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Abstract

We previously demonstrated that skeletal mass, structure and biomechanical properties vary

considerably in heterogeneous stock (HS) rat strains. In addition, we observed strong heritability

for several of these skeletal phenotypes in the HS rat model, suggesting that it represents a unique

genetic resource for dissecting the complex genetics underlying bone fragility. The purpose of this

study was to identify and localize genes associated with bone mineral density in HS rats. We

measured bone phenotypes from 1524 adult male and female HS rats between 17 to 20 weeks of

age. Phenotypes included DXA measurements for bone mineral content and areal bone mineral

density for femur and lumbar spine (L3-5), and volumetric BMD measurements by CT for the

midshaft and distal femur, femur neck and 5th lumbar vertebra. A total of 70,000 polymorphic

SNPs distributed throughout the genome were selected from genotypes obtained from the

Affymetrix rat custom SNPs array for the HS rat population. These SNPs spanned the HS rat

genome with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95.

Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype

reconstruction method, which calculates the probability of descent for each genotyped locus from

each of the 8 founder HS strains. The haplotypes were tested for association with each bone

density phenotype via a mixed model with covariate adjustment. We identified quantitative trait
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loci (QTLs) for bone mineral density phenotypes on chromosomes 2, 9, 10 and 13 meeting a

conservative genome-wide empiric significance threshold (FDR=5%; P<3 × 10−6). Importantly,

most QTLs were localized to very small genomic regions (1-3 Mb), allowing us to identify a

narrow set of potential candidate genes including both novel genes and genes previously shown to

have roles in skeletal development and homeostasis.
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Introduction

Osteoporosis is a common bone disease leading to increased susceptibility to fracture at

multiple skeletal sites1 resulting in a substantial public health burden. Bone mineral density

(BMD), structure and strength are the major determinants for skeletal fracture.2-4 Several

studies demonstrated that these phenotypes are highly heritable.5-8 As much as 80% of the

variability of BMD is due to heritable factors.7 Identification of genes underlying BMD

phenotypes, particularly at the most common skeletal fracture sites, will provide valuable

insights for understanding the genetics of osteoporosis and fracture risk.

Previously, using 4 inbred rats (F344, LEW, COP and DA), we identified several

chromosomal regions linked to bone density, structure and strength phenotypes.9-13

Although, these inbred rat models have served an important role in genetic mapping for

bone fragility phenotypes, most of these QTLs encompass 20 to 30 cM and harbor hundreds

of potential candidate genes. Subsequently, using genomic expression analysis, we identified

several potential candidate genes within some of these QTLs.14-16 However, it is a

formidable challenge to narrow these critical QTL regions to a small chromosomal segment

containing a few genes. Several alternative approaches such as the development of

recombinant inbred and congenic lines have been attempted, but these approaches have

proven to be time-consuming and labor intensive and often do not have enough resolution to

detect the causal genes and variants, especially those of relatively small effect.

The heterogeneous stock (HS) rat, a unique rat model, was developed by the National

Institutes of Health (NIH) in 1984.17 These rats were originally derived from eight inbred

founder strains: Agouti (ACI/N), Brown Norway (BN/SsN), Buffalo (BUF/N), Fischer 344

(F344/N), M520/N, Maudsley Reactive (MR/N), Wistar-Kyoto (WKY/N) and Wistar-

Nettleship (WN/N).17 Subsequently, this stock was bred for 50 generations using a

rotational outbreeding regime to minimize the extent of inbreeding, drift and fixation.18

Importantly, each of these HS rats represents a unique, genetically random mosaic of

founding animal chromosomes due to recombination that have accumulated over many

generations. It has been estimated that the average distance between recombination events in

these rats is approximately 2 cM.19 Thus, the HS rat is a unique genetic resource for the fine

mapping of QTLs to very small genomic regions. Recently, these rats have been

successfully used to fine-map QTLs for diabetes20 and fear-related behavior phenotypes.21
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In a previous study, we demonstrated that skeletal mass, structure and biomechanical

properties vary considerably in heterogeneous stock (HS) rat strains.22 In addition, we

observed strong heritability for several of these skeletal phenotypes, suggesting that the HS

rat represents a unique genetic resource for dissecting the complex genetics underlying bone

fragility. In a recent study, genomic sequence data was obtained on animals from each of the

HS founder strains, along with genotypes for a dense SNP marker map in a large number of

HS offspring. Phenotypic data for over 150 physiological and other phenotypes, including

measures of bone density, were also obtained on the HS offspring, and over 1,000 genomic

regions demonstrated association with one or more of the phenotypes measured.23 The

sequence data from the founder strains were then used to identify single genomic variants

that fully accounted for an observed association in one of these regions, using a novel

method that exploits the HS pedigree structure.23 Numerous such variants were identified

for phenotypes measured in the HS offspring; however, no single genetic variants explaining

associations with bone phenotypes were detected, consistent with the complex genetic

architecture of bone density observed previously both in humans and animal models.23

The purpose of this study is to address this genetic complexity by use of dense SNP

genotype data to perform high-resolution mapping for bone mineral density (BMD)

phenotypes in HS rat offspring. We hypothesize that we will detect and localize QTLs for

several key BMD phenotypes at the most common skeletal fracture sites. We expect that the

QTLs detected via the HS approach will comprise much smaller genomic regions than bone

density QTLs detected by us and others using inbred rat crosses. In the future, these results

may allow more detailed study of the smaller number of genes in the regions detected

compared to prior approaches, and contribute to better understanding of the complex genetic

architecture of the BMD phenotypes in HS rats.

Materials and Methods

Animals

We used 1524 HS rats (male n=728; female n=796) in this study. The HS rats were bred and

grown at the Autonomous University of Barcelona. Microchips were implanted in these rats

for identification and multiple physiology and behavior phenotypes were obtained at several

time points. The rats were housed in cages in pairs (males) and trios (females) and

maintained with food and water available ad libitum, under conditions of controlled

temperature (22 + 2 °C), 50-70% relative humidity and a 12-h light-dark cycle (lights on at

0800 h). The HS rats were raised over 2.5 years in batches of approximately 250 animals in

accordance with the Spanish legislation on “Protection of Animals used for Experimental

and Other Scientific Purposes” and the European Communities Council Directive (86/609/

EEC).

Euthanasia and specimen collection

HS rats were euthanized between 17 and 20 weeks of age by ether inhalation. The lower

limbs and lumbar vertebrae (L3-5) were dissected from these animals. The lower limbs on

the right side were immediately stored at −20°C for subsequent biomechanical testing. The
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lower limbs on the left side were stripped of muscle, transferred to 70% ethyl alcohol and

stored at 4°C for densitometry analyses.

Dual energy X-ray absorptiometry (DXA)

The left femur and lumbar vertebrae 3-5 (L3-5) of the HS rats were scanned using DXA

(PIXImus II mouse densitometer; Lunar Corp., Madison, WI, USA) with ultra-high

resolution (0.18 × 0.18 mm/pixel). During scanning dissected bones were positioned on a

platform supplied by the manufacturer. After completion of the scan of each bone, mutually

exclusive region of interest (ROI) boxes were drawn around the bone from which aBMD

(g/cm2) and BMC (g) measurements were obtained.

Peripheral quantitative computed tomography (pQCT)

The left femurs were placed in plastic tubes filled with 70% ethyl alcohol and centered in

the gantry of a Norland Stratec XCT Research SA+pQCT (Stratec Electronics, Pforzheim,

Germany). Single slice measurements of 0.26 mm thickness and a voxel size of 0.07 mm

were taken for the femur. Two femoral cross-sectional slices were obtained for each femur:

one slice through femoral midshaft and one slice approximately 1 mm below the growth

plate of distal femur. The slice through the femur midshaft included only cortical bone,

whereas the distal slice included the cortical shell and secondary spongiosa. L5 vertebrae

were scanned in cross-section at the caudo-cranial center of the vertebral body. For femoral

neck, five consecutive scans perpendicular to the neck axis were obtained 0.25 mm apart

from each other starting at the base of the femoral head and ending at the greater trochanter.

For each slice, the X-ray source was rotated through 180° of projection. Density thresholds

of 500 and 900 were used to identify trabecular and compact bone. Volumetric density

(vBMD; mg/cm3) of cortical and trabecular bone were measured from each slice separately

at distal femur and L5 spine. vBMD for femoral neck was measured from the average values

of all five slices. In addition, total cross-sectional area at femur midshaft and L5 spine were

measured to enable the determination of whether BMD QTLs detected were due primarily to

bone size effects.

Genotyping

DNA was extracted from liver tissues from 8 original founders and 1524 HS rats using

standard protocols. Genotypes for over 900,000 SNPs for each rat were obtained from an

Affymetrix rat custom SNP array (www.affymetrix.com). SNPs were algorithmically

selected taking into account the strain distribution pattern to maximize the information

available for mapping as well as the SNP call quality metrics. The set of SNPs were pruned

to approximately 70,000 high quality SNPs which covered the HS rat genome with a mean

linkage disequilibrium coefficient between neighboring SNPs of 0.95.

Statistical genetic analysis

Haplotypes were constructed for each rat across the genome using the multipoint haplotype

reconstruction method HAPPY (http://www.well.ox.ac.uk/happy).19 HAPPY uses a hidden

Markov model to calculate the probability of descent from each founder at each genotyped

locus. A mixed model approach was then employed to test for association between each
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haplotype and the bone phenotype of interest. The distinguishing feature of this model for

the HS analysis is the ability to account for the complex family structure of the HS rat.

Variance components to correct for pedigree relationships were estimated using the EMMA

package for the R statistical software25, and the test for association was conducted for each

phenotype via a mixed model, adjusting for age, sex, body weight and batch. At each

genotyped SNP on chromosomes 1-22 and X, the −log10(p-value) was computed. A

genome-wide empiric significance threshold was obtained for each phenotype,

corresponding to the 5% false discovery rate for that particular measure. A corresponding

conservative overall threshold for the current study (P<3 × 10−6; -log10P=5.5) was obtained

by taking the largest −log10P value among these thresholds across all the bone density

phenotypes. To further reduce type I error, the resample-based inclusion probability (RMIP)

was computed for each QTL detected, and peaks with RMIP<0.3 (corresponding to an

approximate specificity of 0.75) were excluded. All models were fitted using the statistical

language R (R-Development-Core-Team 2004).26 A 95% confidence interval for the

position of each QTL detected was obtained as described previously9,27, assuming a

χ2
1distribution for lod to −log10(p-value) conversion. The sample had greater than 80%

power to detect QTLs contributing 5% of the total variation in the BMD phenotypes

measured, and approximately 70% power for QTLs of 3% effect at the conservative FDR

and RMIP significance thresholds employed.

Results

Figure 1 shows linkage results obtained throughout the genome for the measurements of

femur bone mineral content and density (A-D), femur neck density (E,F), and lumbar bone

mineral content and density (G-I) in this study. Several QTLs reaching the genome-wide

FDR and RMIP significance thresholds were observed in the HS rat sample, and are

included in Table 1. Candidate genes within the 95% confidence intervals (CI) for these

QTLs are listed in Table 2.

Genome-wide significant association results for femur mineral content and density

On chromosome 10 at position 46.5 Mb, significant linkage was detected for femur BMC

with a −logP value of 5.64 (p=2.3 × 10−6; Figure 2A and Table 1). The CI for this QTL

spanned less than half a megabase (Mb). On chromosome 9, a QTL was identified which

was linked to several femur density phenotypes (Figure 2B). Within this region, a QTL for

distal femur vBMD was observed, with a −logP value of 5.68 (p=2.1 × 10−6). The same

chromosome 9 region, spanning approximately 3.5 Mb, contained an additional QTL with

substantial (but not genome-wide significant) evidence for linkage with distal femur

trabecular vBMD (p=1.8 × 10−5).

Genome-wide significant association results for femur neck bone mineral density

We observed two genome-wide significant QTLs for femoral neck density phenotypes, one

each for femoral neck vBMD (Figure 2B) and for femoral neck cortical vBMD (Figure 2C).

In the same 3.5 Mb region of chromosome 9 that our study identified for other femur density

measures, a QTL for femoral neck vBMD was observed with a significant −logP value of

5.56 (p=2.7 × 10−6). This coincided with the position of the distal femur and trabecular
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vBMD chromosome 9 QTLs above. With femur neck cortical vBMD, a QTL was observed

at 182.1 Mb on chromosome 2, with a −logP value of 5.77 (p=1.7 × 10−6; Figure 2C and

Table 1).

Genome-wide significant association results for lumbar bone mineral content and density

An additional QTL at the proximal end of chromosome 13 was identified for lumbar 5

trabecular vBMD (p=9.7 × 10−8; Figure 2D and Table 1). This QTL spanned 2.5 Mb, with a

−logP value of 7.01.

Discussion

In previous work, we identified QTLs for bone density phenotypes using the F2 intercross

approach in the rat model.13 While quite powerful for QTL detection, this approach often

results in QTL intervals encompassing a third to half of a chromosome containing several

hundred genes. In this study, we exploited the unique genetic architecture in HS rat to detect

and localize QTLs in a smaller region for several key BMD phenotypes at most common

skeletal fracture sites. We utilized the pedigree structure and sequence data from the founder

HS strains to identify genomic variants associated with these QTLs in the HS offspring and

identified several chromosomal regions with strong evidence of association with bone

mineral density. Importantly, most of these loci were localized to very small genomic

regions (1-3 Mb) compared to the F2 design used previously for QTL mapping. This allows

us to identify a much more focused list of potential candidate genes under each QTL peak

for future functional studies, which are often prohibitive to conduct in large number of

genes. In addition to several novel genes detected in the HS rat model (Aars2, Adar, Atpaf2,

Cdc5l, Chrnb2, Cntnap5b, Dap3, Dcst1/2, Kcnn3, Lrrc48, Mrpl14, Nup210l, Pbxip1, Pklr,

Scamp3, Shc1, Spats1, Supt3h, Tcte1, Tom1l2, Tmem63b, and Ube2q1, Zbtb7b), we also

identified skeletal candidate genes underlying these QTLs (Adam15, Capn11, Efna4, Il6,

Slc39a1, Srebf1, Thbs3, Tpm3, Rai1, Runx2 and Vegfa) that have been previously shown to

have a role in skeletal development and homeostasis.

Among all the genes detected under the relatively narrow intervals in this study (Table 2),

there are several genes in particular that have been previously reported to have important

roles in bone homeostasis. Lack of Adam15 in mice is associated with increased osteoblast

function and bone mass.28 The calpains are a family of calcium-dependent thiol proteases

involved in intracellular protein processing and have been shown to modulate cellular

proliferation and differentiation in rodent osteoblast cells.29 Also, these proteases are

required for normal osteoclast and chrondrocyte function.30,31 Epha4 is necessary during

bone growth and acts as a negative regulator of osteoclast activity.32,33 IL-6 receptor

expression is increased during in vitro osteoblast differentiation.34,35 In addition, these

receptors are involved in osteoclast formation and function.36 Rai1 knockout mice are

growth retarded and displays malformations in both the craniofacial and the axial skeleton.37

Runx2 is a major transcription factor for chondrocyte and osteoblast differentiation.38 Thbs3
influences geometric and biomechanical properties of bone.39 Vegf is well known for its role

in angiogenesis and osteogenesis40-42, and Tpm3 is expressed during osteoclast fusion and

regulates osteoclast cytoskeletal morphology.43 Association of a polymorphism in Srebf1
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with osteonecrosis of the femoral head has been observed in Koreans.44 Slc39a1 or Zip1 is

expressed in osteoclasts and overexpression of the Zip1 induces osteogenic phenotype.45,46

In this study, we were able to replicate several chromosomal regions previously identified in

our inbred F2 studies in HS rats. For example, we detected association with distal femur

density in the HS rats on chromosome 9 (LOD 5.68), which overlapped the QTLs in our

F344 X LEW and COP X DA F2 cross for femur neck structural phenotypes.9,11 Similarly,

the femoral neck cortical vBMD QTL identified in HS rats on chromosome 2 (LOD 5.77)

overlapped the QTL in F344 X LEW F2 cross for the same phenotype.11 Importantly, using

HS rats, we were able to fine-map these regions to 1-3 Mb resolution, enabling us to identify

a much smaller number of potential candidate genes on chromosomes 2 and 9 (Table 2). We

also identified several novel chromosomal regions linked to bone density phenotypes in HS

rats (Table 2) not found in our F2 studies. On chromosome 9, a QTL was identified which

was linked to several femur density phenotypes (Figure 2B) including distal femur total

(both cortical and trabecular) and distal femur trabecular vBMD as well as femur neck

vBMD. These results indicate that same gene/s may contribute not only trabecular and

cortical compartments of bone mineral density but also influence density at different skeletal

sites even within a given bone. Previous studies demonstrated site-specific genetic

regulation of trabecular and cortical bone density in human and rodents.7,13,47,48 Thus, it is

likely that sets of bone-specific genes might influence density across the different bones and

the genetic architecture within the different combinations of these bone-specific genes might

ultimately regulate the site-specific bone density.

The QTL region for femoral neck cortical vBMD on chromosome 2 in HS rat is syntenic to

human 1q21.3-23.1, where linkage to spine BMD was detected previously.49 The QTL

region for distal femur and femoral neck vBMD on chromosome 9 in HS rat is homologous

to the regions of mouse chromosome 17 (38.3-46.5 Mb) and human chromosome 6

(6p12.3-21.2). Linkage to mouse total body BMD and femur strength were reported before

in this homologous region.50,51 In addition, the human homologous region was previously

linked to femoral neck BMD and osteoarthritis and rheumatoid arthritis QTLs.52-54

Similarly, femur BMC QTL detected on chromosome 10 in HS rat is homologous to the

mouse chromosome 11 (59.4-60.6 Mb), which was previously linked to peak BMD.55,56 The

human homologous region of 17p11.2 harbors gene that when overexpress lead to

osteosarcoma.57 Interestingly, deletion of the human syntenic region on chromosome 18q22

that corresponds to the QTL region on chromosome 13 for lumbar trabecular vBMD in HS

rat was associated with multiple vertebral segmentation defects.58

In this study, we demonstrated that HS rats are a powerful resource for fine mapping of

QTLs for bone mineral density phenotypes. The complexity of the BMD phenotype in the

rat is evident due to the inability to identify any specific sequence variants in the HS founder

strains that fully accounted for BMD QTLs in our recent study.23 This suggests that the

genetic variation underlying the BMD QTL is due to multiple variants inherited from

different founders and may also reflect interactions among the variants. Given the results of

the analysis of the founder animal sequencing data, we have now focused on the

identification of additional BMD QTLs in the HS rat model using conservative genome-

wide significance thresholds. For the bone density QTLs detected, this approach had the
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great benefit of allowing us to delineate a much smaller chromosomal interval and thus

narrower list of potential candidate than the F2 approach. We anticipate that sequencing

studies in the HS offspring in these narrowed regions will be necessary to augment the

founder strain sequence data currently available as part of the HS collaboration.23 The

availability of these data will allow the dissection of the complex genetic interactions among

these sequence variants which likely underlies the BMD phenotypes in the tested animals.
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Fig. 1.
Genome-wide plots for femur BMC (A), femur midshaft vBMD (B), distal femur vBMD

(C), distal femur trabecular vBMD (D), femoral neck vBMD (E), femoral neck cortical

vBMD (F), lumbar BMC (G), lumbar aBMD (H) and lumbar 5 trabecular vBMD (I). The

−log10P values plotted on the Y-axis versus chromosome position on the X-axis. For

comparability with other mapping studies, QTL results are shown at each position regardless

of the conservative RMIP threshold (0.3) employed to select the most robust QTLs for our

report.
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Fig. 2.
Association results for femur BMC on chromosome 10 (A), distal femur vBMD, distal

femur trab vBMD and femoral neck vBMD on chromosome 9 (B), femoral neck cortical

vBMD on chromosome 2 (C) and lumbar 5 trabecular vBMD on chromosome 13 (D). The

−logP values are plotted on the Y-axis vs. the chromosomal position (MB) on the X-axis.

The dashed horizontal lines indicate the threshold value for genome-wide significance

corresponding to FDR=5% (p<3 × 10−6).
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