the usage of the package dti can be found in
Polzehl and Tabelow (2011). The implementation uses FORTRAN and
native R-code. The one-stick-one-ball model has been computed using
FSL.

We used the MATLAB toolboxes available at https://sites.
google.com/site/pierrickcoupe/softwares/denoising-for-

medical-imaging/mri-denoising and http://mr.usc.edu/

http://www.diffusiontools.com/
http://www.diffusiontools.com/
http://cran.r-project.org
https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising
https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising
https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising
http://mr.usc.edu/code.html
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Fig. 4. Comparison of color-coded FA maps of the single-shell dataset also used in Becker
et al. (2012). a) Original noisy data, b) msPOAS reconstruction, c) POAS reconstruction as
in Becker et al. (2012), d) mean image of four repeated measurements from the same
session.
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code.html for processing the data using NLM and the joint denoising
method in Haldar et al. (2013), Varadarajan and Haldar (2013),
respectively.

We used the MATLAB toolbox available at http://cmic.cs.ucl.
ac.uk/mig//index.php?n=Tutorial.NODDImatlab for the esti-
mation of the parameters of the NODDI model.

Results

Simulations

For both one-dimensional test functions θ1(.) and θ2(.), we show
two plots with increasing location bandwidths h1 = 485,3610 and
h2 = 81,3610 corresponding to the iteration steps k1 = 30,39 and
k2 = 22,39, see Fig. 3. This illustrates the progress of the estimation
function during iteration. The maximal number of iterations is k∗ = 39
(Figs. 3(b + d)). In the steps k1 = 30 an k2 = 22 the mean squared
error is minimal (Figs. 3(a + c)).

We may conclude that msPOAS provides the following (heuristic)
properties:

• The algorithm separates homogeneous compartmentswith sufficiently
large discontinuities. This allows (almost) consistent estimation of the
unknown expected value, which refers to the unknown parameter
function. This is illustrated in Figs. 3(a+ b), see index values between
1 and 1600 in the local constant example θ1(.).

• The separation property fails if the discontinuities are small. In this
case, the algorithm leads to a bounded estimation bias since different
homogeneous compartments are treated as one, see index values
between 1601 and 4000 in the same plots as before.

• For model misspecification, i.e., for piecewise smooth parameter
functions the estimator is forced into a step function, see the piece-
wise smooth example θ2(.) in Figs. 3(c–d). This can be interpreted
as an intrinsic stopping criterion of the algorithm as it ensures a
bounded estimation bias. Therefore, the maximal location bandwidth
h k�ð Þ and as a consequence the number of iteration steps k∗ are
restricted by the resulting computational workload, only. The choice
of k∗ should ensure a reasonable computation time and provide suit-
able results within homogeneous regions.
Experimental data

The multi-shell data was processed by our implementation of
msPOAS within 15 min on a single core of a HP SL390s compute server
with an Intel Xeon, Six-Core 3467 MHz. The computations using the
POAS approach required more than 1 h. This significant acceleration
was due to the simplifications and approximations for the discrepancy
and the Kullback–Leibler divergence. For the much larger single-shell
dataset msPOAS used 3 h and 18 min, while POAS used 4 h and
37 min computation time on a single core of the same machine. Our
implementation is parallelized using OpenMP which significantly
speeds up the computation compared with these single core results.

We start with the analysis of the first (single-shell) dataset, that was
used in Becker et al. (2012) to introduce POAS. In Fig. 4we show a color-
coded FA map for an axial slice of the original data (a). The smoothing
effect bymsPOAS is obvious in Fig. 4(b), while there is no blurring effect
at borders. For comparison we provide the result of the single-shell
POAS from Becker et al. (2012) for the same slice which shows quite
similar characteristics (c). In Fig. 4(d) we show the color-coded FA
obtained from all four (unsmoothed) scans. This image can to a certain
degree serve as a high SNR gold standard for the evaluation of the
msPOAS (or POAS) result.

In Fig. 5 we compare the estimated orientation distribution function
following Descoteaux et al. (2007) for the original data, the msPOAS
reconstruction and the averaged data from all four measurements.
In Fig. 6 we show the root mean squared error (RMSE) of the data
processed by msPOAS with respect to the pseudo-ground truth from
the averaged dataset (No. 1) with the corresponding quantity for the
original data. This shows, that for most of the voxel the estimate of the
data using msPOAS is improved.

In Fig. 7 we provide a slice of a diffusion weighted volume for the
second double-shell dataset with replicated measurements at both
b-values b = 800 s/mm2 (left column) and b = 2000s/mm2 (right
column).

We show the diffusion weighted data before (Fig. 7(a)) and after
smoothing using msPOAS (Fig. 7(b)). The adaptive smoothing effect of
msPOAS is apparent for both shells. The result of msPOAS is rather
robust against misspecification of the effective number of coils L′ (not
shown here). This is a very helpful property of msPOAS as the estima-
tion of L′ from the data is a non-trivial task and the value of L′ might
not be homogeneous in voxel space. In Fig. 7(c) we show a mean
image from 10 repeated measurements of the corresponding diffusion
weighted image as ground truth for comparison. In the next row (d)
of Fig. 7 we show the result of a POAS analysis. In the last two rows
(e) and (f) we report the results of a non-local means filter (Wiest-
Daesslé et al., 2008) and the method from Haldar et al. (2013),
Varadarajan and Haldar (2013).

In Fig. 8 we show the fiber track reconstruction for the first double-
shell data. Comparison is given for smoothed multi-shell data after the
POAS approach, Fig. 8(b), and after msPOAS, Fig. 8(c). We included
only fiber tracks with a minimal length of 25 line segments for a better
visibility. The figure shows, that after msPOAS the reconstruction of the
fibers even with this very simple algorithm was much richer than the
one obtained from the POAS approach, see for example the occurrence
of the U-Fibers. This confirms the observation from Fig. 7 that msPOAS
indeed leads to improved results compared to the POAS approach.

Finally, we demonstrated quantitatively that directional information
estimated from the datawasmuch less variable allowing, e.g., more pre-
cise fiber tracking in linewith Fig. 8. In Fig. 9 we analyzed the variability
of the estimated directions in a one-stick-one-ball model for a small
region. A central slice of the region consisting of 10 slices is shown in
Fig. 9(a). The white square illustrates the location of the 20 × 20 voxel

http://mr.usc.edu/code.html
http://cmic.cs.ucl.ac.uk/mig//index.php?n=Tutorial.NODDImatlab
http://cmic.cs.ucl.ac.uk/mig//index.php?n=Tutorial.NODDImatlab
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Fig. 5. Comparison of the orientation distribution function (ODF) (Descoteaux et al., 2007) in a region-of-interest of an axial slice. a) Position of the region, b) ODF for unsmoothed data,
c) ODF for data smoothed bymsPOAS, d) ODF from averaged data of all fourmeasurements. In b)–d) the corresponding color-coded FAmap from the DTI model is shown as underlay for
guidance. The color scheme of the glyphs corresponds to the ODF value.
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region-of-interest. In the one-stick-one-ball model a sample of 50
directions for the stick was estimated. In Fig. 9(b) we illustrate for one
voxel these directions by plotting them using their representation by
spherical angles ϕ and θ. In light red we show the directions for the
original non-smoothed data, in blackwe show the corresponding points
after smoothingwithmsPOAS. In the followingwewant to quantify the
observation in Fig. 9(b) that these points are much more concentrated
for all voxels in the region. We therefore compared the mean angular
deviation (MAD) for the sample directions from its mean direction in
the original data and aftermsPOAS reconstruction. For the voxel consid-
ered in Fig. 9(b) the circles illustrate the location of the mean direction
and this MADwhich corresponds to the radius. Themean directions for
the original data and the data after msPOAS of course differed. In total,
after msPOAS the MAD was much smaller implying that the estimate
was much less variable. In Fig. 9(c) we show the improvement for the
variability of the directional estimates after msPOAS for all voxel with
FA N 0.3. The MAD was less after msPOAS for most of the voxel. Finally,
we demonstrate, that a slight improvement ofmsPOAS compared to the
POAS approach was found: In Fig. 9(d) we plot the improvement of the
MAD compared to the non-smoothed data (ratio) for the POAS method
versus the msPOAS approach. Most points lie below the identity line.

In Figs. 10 and 11 we show some results of the evaluation of the
NODDI model (Zhang et al., 2012), in particular the orientation
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Fig. 6. Root mean squared error with respect to the averaged dataset, for original versus
reconstructed data using msPOAS.
dispersion index (ODI) and the intra-cellular volume fraction (ICVF)
for two different datasets. In Fig. 10 the dataset with 3 shells (No. 4)
was used: Figs. 10(b) and (d) show the considered model indices in a
selected central slice for the whole dataset. In contrast the results in
Figs. 10(a) and (c) were based on a reduced data set, that contained
only the two shells at b = 800 s/mm2 and b = 3000 s/mm2. This
increased the variability of the model parameter estimates. In Fig. 11
for show the results for the first double-shell dataset at a higher spatial
resolution (1.2 mm3).

Discussion

We developed a novel approach for noise reduction in multi-shell
diffusion weighted data (msPOAS). It exploits the geometry of the
measurement space formedby (voxel) positions and (diffusion sensitiz-
ing) orientations as well as the relations of the measurements on the
different shells. MsPOAS is applied directly to the diffusion weighted
images. It is generally preferable to improve SNR directly on the data,
as diffusion model parameters generally suffer from a bias in the
observed intensity values complicating smoothing. See e.g. Basser and
Pajevic (2000) for a discussion in the context of the diffusion tensor
model.

One problem associated with multi-shell dMRI is that the SNR in
higher shells is very low. As a result, multi-shell data can only be
acquired with low spatial resolution. MsPOAS increases the SNR in
multi-shell data and thus enables high resolution multi-shell dMRI.

The method considerably enhances the SNR while it avoids blurring
of the tissuemicro-structure observed in dMRI by restricting smoothing
to (almost) homogeneous compartments. A series of examples with
simulated data and real dMRI data demonstrate the effectiveness of
msPOAS. The advantages of this approach become obvious when
comparing smoothing results of msPOAS with our former procedure
POAS for single-shell data, applied to each q-shell separately, or other
smoothing methods (Fig. 7).

Comparison of msPOAS and POAS on single-shell data

We demonstrated that msPOAS achieved similar or better results
even on single-shell data than POAS, which was explicitly designed for
this kind of data. There are of course small differences in detail. MsPOAS
for a single shell is not identical to POAS, as information from diffusion
weighted and S0 images is combined to improve adaptivity, see the
section on Description of the data. Further differences between our
implementations of POAS and msPOAS will be discussed in the section
on Relations between msPOAS and POAS.

Comparison of msPOAS and POAS on multi-shell data

We presented multi-shell dataset with high spatial and angular
resolution. We showed that msPOAS indeed reduces the noise in the



original

msPOAS

Mean image

POAS

NLM

Joint denoising

a

b

c

d

e

f

Fig. 7. Comparison of the diffusion weighted data for a slice of the double-shell experimental dataset. The left row shows the data at the b = 800s/mm2-shell, the right row at the b =
2000s/mm2-shell. The grayscale of the images is set to amaximal image contrast. a) Original noisy data, b)msPOAS reconstruction, c)mean of 10 repeatedmeasurements of the considered
diffusionweighted images, d) reconstruction using POAS on each shell separately, e) reconstruction using a non-localmeans (NLM)method (Wiest-Daesslé et al., 2008), and f) reconstruc-
tion using the method described in Haldar et al. (2013), Varadarajan and Haldar (2013).
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Fig. 8. Fiber tracks from a diffusion tensormodel of the double-shell data using a FACT algorithmwith aminimal fiber length of 25 segments for better visibility. a) Tracks fromoriginal data
b) TRACKS from POAS reconstruction. c) Tracks after msPOAS reconstruction.
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data without blurring, but also that msPOAS outperforms the POAS
approach for each shell and other smoothing methods, see Fig. 7. The
reason is that the diffusion weighted signal and contrast at the shells
with higher b-value are further attenuated. This provides a lower
contrast-to-noise ratio (CNR) which complicates adaptation using
(single-shell) POAS on higher shells. In contrast, msPOAS uses a vector
representation of the data for all shells, and is thus able to achieve the
same quality of adaptation on all shells. In other words, it can exploit
the higher CNR in low b-value shells to inform the adaptive smoothing.
We demonstrated this superiority by comparing the smoothed diffusion
weighted images, by showing resulting fiber tracks, and by quantita-
tively analyzing the variability of directional estimates in the sticks
and ball model. This demonstrates that even the simple diffusion tensor
model benefits from the use of the vector structure of the multi-shell
data.WhilemsPOAS further exploits this structure for adaptive smooth-
ing, a separate consideration of the shellsmay even negatively affect the
a) Color coded FA with ROI
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that has been analyzed, b) sampled “stick directions” expressed in spherical angles ϕ and θ for
voxel, c) comparison of theMAD for themsPOAS reconstruction and for the original data using v
for the msPOAS and the original data with its counterpart from the POAS reconstruction on ea
tensor estimates, since it can introduce inconsistencies between data on
different shells.

We also compared the results of msPOAS to a non-local means
method (Wiest-Daesslé et al., 2008), a joint denoising method for
all diffusion weighted volumes (Haldar et al., 2013; Varadarajan and
Haldar, 2013), and a high SNR reference standard from repeated
measurements for some selected diffusion directions. Note, that the
performance of the method Haldar et al. (2013), Varadarajan and
Haldar (2013) may have been somewhat reduced since we did not
apply it to k-space data.

Relations between msPOAS and POAS

AsmsPOAS and POAS are both based on the propagation-separation
approach the general behavior is similar for example in case of partial
volume effects or in their relation to smoothing methods based on
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the original data (light red) and the msPOAS reconstruction (black) for one white matter
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Fig. 10. Results from the NODDI model. Left column shows to original data, right column data smoothed by msPOAS. a) Orientation dispersion index (ODI) for the dataset with three
shells but using b = 800 s/mm2 and b = 3000 s/mm2 only. b) ODI for full dataset. c) Intra-cellular volume fraction (ICVF) for the dataset with three shells but using b = 800 s/mm2

and b = 3000 s/mm2 only. d) ICVF for full dataset.
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anisotropic diffusion, see the discussion of POAS in Becker et al. (2012,
Section 5). MsPOAS draws its additional power from the coupling of
data for all b-values, including b = 0 for adaptation.

In order to simplify and accelerate msPOAS, we introduced several
modifications compared to the original POAS approach (Becker et al.,
original data

a

b

Fig. 11. Results from the NODDImodel for the double-shell dataset. Left: original data. Right: da
2012): a) Due to computational complexity, the Kullback–Leibler diver-
gence was approximated already in POAS. Here, we introduced a new
approximation that further accelerates the computations while also
reducing the approximation error (not shown here). Additionally, it
motivated the replacement of the weighted quadratic mean in
msPOAS

ta smoothed bymsPOAS. a) Orientation dispersion index, b) Intra-cellular volume fraction.



Table 1
Choices of parameters for msPOAS.

Recommendation Smaller values Larger values

σ Estimate from data MsPOAS leaves data unchanged Blurring
L′ 1,…,4, see text Small influence Small influence
λ ≤20 MsPOAS leaves data unchanged MsPOAS becomes

non-adaptive
κ0 0.3,…,0.6, see text Reduces spherical bias Stabilizes estimation,

use for small SNR
k⋆ 12 Less noise reduction Step function

approximation
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the (non-)adaptive estimator of POAS by aweighted arithmeticmean in
msPOAS. b) The new metric for the measurement space provides
several useful mathematical properties. It is a pseudo-metric and
ensures Euclidean invariance in voxel space and rotational invariance
in gradient space. In contrast to the original POAS approach the
embedding of ℝ3 � S2 into the special Euclidean motion group
(Becker et al., 2012) is only needed for the mathematical theory, but
no longer for the definition of the algorithm improving accessibility of
the method.

MsPOAS alsoworks if other choices for the discrepancy, the spherical
interpolation, the distribution of the observations, or the approximation
of the Kullback–Leibler distance are made, e.g., to meet specific proper-
ties of data. Similarly, the mentioned modifications for msPOAS can be
readily used also for POAS.

Applicability of msPOAS

MsPOAS is amethod for noise reduction in dMRI data. It is especially
useful in case of low SNR. In these situations modeling the original data
by any diffusion model leads to a high variability of their estimated
parameters and characteristics. This variability is essentially reduced
by the proposed adaptive smoothing procedures without notably
compromising the structural information in the data. Note that in case
of high SNR the algorithm leaves the data mostly unchanged.

The presented procedure benefits from a high number of measured
gradient directions, and also from sampling additional shells. If all shells
have an identical gradient scheme, then the algorithm could be further
accelerated as no spherical interpolation is needed. In contrast, varying
gradient schemes benefit from a higher angular resolution, but possibly
suffer from a slightly biased statistical penalty due to the interpolation.
In any case, increasing the number of gradients reduces a possible bias
introduced by spherical smoothing.

Estimation of data-dependent parameters

The msPOAS algorithm uses σ and L′ as data-dependent input
parameters. They should be estimated separately by any method that
is available and suitable for thedata. In this articlewe assumed homoge-
neous noise σ and effective channel count L′ over the voxel space.
MsPOAS can be easily adapted to a heteroscedastic situation, at the
cost of extended memory usage and computation time.

Generally, if σ is underestimated, the adaptationwill be very restric-
tive such that msPOAS does not change the data at all. In contrast, if σ is
overestimated, oversmoothing occurs with blurring of discontinuities.
An accurate estimate forσ can therefore improve the results ofmsPOAS.
Note that a misspecification of σ can, to some degree, be compensated
by adjusting the adaptation parameter λ, see section on Choice of
parameters for msPOAS.

MsPOAS has proven to be relatively robust with respect to
misspecification of L′, which is the parameter that is most difficult to
get from image data. Ideally L′ should be determined from the parame-
ters and properties of the image reconstruction algorithm. If this infor-
mation is not available we recommend to use a value considerably
smaller than the number of receiver coils for parallel imaging, typically
L′ = 1,…,4.

Choice of parameters for msPOAS

The adaptation parameter λ is the crucial parameter of the proce-
dure. It can be chosen independently of thedata at handusing simulated
data by virtue of a propagation condition detailed in Becker et al. (2013,
Section 2.5). This condition determines for aworst case scenario a lower
bound of λ with respect to some propagation level ϵ. For instance, the
level ϵ = 5 ⋅ 10−5 means, that on average only 5 of 105 estimates
would adapt to noise in a homogeneous setting. For this choice of ϵ
simulations yield λ = 20, which depends only weakly on the effective
number of RF receiver coils L′, just as, in our experience, on the number
of shells or measured gradients.

To discuss the role of the adaptation bandwidth λ we consider its
two extreme cases, λ → ∞ and λ → 0, see Eq. (6). In the former case,
the msPOAS result is a non-adaptive estimate as the adaptation term
always equals 1. In the latter case, the data will not be changed by
msPOAS as the adaptive weights will be zero for any pair of distinct
locations in measurement space. Additionally, we observe that λ and
the noise standard deviation σ influence the procedure in a similar
manner. Theoretically, the choice of λ is independent of σ due to the
considered worst case scenario. However, in practice, subsequent
adjustment ofλ can improve results by compensating amisspecification
of σ or other uncertainties that may influence the procedure. Having
the general behavior of λ in mind, the adaptation bandwidth can be
adjusted using the above choice by the propagation condition as a
starting point or, if the propagation level ϵ of λ is sufficiently small, as
an upper bound that covers the worst case.

The kernel functions have only a very minor impact on the results
and can, e.g., be chosen as in Eq. (2) for efficient computation. When
using our implementation in the package dti (Tabelow and Polzehl,
2013) this choice is implemented along with the suggested choices of

the sequence of bandwidths h kð Þn ok�

k¼0
and the balancing parameter

sequence κ(k), see the sections on Initial parameter choices of the
algorithm and The non-adaptive weights and the location bandwidths
and Appendix B. Then, it remains to fix the initial balancing parameter

κ0 and the maximal location bandwidth h k�ð Þ.
The choice of κ0 influences the amount of smoothing on the sphere

by determining the spherical resolution of msPOAS. For a given total
number of applied gradient directions Ng (summed over all shells) the
quantity Ng(1− cos(κ0)) is the mean number of neighboring gradients
directions with positive weights in the voxel under consideration. We
suggest to select κ0 such that this number is between 5 and 10, i.e., κ0
depends on the number of measured diffusion-weighting gradients.
This leads to a value of κ0 = 0.3,…,0.6 for the datasets as considered
in this paper. Larger values of κ0 should be chosen in the case of
very low SNR in order to stabilize the estimates in the first iteration
steps. However, this may introduce a bias. MsPOAS reduces this
bias during iteration through its choice of the sequence κ(k) as explained
in our previous article (Becker et al., 2012, Section 2.5). If the number
of gradient directions is too low, say less than 20, a much smaller
value of κ0 might be recommendable to avoid spherical smoothing
and hence the bias. This requires a sufficient image contrast-to-noise
ratio.

The number of iteration steps k⋆ relates to the last value in the

sequence of increasing location bandwidths h kð Þn ok�

k¼0
. Its choice should

balance the computation time and the desired smoothness within
homogeneous regions, see section on Simulations. We recommend a
value of k⋆ =12. As discussed next, possible consequences of a violated
structural assumption can be reduced by diminishing k∗. All parameter
choices are summarized in Table 1.
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Considerations and limitations

We should critically discuss the assumption of msPOAS that dMRI
data is characterized by regions with homogeneous diffusion weighted
signals separated by discontinuities. This assumption is certainly only
an approximation of a more realistic piecewise smooth model. In com-
parison, the application of the common Gaussian filter to diffusion
weighted images actually relies on the even stronger assumption of a
globally smooth image intensity value. The obvious violation of this
assumption in dMRI data manifests itself as the blurring effect at
borders when using the Gaussian filter.

As a consequence of the local homogeneity assumption msPOAS
forces the final estimator into a step function if the maximal location
bandwidthh k�ð Þ is sufficiently large, see Fig. 3. This figure also illustrates,
that intermediate steps of the iteration of msPOAS show results with
less error compared to the true situation. Thus, if the msPOAS result
contains steps in actually smooth regions, a smaller choice of k∗ might
improve the results. However, even if k∗ is chosen large, our analysis
indicated, that the final stable msPOAS result is a step function approx-
imation providing a bounded estimation bias.

Finally, we emphasize that msPOAS should not be combined with
other smoothingmethods. Previous application of, e.g., a Gaussian filter
would only hamper the performance of msPOAS due to the induced
spatial correlation and the resulting blurring. In fact, msPOAS performs
very similar to a non-adaptive filterwithin homogeneous regions, while
it does not blur the observed structure at discontinuities.

Future research

Noise in dMRI data may also lead to a bias in the estimated diffusion
model parameters. The quantity characterizing the diffusion weighted
signal θm,b differs from the expected valueESb mð Þ of the signal distribu-
tion, see Eq. (C.1). It is, however, the expected value, that is actually
measured. The relative difference betweenESb mð Þ and θm,b is especially
large for small SNR. MsPOAS leads to less variable estimates for ESb mð Þ
and by Eq. (C.1) to largely improved reconstructions for the true param-
eter θm,b. This enables a correction for the bias, see e.g. Koay and Basser
(2006). In practice, this approach requires a precise determination of
the (local) noise variance σ2 and the effectively applied number of
receiver coils L′, which is a challenging problem in itself and goes
beyond the scope of this article.

Additionally, we recall that msPOAS requires independent data in
each point of themeasurement space. As registration introduces spatial
correlation into the data, applying msPOAS before registration may
seem preferable. On the other hand, unregistered data might lead to
spurious discontinuities, which msPOAS may identify. In our experi-
ence, msPOAS benefits from registered data without being harmed by
the small spatial correlation caused by it. Future research may combine
registration methods with msPOAS to further improve results.

Conclusion

Multi-shell dMRI acquisition is mandatory for many beyond tensor
diffusion models but suffers from low SNR. We introduced the new
noise reduction method msPOAS (multi-shell position-orientation
adaptive smoothing) for this type of data. The method does not mask
the real structure by blurring tissuemicro-structure borders. Combining
information from all shells for structural adaptive smoothing, it outper-
forms POAS approaches which smooth each q-shell separately or other
conventional smoothing. Due to its computational efficiency it can be
readily applied. One of the strengths of msPOAS is that it is applied
directly to the dMRI data and does not use any diffusion model. Thus,
the method does not introduce a bias towards any of them and can be
flexibly combined with the various advanced diffusion models. The
software packages primarily used for the msPOAS analyses are freely
available: dti (Tabelow and Polzehl, 2013) and ACID (http://www.
diffusiontools.com).
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Appendix A. Spherical interpolation

A.1. Definition of the interpolation weights

Let b∈ B be a fixed b-value and consider a gradient direction g!∉Gb,
that has not been included in the measurement on the corresponding

shell. Then, we search for a triple of measured gradients g lð Þ
b; g!
� �

8<:
9=;

3

l¼1

⊆

Gb, such that the gradient direction g! lies within the resulting spherical
triangle

g! ∈ △ g 1ð Þ
b; g!
� �; g 2ð Þ

b; g!
� �; g 3ð Þ

b; g!
� �0@ 1A

and the corresponding total angular distance∑
3

l¼1
arccos g!; g lð Þ

b; g!
� �* +0@ 1A

is minimal. Here, 〈⋅,⋅〉 denotes the Euclidean scalar product of two

vectors. The missing value Sb v!; g!
� �

is then generated by linear spher-

ical interpolation

Sb v!; g!
� �

:¼
X3
l¼1

c lð Þ
b; g!
� �Sb v!; g lð Þ

b; g!
� �0@ 1A

with weights c lð Þ
b; g!
� � defined as the spherical Bary-coordinates

(Carfora, 2007, 3.1(c)) of g! within the spherical triangle △

g 1ð Þ
b; g!
� �; g 2ð Þ

b; g!
� �; g 3ð Þ

b; g!
� �0@ 1A. For l ∈ {1, 2, 3} we set

c lð Þ
b; g!
� � :¼

area △ g!; g l1ð Þ
b; g!
� �; g l2ð Þ

b; g!
� �0@ 1A0@ 1A

area △ g 1ð Þ
b; g!
� �; g 2ð Þ

b; g!
� �; g 3ð Þ

b; g!
� �0@ 1A0@ 1A where l1; l2∈ 1;2;3f g∖ lf g;

l1≠l2:

This interpolation is illustrated in Becker et al. (2013, Figure 2).

A.2. Interpolation of the signal vector

In our vector-valued function S , Eq. (1), we distinguish between

values Sb v!; g!
� �

that have been measured g! ∈ Gb

� �
, values that

http://www.diffusiontools.com
http://www.diffusiontools.com
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have been obtained by interpolation g! ∈ Gb0∖Gb; b
0
N0

� �
andmean sig-

nals for g! ∈ G0, such that

Sb v!; g!
� �

¼

Sb v!; g!
� �

; if g! ∈ GbX3
l¼1

c lð Þ
b; g!
� �Sb v!; g lð Þ

b; g!
� �0@ 1A; if g! ∈ Gb0∖Gb; b

0
N0

jGbj−1 X
g!∈Gb

Sb v!; g!
� �

if g! ∈ G0:

8>>>>>>>><>>>>>>>>:
ðA:1Þ

Estimates inmsPOAS are constructed asweighted averages of the ob-
served values Sb v!; g!ð Þf g g!∈Gb

. The interpolated values Sb v!; g!ð Þf g g!∈G∖Gb

are solely used to determine the adaptive weights, see section on The
algorithm.

A.3. Consequences for the adaptive estimator

Taking the impact of the spherical interpolation into account, we

consider for eN k−1ð Þ
m;b in Eq. (5) the same classification of cases as for the

interpolation formula (A.1). For b = 0, we down-weight the influence
of the S0-images to compensate for the variance reduction from
averaging all acquired non-diffusion weighted images. Hence, for m ¼
v!m; g!mÞð we set

eN kð Þ
m;b ¼

max
k0 ≤k

X
n∈V�Gb

ew k0ð Þ
mn

0@ 1A if b N 0∧ g!m ∈ Gb;

max
k0 ≤k

X3
l¼1

c lð Þ
b; g!m

=eN k0ð Þ
v!m ;g

lð Þ
b; g!m

� �
;b

0BB@
1CCA

−1

if b N 0; g!m ∈ Gb0 ;0 b b0≠b;

max
k0 ≤k

X
g!∈Gb

1=eN k0ð Þ
v!m; g!ð Þ;b

� �−1
� jGbj if b N 0∧ g!m ∈ G0;

max
k0 ≤k

X
n∈V�G0

ew k0ð Þ
mn

0@ 1A � S0j j−1 if b ¼ 0∧ g!m ∈ Gb

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
ðA:2Þ

where |Gb| denotes the number of measured gradients on the shell with
b-value b and |S0| is the number of acquired S0-images that form the
mean image S0. Note, that we consider the maximal variance reductioneN kð Þ

m;b :¼ max
k0 ≤k

�ð Þ until step k in order to ensure that the sequence

eN kð Þ
m;b

n ok�

k¼0
is non-decreasing. This preserves an achieved adaptation

quality during iteration.

Appendix B. Choice of the sequence of bandwidths

The bandwidthsh aremeasured in units of voxel countswith respect
to the smallest of the three voxel edge lengths. We choose h(0) = 1,
i.e., one unit of the shortest edge of the voxel. In our implementation

of msPOAS, we chose the subsequent bandwidths h kð Þn ok�

k¼1
such that

the variance of the non-adaptive estimate is, in the interior of the design
space V × G, reduced by 25% with each iteration step. In our experience
this provides a good balance between the quality of adaptation
and computation time. We employ the regular grid structure of the

voxel space V to pre-compute the non-adaptive weights w kð Þ
mn for some

representative voxel v!m ∈ V , all b ∈ B0 and every g!m ∈ Gb using a
sequence of location bandwidths h kð Þ b; g!mð Þ
n ok�

k¼1
that solves

X
n∈V�Gb

w kð Þ
mn

� �2
N kð Þ

m;b

� �2 ¼ 1:25−1 X
n∈V�Gb

w k−1ð Þ
mn

� �2
N k−1ð Þ

m;b

� �2 ;
where m ¼ v!m; gmÞ∈V � Gbð . As the number of applied gradients may

vary for the distinct shells, this leads to a choice of h kð Þn ok�

k¼0
which

depends on the considered b-value b ∈ B0 via the respective gradient
scheme Gb g!m . Additionally, we get a dependence on the gradient g!m

itself by compensating possible inhomogeneities of the gradient
scheme. As a consequence our choice for κ(k) now also depends on b ∈
B0 and g!m ∈ Gb. The resulting weights depend on the relative positions
of v!m and v!n on the grid and can therefore be used for all voxel v!m ∈ V.

Appendix C. Approximation of the Kullback–Leibler divergence

The Kullback–Leibler divergence of two non-centralχ -distributions
cannot be calculated explicitly. In order to achieve amuch faster perfor-
mance we replace the approximation utilized in Becker et al. (2012).
We approximate χ2L0 θð Þ by a Gaussian distribution with matching first
and second moments, i.e. mean

μ θ;2L0
	 
 ¼ ffiffiffi

π
2

r
L L0−1ð Þ
1=2 − θ2

2

 !
ðC:1Þ

and variance

v θ;2L0
	 
 ¼ 2L0 þ θ2−μ2 θ;2L0

	 

depending on the non-centrality parameter θ.

Then, we replace the Kullback–Leibler divergence of two non-
central χ-distributions χ2L0 ;θ1 and χ2L0 ;θ2 by

gKL χ2L0 ;θ1 ;χ2L0 ;θ2

� �
¼ 2 μ θ1;2L

0	 

−μ θ2;2L

0	 
� 
2
v θ1;2L

0ð Þ þ v θ2;2L
0ð Þ½ Þ� ;

which can be interpreted as a symmetrized Kullback–Leibler divergence
of the approximating Gaussian distributions.

Appendix D. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.03.053.
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