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Abstract

Prevention of cardiovascular disease (CVD) is an important therapeutic object of diabetes care. This study assessed whether
an index based on plasma free amino acid (PFAA) profiles could predict the onset of CVD in diabetic patients. The baseline
concentrations of 31 PFAAs were measured with high-performance liquid chromatography-electrospray ionization-mass
spectrometry in 385 Japanese patients with type 2 diabetes registered in 2001 for our prospective observational follow-up
study. During 10 years of follow-up, 63 patients developed cardiovascular composite endpoints (myocardial infarction,
angina pectoris, worsening of heart failure and stroke). Using the PFAA profiles and clinical information, an index (CVD-AI)
consisting of six amino acids to predict the onset of any endpoints was retrospectively constructed. CVD-AI levels were
significantly higher in patients who did than did not develop CVD. The area under the receiver-operator characteristic curve
of CVD-AI (0.72 [95% confidence interval (CI): 0.64–0.79]) showed equal or slightly better discriminatory capacity than
urinary albumin excretion rate (0.69 [95% CI: 0.62–0.77]) on predicting endpoints. A multivariate Cox proportional hazards
regression analysis showed that the high level of CVD-AI was identified as an independent risk factor for CVD (adjusted
hazard ratio: 2.86 [95% CI: 1.57–5.19]). This predictive effect of CVD-AI was observed even in patients with
normoalbuminuria, as well as those with albuminuria. In conclusion, these results suggest that CVD-AI based on PFAA
profiles is useful for identifying diabetic patients at risk for CVD regardless of the degree of albuminuria, or for improving
the discriminative capability by combining it with albuminuria.
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Introduction

Cardiovascular disease (CVD) is a life-threatening complication

in patients with diabetes. Since hyperglycemia, hypertension, and

dyslipidemia are well recognized as conventional risk factors for

CVD, early intervention against them is important to prevent the

onset of CVD in this population [1]. Several clinical studies have

indicated that the incidence of CVD in patients with type 2

diabetes could be reduced with intensive management for these

risk factors [2,3]. The development of biomarkers or an index to

identify patients at high risk for CVD is also clinically important as

it makes possible the initiation of adequate medication for patients

at risk. Excessive urinary albumin excretion, called albuminuria,

has been established as a reliable surrogate biomarker for CVD,

because an increase or decrease in albuminuria has been reported

to directly affect the incidence of CVD [3–5]. Thus, the

prevention and reduction of albuminuria by intensive control of

the above-mentioned conventional risk factors for CVD is

considered an important therapeutic target in the care of patients

with diabetes [2,6,7]. Despite these efforts, however, many patients

still develop CVD, suggesting that only the evaluation of known

risk factors is insufficient to distinguish between patients at high

and low risk of CVD. It is therefore important that an additional

predictive biomarker or index be found to identify those patients

with diabetes who are at risk for CVD.

Recent studies have reported that alteration of plasma

metabolomics profiles is significantly associated with certain

disease conditions and can predict future development of diseases

[8–11]. Among the numerous metabolites, plasma free amino

acids (PFAAs) may be potent metabolites that have potential as

excellent disease biomarkers because circulating free amino acids

are involved in protein synthesis, organ networks, and as metabolic

regulators of physiological states [12]. Recent technological

advances have made possible the highly accurate analysis of

PFAA levels using high-performance liquid chromatography-

electrospray ionization-mass spectrometry (HPLC-ESI-MS) [13].
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We have previously reported on the possibility of this technical

approach being able to distinguish patients with lung cancer [14].

In the current study, we hypothesized that alterations in PFAA

profiles may be early markers for identifying diabetic patients at

risk for CVD. We measured PFAA profiles in plasma samples of

patients with type 2 diabetes enrolled in our ongoing prospective

observational follow-up study. We retrospectively investigated

whether we could construct a diagnostic index based on these

PFAA profiles, known as ‘‘AminoIndexTM (AI) technology’’ [12–

14], and whether this index could predict the onset of CVD in

patients with type 2 diabetes followed up for 10 years.

Materials and Methods

Ethics statement
The study protocol and informed consent procedure were

approved by the Ethics Committee of Shiga University of Medical

Science (Shiga, Japan) and Ajinomoto Co., Inc. (Kawasaki, Japan).

This study was conducted according to the principles expressed in

the Declaration of Helsinki. The raw data used in this study have

not been deposited in a public database. This is in compliance with

the agreement with the Ethics Committee.

Subjects
This study was a retrospective analysis of samples obtained

during our ongoing prospective observational study, the Shiga

Prospective Observational Follow-up Study [15]. This prospective

follow-up study was launched in 1996 to assess patient character-

istics associated with the development and progression of diabetic

complications, and to identify biomarkers and genetic factors that

can be used in the early detection of diabetic patients at risk for

these complications.

Diabetic patients who agreed to participate in this study and

provided written informed consent were asked to provide a 24-h

urine sample at baseline. Baseline blood samples were obtained

after an overnight fast in tubes containing ethylenediaminetetra-

acetic acid. Plasma was prepared by centrifuging the blood

samples at 3,000 rpm at 4uC for 15 min. If not analyzed

immediately, plasma and urine samples were stored at 280uC.

All participants underwent annual standardized clinical examina-

tions and biochemical tests. Each patient’s medical records were

reviewed annually and the occurrence of CVD, cancer, and other

diseases was confirmed.

To assess whether an amino acid-based index could better

predict the onset of CVD (CVD-AI) over 10 years than

albuminuria and other conventional risk factors, we analyzed

samples from 420 Japanese patients with type 2 diabetes registered

in this prospective trial in 2001. The PFAAs in the stored plasma

samples of each eligible patient were measured. Six patients were

excluded from the study because their PFAAs could not be

accurately measured, and seven patients were excluded because

their urine samples were not available. In addition, 22 patients

with a previous history at baseline of cancer, collagen disease,

CVD within the previous year, infectious disease, or non-diabetic

kidney disease confirmed by a renal biopsy were excluded. Thus,

the data from 385 patients were finally analyzed in this study.

Definition of cardiovascular composite endpoints and
clinical parameters

Cardiovascular composite endpoints were myocardial infarc-

tion, angina pectoris, worsening of congestive heart failure, and

Table 1. Baseline characteristics of patients who did (cases) and did not (controls) experience cardiovascular events during follow-
up.

Variables Controls Cases P value

Number (n) 322 63

Age (year) 60612 6867 ,0.01

Gender (male/female, n) 156/166 35/28 0.30

Body mass index (kg/m2) 23.563.9 24.464.1 0.10

Hemoglobin A1c (%) 7.660.9 7.761.0 0.11

Total cholesterol (mg/dL) 206630 207629 0.70

Triglyceride (mg/dL) 92 (64–134) 104 (73–140) 0.14

HDL-cholesterol (mg/dL) 54 (46–65) 47 (41–55) ,0.01

Systolic blood pressure (mmHg) 135619 143620 ,0.01

Diastolic blood pressure (mmHg) 76611 75610 0.49

Hypertension (%) 53.4 84.1 ,0.01

Estimated GFR (ml/min/1.73m2) 82623 67621 ,0.01

Urinary albumin excretion rate (mg/min) 8.4 (5.1–24.8) 27.4 (8.3–113.2) ,0.01

Albuminuria (%) 26.4 55.6 ,0.01

baPWV (m/sec) 17866522 19746567 ,0.01

Myocardial infarction (n) - 11 -

Angina pectoris (n) - 29 -

Congestive heart failure (n) - 5 -

Stroke (n) - 18 -

Data are expressed as mean 6 SD for normally distributed continuous variables or median (interquartile range) for skewed continuous variables.
Abbreviations: GFR, glomerular filtration rate; HDL, high density lipoprotein; baPWV, brachial-ankle pulse wave velocity.
doi:10.1371/journal.pone.0101219.t001
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stroke [15]. Myocardial infarction was defined as a clinical

presentation characterized by typical symptoms, electrocardio-

graphic changes associated with an elevation of cardiac biomark-

ers, and angiographic evidence of coronary thrombosis. Angina

pectoris was defined as the presence on imaging of lesions in

patients with a history of typical chest pain or electrocardiographic

changes, and invasive cardiovascular interventions. A worsening of

congestive heart failure was defined as events requiring hospital-

ization for worsening typical symptoms of heart failure validated

by echocardiography, not due to valvular heart disease or

arrhythmia. Stroke, including ischemic stroke and cerebral

hemorrhage, was defined as a persistent focal neurological

symptom in which the onset was sudden and was not due to

trauma or a tumor, and where the responsible lesion was detected

on imaging modalities. If a patient died, his/her medical records

were checked to identify the cause of death. If the cause of death

was not clear, it was not considered related to CVD.

Based on the urinary albumin excretion rate (UAER) at

baseline, patients were classified as having normoalbuminuria

(UAER ,20 mg/min, n = 265) or albuminuria (20 mg/min #

UAER, n = 120). Serum levels of creatinine were measured via an

enzymatic method. Estimated glomerular filtration rate (eGFR)

was calculated using the simplified equation proposed by the

Japanese Society of Nephrology [16]: eGFR (ml/min/1.73 m2)

= 1946 [age (years)]20.2876 [serum creatinine (mg/dl)] 21.094

60.739 (for female patients). Hemoglobin A1c (HbA1c) levels were

those of the National Glycohemoglobin Standardization Program,

according to the recommendations of the Japanese Diabetes

Society [17]. Hypertension was defined as blood pressure (BP) $

140/90 mmHg or current use of antihypertensive drugs. Brachial-

ankle pulse wave velocity (baPWV) was measured by an automatic

device (BP-203RPE; Colin, Komaki, Japan), with the higher of the

right and the left values used in calculations.

Table 2. Absolute levels of 31 plasma amino acids in patients who did (cases) and did not (controls) experience cardiovascular
events during follow-up.

Amino Acids (mmol/l) HMDB ID Control (n = 328) Case (n = 63) P value

3-methylhistidine (3MeHis) HMDB01861 2.361.6 3.562.8 0.001

Citrulline (Cit) HMDB00904 38.0613.2 43.1615.1 0.016

Tryptophan (Trp) HMDB00929 60.5613.0 55.3613.0 0.016

b-amino-iso-butyric acid (b-AIBA) Not available 1.662.0 2.262.3 0.033

Cystine (Cys) HMDB00192 55.8613.7 60.0615.5 0.048

Glutamic acid (Glu) HMDB00148 33.2614.7 37.1616.2 0.078

a-amino adipic acid (a-AAA) HMDB00510 0.360.6 0.460.7 0.105

Threonine (Thr) HMDB00167 130.0631.2 122.2632.2 0.118

Methionine (Met) HMDB00696 27.565.8 26.565.7 0.153

Serine (Ser) HMDB00187 116.8622.5 112.3621.3 0.160

Histidine (His) HMDB00177 81.3611.8 79.1610.8 0.205

Ethanolamine (EtOHNH2) HMDB00149 6.961.6 6.661.5 0.242

Prorine (Pro) HMDB00162 150.6641.0 157.3642.6 0.298

Taurine (Tau) HMDB00251 61.4615.1 62.3613.0 0.307

Arginine (Arg) HMDB00517 102.4624.4 105.9625.9 0.374

Hydroxyproline (HyPro) HMDB00725 12.366.2 12.966.2 0.385

Aspartic acid (Asp) HMDB00191 2.361.1 2.461.0 0.401

Asparagine (Asn) HMDB00168 51.8610. 51.0610. 0.402

Phenylalanine (Phe) HMDB00159 67.2611.1 66.8612.6 0.519

Ornithine (Orn) HMDB00214 65.7616.2 69.2621.3 0.564

Tyrosine (Tyr) HMDB00158 78.3619.2 76.2618.4 0.599

a-amino-n-butyric acid (a-ABA) Not available 22.466.7 22.167.5 0.722

Valine (Val) HMDB00883 250.3645.8 245.5643.5 0.741

Isoleucine (Ile) HMDB00172 75.9617.1 75.8615.9 0.838

Glycine (Gly) HMDB00123 227.2654.9 228.5653.8 0.851

Sarcosine (Sar) HMDB00271 2.161.0 2.161.1 0.876

Glutamine (Gln) HMDB00641 622.76120.4 631.46154.8 0.876

Leucine (Leu) HMDB00687 137.0627.2 135.2626.3 0.926

1-methylhistidine (1MeHis) HMDB00001 4.265.4 4.566.2 0.953

Alanine (Ala) HMDB00161 428.7694.6 427.5693.1 0.954

Lysine (Lys) HMDB00182 197.9637.1 200.0643.1 0.974

Abbreviations: HMDB ID: Human Metabolome Database ID.
doi:10.1371/journal.pone.0101219.t002
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PFAAs and CVD-AI
Plasma samples were deproteinized using acetonitrile at a final

concentration of 80%, and amino acid levels in plasma were

measured by HPLC-ESI-MS/MS, followed by precolumn deriv-

atization, as described [13,14]. The concentrations of 31 amino

acids were measured at the Institute for Innovation of the

Ajinomoto Co., Inc. (Kawasaki, Japan).

Although the levels of PFAAs may differ significantly between

cases and controls, the differences in individual amino acids are

not always sufficiently discriminatory [14]. We therefore con-

structed a diagnostic index based on PFAA levels, known as

‘‘AminoIndex TM technology’’ [12–14], to compress multidimen-

sional information from PFAA profiles into a single dimension and

to maximize the differences between cases and controls. The

CVD-AI index was defined as the logarithmic odds ratio of CVD

probability estimated by logistic regression models. Briefly, we

generated all possible models with six or fewer variables. During

this step, all possible combinations of variables were considered

from a total of 31 amino acids [14]. Next, we calculated the area

under the curve (AUC) for receiver-operator characteristic (ROC)

curve analysis for all models with non-validation or leave-one-out

cross validation (LOOCV). The model which produced the

highest AUC for ROC curve analysis by LOOCV was selected as

the final model, CDV-AI. Table S1 explains the top 10 models’

performances using the AUC for ROC curve analysis.

Statistical analysis
Clinical data are expressed as mean 6 SD or median

(interquartile range), as appropriate. Categorical variables were

compared using x2 tests, normally distributed continuous variables

using unpaired Student’s t-tests, and abnormally distributed

continuous variables using the Mann–Whitney U test. In

particular, differences in amino acid levels and the CVD-AI

between the two groups were assessed by the Mann–Whitney U

test. Spearman’s rank correlation coefficient (r) was used to assess

the correlation between each amino acid level and clinical

variables. ROC curve analysis was performed to determine the

capability and cut-off level of variables that distinguished between

cases and controls. The 95% confidence interval (CI) of the AUC

for ROC was also estimated. The unadjusted (crude) and adjusted

hazard ratios (HR) for the occurrence of cardiovascular events

were evaluated using a Cox proportional hazards regression

model. Follow-up time was censored if any cardiovascular

composite endpoint occurred or if the patient was unavailable

for follow-up. To assess the risk factors for the cardiovascular

composite endpoint, each variable listed in Table 1 and the CVD-

AI were first evaluated using univariate analysis of the Cox

proportional hazards regression model and then each estimate was

adjusted for all variables showing statistical significance in the

univariate model. To assess the combination effect of the CVD-AI

and albuminuria, estimates were adjusted for the conventional risk

factors of cardiovascular disease, including age, sex, HbA1c, total

cholesterol, triglyceride, high density lipoprotein (HDL)-cholester-

ol, eGFR, body mass index (BMI) and hypertension. All analyses

were performed using the SPSS software package (version 22;

SPSS Inc., Chicago, IL, USA), with a two-sided P value of ,0.05

considered statistically significant.

Results

Characteristics of subjects
During the 10-year follow-up period, 63 patients experienced

cardiovascular endpoints, including 11 with myocardial infarction,

29 with angina pectoris, five with worsening of congestive heart

failure, and 18 with stroke (Table 1). The clinical characteristics at

baseline of these 63 patients with outcomes (cases) and the 322

without outcomes (controls) are presented in Table 1. Age, HDL-

cholesterol, systolic BP, eGFR, UAER, and baPWV differed

significantly in these two groups.

PFAA profiles related to cardiovascular composite
endpoints

The mean levels of each amino acid in the case and control

groups are shown in Table 2. Among the 31 amino acids tested,

three (b-amino-iso-butyric acid, 3-methylhistidine, and citrulline)

were significantly higher and one (tryptophan) was significantly

lower in cases than in controls. Some amino acid levels showed

statistically significant correlations with some clinical variables

related to risk factors of cardiovascular disease (Table S2).

Predictive effect of CVD-AI
We next assessed whether the onset of the cardiovascular

composite endpoint could be distinguished by the multivariate

analysis referred to as AI technology. Using this technology, the

optimal CVD-AI was constructed from the data set of PFAAs:

CVD-AI = (20.1452) + (20.2230) 6 (ethanolamine) +
(20.04637) 6 (hydroxyproline) + (0.01303) 6 (glutamic acid)

+ (0.3524) 6 (3-methylhistidine) + (0.01250) 6 (tyrosine) +
(20.03093) 6 (tryptophan).

The mean value of the CVD-AI was significantly higher in cases

than in controls (21.2860.94 vs. 21.9060.69, P,0.001). The

CVD-AI value was positively correlated with age (r= 0.23, P,

0.01), BMI (r= 0.15, P,0.01), triglyceride (r= 0.18, P,0.01),

systolic BP (r= 0.18, P,0.01), baPWV (r= 0.22, P,0.001) and

Table 3. Areas under the receiver-operating characteristic curves distinguishing patients who did (cases) and did not (controls)
experience cardiovascular events during follow-up.

Parameters AUC (± SE) (95% CI) P value

b-AIBA (mmol/l) 0.5960.04 (0.50–0.66) 0.002

3MeHis (mmol/l) 0.6260.04 (0.55–0.71) 0.04

Cit (mmol/l) 0.5960.04 (0.52–0.07) 0.04

Trp (mmol/l) 0.5960.04 (0.52–0.67) 0.02

CVD-AI 0.7260.04 (0.64–0.79) ,0.0001

UAER 0.6960.04 (0.62–0.77) ,0.0001

Abbreviations: AUC, area under the receiver-operator characteristic curve; b-AIBA, b-amino-iso-butyric acid; 3MeHis, 3-methylhistidine; Cit, citrulline; Trp, tryptophan; Cys,
cystine; CVD-AI, cardiovascular disease-amino acid based index; UAER, urinary albumin excretion rate.
doi:10.1371/journal.pone.0101219.t003
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UAER (r= 0.30, P,0.001), and inversely correlated with HDL-

cholesterol (r= 20.21, P,0.001) and eGFR (r= 20.39, P,

0.001), although it was not correlated with HbA1c level (r= 0.08,

P = 0.12). Furthermore, the CVD-AI values in patients with

antihypertensive agents were higher than those without

(21.5460.88 vs. 21.9760.63, P,0.001), whereas the CVD-AI

values were not different among the three patient subgroups

stratified by antidiabetic medication (diet only, oral agents and

insulin therapy).

Compared with the AUC for ROC curve analysis, the CVD-AI

showed better discriminatory ability (0.72 [95% CI: 0.64–0.79])

than did the level of each amino acid (Table 3). Even when

validated by LOOCV analysis, the AUC of the CVD-AI ROC

was 0.68. ROC curve analysis showed that the CVD-AI cut-off

level for this outcome was 21.662. In Cox proportional hazards

regression analysis, patients with the CVD-AI above the cut-off

level showed a significantly higher unadjusted HR of 4.62 (95%

CI: 2.65–8.04) for the cardiovascular composite endpoint, as did

age, systolic BP, hypertension, HDL, UAER, eGFR, and baPWV

(Table 4). Even when adjusted for these variables shown to be

statistically significant in the univariate model, the CVD-AI, as

well as age and UAER, was identified as an independent risk for

this outcome (adjusted HR: 2.86, [95% CI: 1.57–5.19], Table 4).

Next, we separately estimated the risk of the CVD-AI for two

conditions: coronary vascular events (myocardial infarction and

angina pectoris, n = 40) and cerebrovascular events (stroke,

n = 18). Unadjusted HR for coronary vascular events was 5.51

(95% CI: 2.85–10.64). Adjusted for variables listed in Table 4, the

risk of the CVD-AI for coronary vascular events did not change

(adjusted HR: 3.35 [95% CI: 1.64–6.83]). In contrast, the

unadjusted and adjusted HR for stroke were 2.61 (95% CI:

0.99–6.85) and 1.51 (95% CI: 0.52–4.37), respectively.

Combination effect of UAER and CVD-AI
In this study, UAER has also been identified as an independent

risk for cardiovascular outcome, as in previous reports, and the

AUC for ROC curve analysis of UAER (0.69 [95% CI: 0.62–

0.77]) was almost equally to that of the CVD-AI (0.72 [95% CI:

0.64–0.79]). We thus finally analyzed the combination effect of

UAER and CVD-AI in predicting cardiovascular composite

endpoints. For this purpose, patients were divided into four

subgroups: those with normoalbuminuria and above or below the

cut-off level of CVD-AI and those with albuminuria and above or

below the cut-off level of CVD-AI (Table 5). In patients with a

CVD-AI above the cut-off level, both those with normoalbumi-

nuria (unadjusted HR: 3.24 [95% CI: 1.54–6.82]) and albumin-

Table 4. Hazard ratios for the cardiovascular composite endpoint.

Univariate model Multivariate model a

Hazard ratio (95% CI) P value Adjusted Hazard ratio (95% CI) P value

Age (year) 1.08 (1.05–1.11) , 0.001 1.07 (1.04–1.11) ,0.001

Systolic BP (mmHg) 1.02 (1.01–1.04) 0.001 0.99 (0.99–1.02) 0.85

Hypertension (yes) 4.08 (2.07–8.05) ,0.001 2.06 (0.95–4.46) 0.07

Log HDL-cholesterol (mg/dl) 0.02 (0.01–0.26) 0.002 0.16 (0.01–2.00) 0.16

Log UAER (mg/min) 2.14 (1.60–2.92) ,0.001 1.56 (1.04–2.35) 0.03

eGFR (ml/min/1.73 m2) 0.97 (0.96–0.99) ,0.001 1.00 (0.99–1.02) 0.63

baPWV (m/sec) 1.00 (1.00–1.01) 0.008 1.00 (0.99–1.00) 0.42

CVD-AI 4.62 (2.65–8.04) ,0.001 2.86 (1.57–5.19) 0.001

The variables listed in Table 1 and CVD-AI were firstly assessed in the univariate analysis of the Cox proportional hazards regression model. Only variables shown to be
statistically significant in the univariate model are shown in this table.
aEach estimate was adjusted for all variables shown in this table.
Abbreviations: BP, blood pressure; CI, confidence interval, CVD-AI, cardiovascular disease-amino acid based index; HDL, high density lipoprotein; UAER, urinary albumin
excretion rate; eGFR, estimated glomerular filtration rate; baPWV, brachial-ankle pulse wave velocity.
doi:10.1371/journal.pone.0101219.t004

Table 5. Crude and multivariate-adjusted hazard ratios for the cardiovascular composite endpoint in patient subgroups stratified
according to urinary albumin excretion rate and the CVD-AI.

Subgroup category Total (n) Case (n)
Crude Hazard ratio
(95% CI) P value

Adjusted Hazard
ratio a (95% CI) P value

UAER ,20 mg/min + Low CVD-AI 192 13 1.00 (reference) 1.00 (reference)

UAER ,20 mg/min + High CVD-AI 72 15 3.24 (1.54–6.82) 0.002 2.61 (1.23–5.54) 0.012

UAER $20 mg/min + Low CVD-AI 54 6 1.76 (0.67–4.63) 0.25 1.48 (0.55–3.99) 0.44

UAER $20 mg/min + High CVD-AI 63 29 8.25 (4.28–15.9) ,0.001 4.52 (2.09–9.80) ,0.001

Subjects were categorized as being above or below a UAER of 20 mg/min and above or below the CVD-AI cut-off value of 21.662. Crude (unadjusted) and adjusted
hazard ratios were calculated using Cox proportional hazards regression models.
aEstimates were adjusted for the conventional risk factors of cardiovascular disease, including age, sex, HbA1c, total cholesterol, triglyceride, high density lipoprotein
cholesterol, estimated glomerular filtration rate, body mass index and hypertension.
Abbreviations: CVD-AI, cardiovascular disease-amino acid based index; UAER, urinary albumin excretion rate.
doi:10.1371/journal.pone.0101219.t005
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uria (unadjusted HR: 8.25 [95% CI: 4.28–15.9]) were at

significantly higher risk for the onset of cardiovascular composite

endpoints. Even after adjustment for the conventional risk factors

of cardiovascular disease, both groups remained at risk (Table 5).

In contrast, patients with a CVD-AI below the cut-off level, even

those with albuminuria (HR: 1.48 [95% CI: 0.55–3.99]), were not

at significant risk for this outcome.

We found that the CVD-AI could distinguish cases from

controls even when patients with normoalbuminuria (AUC: 0.66,

95% CI: 0.54–0.77, P = 0.007) and those with albuminuria (AUC:

0.72, 95% CI: 0.62–0.83, P,0.001) were separately analyzed

(Figure 1). In contrast, UAER was unable to distinguish cases from

controls, both in patients with normoalbuminuria (AUC: 0.61,

95% CI: 0.48–0.73, P = 0.07) and those with albuminuria (AUC:

0.59, 95% CI: 0.46–0.69, P = 0.21).

Discussion

Identification of a reliable surrogate marker or index for

predicting the onset of CVD is essential in the care of patients with

diabetes. Using high-throughput PFAA profiling and the data of

our ongoing prospective observational follow-up study we

constructed the diagnostic index, the CVD-AI, to predict the

onset of CVD in patients with type 2 diabetes. Interestingly, this

predictive effect was independent of the levels of albuminuria and

the conventional risk factors of CVD, indicating that altered PFAA

profiles were able to effectively identify high risk patients, even

those without albuminuria. These findings suggest that the PFAA

profile is a clinically useful index for improving the discriminative

capability for coronary artery disease in diabetic patients in

addition to conventional risk factors and better risk stratification

even among those with normoalbuminuria, who are at relatively

low risk for CVD.

Alterations in the composition of PFAAs have been reported to

reflect the pathological status or preconditions in numerous

diseases including CVD, suggesting that these alterations may be

involved in disease development processes [18–21]. Several

clinical studies using this new technology have reported on the

association between the altered composition of PPFAs and the

predictive effect for CVD. Shah et al. demonstrated that plasma

metabolomic profiles, including several amino acids, have been

found to predict cardiovascular events and improve risk discrim-

ination beyond the degree possible using readily available clinical

characteristics [20,21]. Magnusson et al. also reported that an

amino acid index consisting of branched-chain and aromatic

amino acids was found to strongly predict the development of

CVD during 12 years of follow-up [19]. As with these previous

reports, branched-chain amino acids and aromatic amino acids in

the current study were found to correlate with obesity- and

dyslipidemia-related risks for CVD. However, the predictive

power of each amino acid for CVD was relatively weak, although

some amino acids showed significantly different plasma levels

between cases and controls. The CVD-AI based on the PFAA

profiles, called ‘‘AminoIndexTM technology’’ [11–13], improved

the predictive effect for CVD in comparison to individual PFAAs.

These results suggest that the CVD-AI is a more sensitive and

effective predictive index than the conventional risk factors to

identify patients at risk for CVD, although we need to validate the

predictive effect of this CVD-AI.

The ability to identify patients at high risk of CVD before its

onset is particularly important in diabetes care, because CVD can

greatly affect mortality and quality of life in patients with diabetes.

Albuminuria is a strong predictor for CVD, making the prevention

of increased albuminuria and the reduction of albuminuria a

therapeutic target for the prevention of CVD [2–7]. Although

albuminuria was one of the risk factors for CVD in our population,

as well as in previous reports, the CVD-AI showed almost equal or

slightly better discriminatory capability than UAER in ROC curve

analysis. In addition, the CVD-AI was identified as an indepen-

dent risk factor for the onset of CVD even after adjusting the

conventional risk factors including albuminuria in the Cox

proportional hazards regression model. Interestingly, this predic-

tive effect was observed even in patients with normoalbuminuria

as well as those with albuminuria. Thus, PFAA profiles may be

clinically useful as a novel index for identifying diabetic patients at

high risk for CVD regardless of the degree of albuminuria or

improving the discriminative capability by combining it with

albuminuria.

It remains unclear whether the association between altered

PFAA profiles and CVD onset represents a cause-effect relation-

ship. Metabolic profiles have been reported to be highly heritable

in families with early-onset CVD [22]. Thus, the susceptibility of

diabetic patients to the onset of CVD may be due in part to

genetically determined metabolic components. In this study, the

CVD-AI significantly correlated with cardiovascular risk factors,

particularly dyslipidemia, renal function and hypertension,

whereas it did not correlate with HbA1c. This may mean that

the CVD-AI reflects the influence of atherosclerosis rather than

glycemic control. Also, amino acids are reported to directly

contribute to insulin resistance by disrupting insulin signaling [23].

Because insulin resistance promotes the development of athero-

sclerosis, the altered PFAA profiles associated with insulin

resistance may be indirectly associated with the onset of CVD.

Unfortunately, we could not investigate the association between

the CVD-AI and insulin resistance in this study. Further studies

are needed to clarify whether the CVD-AI is a specific index for

patients with diabetes mellitus.

Figure 1. Results of area under the curve of receiver-operator characteristics curve analysis for both CVD-AI and urinary album
excretion rate to distinguish cases from controls in all subjects and those with/without albuminuria.
doi:10.1371/journal.pone.0101219.g001
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This study had several limitations. This study was designed as a

retrospective analysis of samples and data obtained during our

prospective observational follow-up study, not as an interventional

study. Thus, treatment protocols including dietary regimens were

not controlled, and the influence of cofounders during the

observational period was not analyzed. The time-dependent

changes in PFAAs during follow-up periods were also not assessed.

Therefore, it remains unclear as to whether the correction of these

altered PFAA profiles represents a new therapeutic target to

prevent CVD in patients with diabetes. Furthermore, we need to

validate the CVD-AI using the PFAA profiles identified in this

study, and further prospective studies are required to confirm

whether our CVD-AI is most suitable for predicting the onset of

CVD and to determine whether correcting the altered PFAA

profiles can improve prognosis in patients with diabetes mellitus.

Conclusions

This study has demonstrated that altered PFAA profiles can

predict the onset of CVD in patients with type 2 diabetes over a

10-year follow-up period. These alterations predicted the onset of

CVD regardless of the degree of albuminuria and other

conventional risk factors for CVD. Further prospective studies

are required to validate the clinical utility of these PFAA

measurements and to construct an optimal CVD-AI that can be

used to identify diabetic patients at high risk for CVD in clinical

practice.
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