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Abstract

The prevalence of obesity is growing and now includes at least one-third of the adult population in

the United States. As obesity and dementia rates reach epidemic proportions, an even greater

interest in the effects of nutrition on the brain have become evident. This review discusses various

mechanisms by which a high fat diet and/or obesity can alter the brain and cognition. It is well

known that a poor diet and obesity can lead to certain disorders such as type II diabetes, metabolic

syndrome, and heart disease. However, long-term effects of obesity on the brain need to be further

examined. The contribution of insulin resistance and oxidative stress is briefly reviewed from

studies in the current literature. The role of inflammation and vascular alterations are described in

more detail due to our laboratory’s experience in evaluating these specific factors. It is very likely

that each of these factors plays a role in diet-induced and/or obesity-induced cognitive decline.
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Obesity: a public health issue

The prevalence of obesity is growing and now includes at least one-third of the adult

population in the United States. Another third of the population is characterized as

overweight.1,2 Body mass index (BMI) is used to define overweight and obesity as between

25–30 kg/m2 and over 30 kg/m2, respectively.2 BMI is calculated by dividing weight in

kilograms by height in meters squared (kilogram per square meter).3 With the current

growth of this public health problem, it is projected that overweight and obesity rates will

reach epidemic proportions in the United States during the next decade (as much as 75% of

the population in 2015).2 Comparing these statistics to data collected in 1960 on the

prevalence of obesity in the United States, the current population now includes almost triple

© W. S. Maney & Son Ltd 2013

Correspondence to: Linnea R. Freeman, Ph.D., Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425,
USA. freemal@musc.edu.

NIH Public Access
Author Manuscript
Nutr Neurosci. Author manuscript; available in PMC 2014 November 01.

Published in final edited form as:
Nutr Neurosci. 2014 November ; 17(6): 241–251. doi:10.1179/1476830513Y.0000000092.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the number of obese people (13.4% in 1960 compared to 35.7% in 2010).1,4 Worldwide, it is

estimated that one billion people are overweight or obese.5

Obesity is a risk factor for many conditions including, but not limited to, diabetes,

hypertension, dyslipidemia, stroke, heart disease, certain cancers, and arthritis.1,6 Although

overall mortality rates continue to decline in our country due to medical and technological

advancements, mortality linked to obesity-related disorders is increasing. It is clear that

obesity is damaging to the health and wellness of our population, but biological mechanisms

for its damaging effects are less explored. Future research must focus on the aspects of our

current diet and lifestyle that lead to obesity, and the full extent of obesity-related effects on

all organs of the body, including the brain.

‘The western diet’

One of the greatest factors contributing to the prevalence of obesity is choice of diet. A term

to describe the unhealthy diet eaten by many Americans as well as other westernized

populations is ‘the western diet’. Simply put, it is a diet that contains large amounts of red

meat, refined sugars, high fat foods, and refined grains. This is in contrast to a healthier diet

that is high in fruits, vegetables, lean protein, and fiber.7

Fat consumption has been found to be a key player in the obesity epidemic.7–9 The western

diet often contains large amounts of saturated (SFA) and trans fatty acids (TFA) compared

to a healthier diet containing more n–3 polyunsaturated fatty acids (PUFAs).10,11 The major

sources of SFAs in the United States include fatty meats, baked goods, cheese, milk,

margarine, and butter.8,12,13 Long-term consumption of the ‘western diet’ can lead to

obesity and consequently damaging effects on general health. However, an area that has not

yet been well evaluated is the damaging effects of the ‘western diet’ on the brain. This topic

is the focus of the current review.

High-fat diets and cognition

Dementia by definition is a progressive deterioration in two or more modalities of cognitive

performance. Diagnosis of dementia requires repeated analysis of the subject’s ability to

perform complex tasks, activities of daily living, as well as changes in personality and

mood. Within this review, we primarily refer to ‘cognitive decline’ or ‘cognitive

impairment’ in order to examine a large spectrum of symptoms that may be affected by

high-fat diets and/or obesity.

In the last decade, more scientific interest in nutrition-related effects on brain function has

emerged. Rates of obesity, diabetes, and dementia continue to climb and both retrospective

and prospective studies suggest that obesity and increased consumption of high-fat diets

increases risk for development of dementia.14–20 As early as 1990, Greenwood and

Winocur21 published one of the first studies revealing effects of a high SFA diet on learning

and memory in rats. In this study, 1-month-old Long Evans rats were fed either a high SFA

(lard-based diet, 40% calories from fat), a high PUFA diet (soybean oil-based, 40% calories

from fat), or a standard rat chow diet (Purina, 4.5% w/w) for three months. Rats were

evaluated on three different tasks: Olton’s radial arm maze, a variable interval delayed
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alternation task, and the Hebb-Williams maze series. Rats on the lard-based diet performed

the worst on all three of these tasks, revealing damaging effects of this type of diet on the

brain.21 However, the biological mechanisms involved to cause these effects were not

evaluated at this time.

Following this study, eight more manuscripts were published by Greenwood and Winocur

describing a link between a high fat diet and cognitive function.22–29 Later studies by this

group explored the role of glucose and insulin resistance in the observed decline in cognitive

function. In 2005, they published a review including results from both human

epidemiological studies and rodent experiments that found insulin resistance to be at least

one mechanism by which chronic consumption of a high fat diet is linked to cognitive

decline and dementia.23 At this time, only a few other researchers were exploring the

relationship between high-fat diets and cognition as well as the mechanisms involved. A

manuscript from our research group demonstrated detrimental effects of a high-fat/high-

cholesterol diet on performance in a radial arm maze in middle-aged rats, associated with

reduced hippocampal dendritic integrity and activation of microglial cells in the

hippocampus.30 All rodent studies exploring a correlation between a high-fat diet and

cognitive impairment presented herein are summarized in Table 1.

In human epidemiological studies, it has been shown that intake of a high-fat diet that

includes mostly omega-6 and SFAs is associated with worse performance on a cognitive

task.14,40–43 Furthermore, studies have shown that a diet containing mostly SFAs and TFAs

is associated with increased risk for Alzheimer’s disease (AD).15,40,44 On the other hand, a

lower fat diet consisting of omega-3 fatty acids had a protective effect against cognitive

decline in healthy older subjects.45 It has also been determined that high consumption of

total fats, SFAs, and cholesterol is associated with increased cholesterolemia, risk of

cardiovascular disease, and impaired intellectual function, suggesting that the circulating

levels of cholesterol are closely associated with cognitive performance in humans.46 Ortega

et al.41 and Greenwood and Winocur23 have also found that high-fat diets and those that

lack proper vitamins and minerals consumed late in life can worsen the course of age-related

cognitive decline. All human studies exploring a correlation between a high-fat diet and

cognitive impairment presented herein are summarized in Table 2. During the last decade,

more studies have focused on biological mechanisms for these observed cognitive effects of

high-fat diets. The major proposed biological mechanisms include insulin resistance,

developmental disturbances, altered membrane functioning, oxidative stress, inflammation,

and altered vascularization.32,33,35,45,47,48 A summary of the proposed mechanisms for high-

fat diet-induced cognitive decline is presented in Fig. 1, and will be discussed in detail in the

next section of this review.

Insulin resistance

In a study by McNeilly et al.,32 rats were fed a high-fat diet (45% calories from fat) for 12

weeks which made the rats overweight and induced insulin resistance, as measured by

elevated fasting plasma glucose and insulin levels. The rats consistently performed poorer

than control animals on an operant-based delayed matching to position task.32 This study

revealed a role for insulin resistance on behavioral flexibility. Furthermore, in a recent study
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by McNeilly et al.,36 the authors found that rats fed the high-fat diet (45% calories from fat)

did not reveal any changes in insulin signaling-related proteins in the hypothalamus,

hippocampus, striatum, or cortex. Rats that were treated with metformin had reduced weight

gain and improved insulin sensitivity compared to those on the high-fat diet alone. However,

metformin had no effect on behavioral performance suggesting the effects of insulin

resistance on the brain and cognition include alternate or additional mechanisms. In another

study utilizing diet-induced insulin resistance by Stranahan et al.,33 they fed rats a high fat,

high glucose diet that was supplemented with high fructose corn syrup. The alterations to

energy and lipid metabolism included elevated fasting glucose, cholesterol, and triglyceride

levels which were similar to those described for clinical diabetes. After 8 months on this

diet, the rats performed worse than controls on a spatial learning ability task, had reduced

hippocampal dendritic spine density, reduced long-term potentiation (LTP) at Schaeffer

collateral CA1 synapses, and reduced hippocampal brain-derived neurotrophic factor

(BDNF) levels.33 With the increasing incidence of type II diabetes in the US population, the

secondary effects of this disease including cognitive decline must be explored. In fact, recent

work by Craft et al. describes an important link between insulin resistance and AD, with

intranasal administration of insulin as a novel intervention candidate to improve cerebral

glucose metabolism and cognitive ability.20,49–51 This work is new and growing; it may

reveal important connections between diabetes and AD, leading to novel treatment options

for this severe neurological disorder.

Oxidative stress

It has previously been determined that chronic elevation of oxidative stress by diet or by

genetic alterations can lead to cognitive decline.52,53 In a study by our laboratory using a

transgenic mouse model for Down syndrome, with a triplicated segment of murine

chromosome 16, we discovered cognitive impairment in these mice associated with

increased oxidative stress in brain54 further contributing to the literature that states oxidative

stress plays a role in cognitive decline. In our study, vitamin E supplementation in the diet

prevented age-related cognitive impairment, suggesting that antioxidant supplementation

may prevent brain-related oxidative stress effects and enhance cognitive performance.54

Additional research has focused on the ability of antioxidant supplementation to reverse

high levels of oxidative stress as well as declines in neuronal function and cognitive

performance. For example, the Gomez-Pinilla laboratory investigated the interaction

between increased oxidative stress from a high SFA diet (lard-based), BDNF levels, and

cognition performance in a spatial task.31 It was found that high-fat diet-induced oxidative

stress led to decreased levels of BDNF and impaired performance on the maze. Furthermore,

treatment with vitamin E reversed these effects31 adding support to the hypothesis that

oxidative stress causes diet-induced damage to the brain and cognition. This has also

recently been shown following administration of a high-fat high-carbohydrate diet (HFCD).

Rats that received the HFCD for 6 weeks had reduced levels of superoxide dismutase and

catalase activity and increased thiobarbituric acid reactive substances and glutathione

oxidase levels in the hippocampus. These animals were also impaired on the radial arm

water maze revealing deficits in spatial learning and memory. However, rats given vitamin E

concurrently with the HFCD had improved maze performance as well as reduced oxidative

stress measures.37 In a study by Beltowski et al. in 2000,55 it was also found that a high-fat
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diet increases the tissue levels of free radicals. In a recent study by Morrison et al.,35

C57Bl/6 mice were fed either a ‘western diet’ containing 41% calories from fat, or a higher

fat lard diet containing 60% calories from fat for 16 weeks. The very high-fat lard diet, but

not the ‘western diet’ led to oxidative damage (as measured by protein carbonyls) in the

hippocampus and impaired retention on a behavioral test (the 14-unit T-maze),35 therefore

suggesting a type of ‘dose–response’ effect of the diets on oxidative stress measures in

hippocampus. Lastly, we have recently shown elevated levels of total ROS in the brain due

to diet-induced obese (DIO). Mice fed a high-fat diet (45% kcals from fat) had significantly

higher levels of total ROS, superoxide, and peroxynitrite compared to mice fed a control diet

(10% kcals from fat). The level of oxidative stress was highly related to the level of

adiposity. The DIO animals also displayed impairments on a cognitive task.38 These studies

present a role for oxidative stress in diet-induced cognitive impairment, and clearly suggest

that oxidative stress is involved in cognitive impairment caused by high-fat diets.

Inflammation

IL-1, IL-6, and TNF-α are examples of pro-inflammatory cytokines orchestrating the

inflammatory response to many stimuli, both systemically and in the brain. Most

importantly, these cytokines have also been shown to cross the blood brain barrier (BBB).

Pro-inflammatory cytokines can also be produced by cells within the brain parenchyma,

specifically by microglial cells, astrocytes, and endothelial cells of the BBB.56–58 IL-1 and

IL-6 receptors are located all over the brain, but they are especially enriched in the

hippocampus,58 a critical component of the learning and memory circuitry. Pro-

inflammatory cytokines have been shown to have direct detrimental effects on hippocampal

circuitry and cognition. For instance, a systemic or intraventricular IL-1β injection gives rise

to spatial memory impairments in rats,59,60 and significant effects of injected IL-1β on the

win-shift paradigm of the radial arm maze have been reported.61 Bickford et al. have

previously shown that an indirect IL-1 blockade, using a caspase ***-1 inhibitor, has

significant improvement effects on memory in aged rats, suggesting that IL-1 is involved in

impaired performance on memory tasks with aging.62 IL-1 has also been shown to be an

important player in inflammation-induced memory impairments in rodents, following a

chronic inflammation paradigm.63 Chronic inflammation due to an intra-hippocampal

injection of heat-killed bacillus Calmette-Guérin gave rise to impaired performance in a

hippocampal dependent task (the Y-maze), but was alleviated by the IL-1 receptor

antagonist IL-1Ra.63 Pro-inflammatory cytokines have been found to impair hippocampal

development, and alterations in their levels can also affect the hippocampus into

adulthood.64 Specifically, IL-1 has been shown to inhibit N-Methyl-D-aspartate (NMDA)-

mediated and non-NMDA mediated synaptic potentiation, LTP, and glutamate release in the

hippocampus,65 providing a physiological explanation for inflammation-induced memory

impairment in rodent models. Furthermore, IL-1 has been shown to affect learning and

memory, BDNF expression, neurogenesis, and microglial activation,66 as indicated in the

schematic drawing in Fig. 1. As outlined here, inflammation can cause damage to the brain,

especially in the hippocampus. However, inflammation caused by consumption of a high fat

diet has not yet been well studied.
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A few recent studies from our laboratory and others have begun to investigate the role of a

high fat diet on neuroinflammation and cognitive decline. Thirumangalakudi et al.67 fed a

high fat/high cholesterol diet for 8 weeks to normal C57BL/6 mice and low density

lipoprotein receptor (LDLR)-deficient mice (LDLR−/−). Mice fed the high fat/high

cholesterol diet showed impaired working memory performance compared to controls and

the LDLR−/− mice also had impaired working memory ability regardless of the diet they

were fed. The LDLR−/− mice were used in this study because they naturally develop

moderate hypercholesterolemia, a potential inducer of neuroinflammation and vascular

damage. The high fat diet-fed and LDLR−/− mice revealed increased activated microglia

and astrocytes in the hippocampus and increased mRNA expression of various pro-

inflammatory cytokines/mediators such as TNF-α, IL-1-β, IL-6, nitric oxide synthase 2, and

cyclooxygenase 2 in the hippocampus.67 Pistell et al.68 fed a high fat diet to C57BL/6 mice

as well and found increased body weights, impaired cognition as measured by the Stone T-

maze, increased brain inflammation, and decreased BDNF levels. Cytokine protein levels

were measured in the cortex and revealed an increase in TNF-α, IL-6, and the chemokine

monocyte chemotactic protein-1. Interestingly, these effects were only found in the high fat

diet that consisted of 60% calories from fat (pork fat) but not the high fat diet that consisted

of 41% calories from fat (butterfat and corn oil) with 29% sucrose.68 In multiple studies

from our laboratory, we have shown morphological changes within the rat hippocampus

following consumption of a high fat diet, mostly consisting of a combination of

hydrogenated coconut oil (10% of diet) and 2% cholesterol.30,34,69,70 Consistent throughout

our studies has been an increased number of activated microglia in rats fed the high fat diet

compared to control-fed rats, which likely points to a role of neuroinflammaton in diet-

induced neurodegeneration and cognitive disturbances.30,34,69,70 The activated microglia

were labeled with an MHC Class II marker, OX-6, and were abundant particularly in the

white matter overlying the hippocampal formation. In one of our studies, treatment of

middle-aged rats with different sources of fat or increased cholesterol at equal

concentrations to the combined high-fat diet were tested in order to better understand which

component of the ‘Western Diet’ contributes to hippocampal morphological changes

including the increased abundance of activated microglia. We determined that all

components of this complex diet, including SFAs, TFAs, and cholesterol led to

morphological alterations in hippocampal morphology and inflammatory activation, marked

by increased activation of microglial cells, with SFAs having the greatest effect.34

However, microglia have a complex role in the brain. Although a set number of quiescent

microglial cells are always present, and needed for normal function, activation of these

inflammatory cells is typically correlated with the occurrence of an inflammatory event.56

For example, a single injection of the endotoxin lipopolysaccharide (LPS) results in a

significant increase in activated microglia in the brain.71,72 It is well known that these cells

function as macrophages in the brain, with the job of surveying the area and controlling any

disturbance/foreign invader via phagocytosis.71 Microglia can release either pro- or anti-

inflammatory cytokines and chemokines when stimulated.56 If they are exposed to a chronic

stimulus, activated microglia remain ‘on’ and can also release toxic free radicals, as well as

anti-inflammatory cytokines, including IL-10 and TGF-β.56,73,74 This suggests that

microglial cells can be both ‘bad’ and ‘good’ for brain function depending on a set of
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triggers that are determined both by internal and external events. Microglia can switch

between the classical phenotype (inflammatory), also called M1, and the alternative,

neuroprotective, phenoptype, also called M2.74 Therefore, when activated microglia are

visualized using immunohistochemical staining, it is difficult to discern which phenotype is

expressed: M1 or M2. In support of the damaging role of microglia, the studies by

Thirumangalakudi et al.67 and Pistell et al.68 reported increased levels of pro-inflammatory

cytokines following high-fat diet treatment, suggesting a compensatory ramping up of the

immune defense mechanisms. The source of inflammatory molecules is also an important

factor that needs to be better understood. In a recent study, Buckman et al. demonstrated

recruitment of peripheral immune cells into the CNS due to DIO. Using green-fluorescent

protein (GFP) labeled peripheral immune cells, flow cytometry was utilized in order to

quantify the number of immune cells present in the brain. Mice fed a high fat diet had a 30%

increase in GFP+ cells compared to control mice. Additionally, the immune cells were

further characterized and it was determined that they displayed characteristics of microglia/

macrophages and were found in the parenchyma suggesting recruitment of immune cells

into the CNS.75 However, it is still difficult to conclude the role of activated microglia in

diet-induced neurodegeneration. This is a ‘chicken or egg’ –type question because we have

not shown whether the activated microglia are the cause of neuronal damage or simply

helping to remove cellular debris following neuronal loss. In future studies, the relationship

between different microglial phenotypes should be examined more closely, in order to

design better treatment paradigms during inflammatory insults to the brain. Nevertheless,

inflammation as a key player in diet-induced and/or obesity-induced cognitive decline

continues to be at the top of the list for mechanisms involved in this process.

Dysfunctional vascularization

Few studies have explored the correlation between a high fat diet or obesity and cerebral

vascular changes. Studies have mostly examined the peripheral vasculature in these

conditions or secondary effects of obesity/high fat diets such as metabolic syndrome and its

effects on vasculature. The current studies that have explored the relationship between a

high fat diet and altered cerebrovascularization include studies from our laboratory as well

as a few others. For example, Constantinescu et al.76 fed a hyper-lipidemic diet to hamsters

and reported not only fatty streaks in the carotid artery after 3 months on the diet and

atherosclerotic plaques after 6 months, but altered micro-vascular pathology in the cerebral

cortex as well. The changes to brain micro-vessels were reported to include: irregularly

shaped vessels with large perivascular spaces, enlarged endothelial cells and some lumen

filled with lipoprotein particles.76 In a study with LDLR−/− mice and C57BL/6J control

mice fed either a high cholesterol diet or control diet, the LDLR−/− mice (regardless of diet)

and control mice fed a high cholesterol diet revealed an increased microvessel diameter,

vascular degeneration, and thicker basement membranes; features which were described to

be similar to those found in an AD brain.77 In terms of diet-induced effects on the BBB,

Kanoski et al. found decreased mRNA for claudin-5 and claudin-12, two tight junction

proteins found at the BBB, in rats fed a high-energy diet compared to those fed a control

diet. Furthermore, leakage of the BBB following the high-energy diet was determined with

sodium fluorescein passage from the blood to the brain; interestingly, this was only found in

the hippocampus.78 A follow-up study with rats fed the high-energy diet also found deficits
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in completing behavioral tasks. Rats were split into two groups: high-energy diet resistant

(HE-DR) and high-energy diet-induced obese (HE-DIO). The HE-DIO revealed leakage of

sodium fluorescein into the hippocampus and impairments on a hippocampal-dependent

serial feature negative task. The HE-DR group did not exhibit BBB permeability or issues

with the behavioral task and neither group was impaired on a hippocampal-independent

simple discrimination problem.39 In a recent study from our laboratory, we also explored the

effects of a high-fat diet on the BBB, with a focus on the hippocampus.69 First, no

significant differences in glucose transporter 1 immunoreactivity (Glut-1; a transporter

involved in moving glucose across the BBB and is therefore abundant on blood vessels in

the brain) were found in the cornus ammonis 1 (CA1), cornus ammonis 3 (CA3), or dentate

gyrus of the hippocampal formation. BBB integrity was measured using the antibody

SMI-71 (an antibody specific to rat endothelial barrier protein, EBA), which has been shown

in previous studies to accurately label an intact BBB.79,80 A significant decrease in SMI-71-

ir was observed in the CA1 region of the hippocampus as well as parietal cortex of HFHC-

fed rats. There were no significant differences observed in the CA3 region of the

hippocampus, suggesting a high regional sensitivity to this type of diet. Results from the

SMI-71 immunofluorescence experiment point to a possible disruption of the BBB for

HFHC-treated animals. When BBB proteins such as the tight junction protein, occludin, and

scaffold protein, ZO-181,82 were evaluated, decreased expression of occludin was found on

blood vessels throughout the hippocampus. Interestingly, an up-regulation of occludin was

found in neurons of the dentate gyrus and mossy fibers of the CA3 region (an area spared by

BBB disruption according to our SMI-71 results), suggesting a possible compensation in

neuronal occludin expression following the decrease observed in vascular occludin

expression. These findings add to the hypothesis that a high-fat diet can alter vascular

components of the brain, leading to BBB disruption and dysfunction of brain endothelial

cells, but more studies are necessary to determine the direct mechanisms. A summary of

plausible events following diet-induced changes in the brain vasculature is shown in Fig. 1.

Taken together, these recent studies point to an alteration in cerebro-vascularization

following a high-fat diet. Future studies should include exploration of the role of high-fat

diets on cerebral blood flow and BBB integrity, and the subsequent effects on cognition as

well as the interaction between inflammatory and vascular factors upon hippocampal

function.

Contribution of the aging process

While high fat diet-induced neuroinflammation and cognitive decline have not been

extensively explored, the role of neuroinflammation in aging and cognitive decline has been

well studied. In fact, neuroinflammation has been proposed to be in the center of

pathological alterations occurring in almost all age-related neurodegenerative diseases, such

as amyotrophic lateral sclerosis (ALS), AD, and Parkinson’s disease, as well as normal

aging.83–85 During the aging process, there is a shift in the brain toward a pro-inflammatory

state which leads to a chronic increase in activation of microglial cells. Studies have

reported increased levels of TNF-α, IL-1, and IL-6 in brain tissue and serum of aged

humans, as well as animal models.45,86,87 Levels of cyclooxygenase, lipoxygenase,

prostanoids, and eicosanoids, all components of inflammatory pathways, have also been

shown to be elevated in the brain with aging.45,88,89 Furthermore, it has been shown that
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there is a progressive deterioration of the immune response with increased aging, including

time to build a response, level of activation, and speed in which the response is ended.90–92

This altered immune response occurs in the periphery as well as in the brain.93 It has also

been shown that this process is coupled to a decrease in anti-inflammatory molecules which

together create an environment for an exaggerated immune response.94 Age-induced

neuroinflammation has been correlated with neurodegeneration and cognitive decline.95–97

Cytokines such as TNF-α and IL-6 have demonstrated a role in age-related

neuroinflammation and neuronal dysfunction. However, IL-1 beta has been described as

especially important for inflammatory changes occurring with aging.98–100 For example,

Trompet et al.101 revealed better cognitive performance in an elderly population that had a

genetic variation in the IL-1 beta converting enzyme (ICE) causing lower levels of IL-1 beta

compared to those without the genetic variation.

Aging itself can also lead to disrupted cerebral blood flow and decreased angiogenesis.102 In

fact, many human studies have revealed increased BBB permeability for elderly, healthy

subjects compared with young, healthy subjects.103,104 Changes also occur during aging at

the level of endothelial cells such as a decreased number of endothelial cell mitochondria,

impaired endothelium dependent vasodilation, and a loss of elongation in endothelial

cells.45,105–107 The mechanisms proposed to be involved in age-related BBB breakdown

include increased oxidative stress,108 inflammation and hypertension.109–111 Further clinical

evidence for vascular changes during aging includes visualization of white matter hyper-

intensities (WMHs) which occur in 30% of healthy adults over 60 years old.112 WMHs are

observed on T2-weighted magnetic resonance imaging scans as areas with increased signal.

The reason for WMHs is controversial; however, they are believed to be involved in

ischemia, hypoperfusion, BBB leakage, inflammation, and/or neurodegeneration.113–115

Neuropathological evaluations post-mortem have revealed various findings to explain

WMHs and include arteriosclerosis, demyelination, and gliosis.116,117 While age is the

strongest predictor of WMHs, hypertension, atherosclerosis, and decreased cortical blood

vessel density have been found to be correlated as well.118–121 In vitro experiments have

begun to explain at least one mechanism by which opening of the BBB occurs with aging. It

is known that aging is associated with increased inflammation122,123 and that microglia and

astrocytes can release pro-inflammatory cytokines such as IL-1, IL-6, and TNFα.124–126

These pro-inflammatory cytokines activate cerebral endothelial cells to produce eicosanoids

which then open the BBB.127 It has also been determined that the type I IL-1 receptor is

expressed directly on cerebral endothelial cells further explaining the mechanism by which

increased inflammation can open the BBB127 (Fig. 1). Increased permeability of the BBB

leads to migration of monocytes across the barrier, as well as infusion of other pro-

inflammatory cytokines, such as TNFα, and further perpetuates an already increased

neuroinflammatory environment caused by aging. This phenomenon has been observed in

cerebral inflammatory diseases such as multiple sclerosis and bacterial meningitis.128,129

However, this has not been thoroughly evaluated in a model producing chronic

inflammation from a poor diet or obesity. The only evidence to date that alludes to this

connection include the following: (i) high-fat diet consumption and obesity increases risk of

cerebral stroke130 possibly by altering cerebral perfusion45,131 and (ii) in a study by Osmond

et al.,132 adult obese Zucker rats that exhibited moderate hypertension and severe insulin
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resistance also revealed increased cerebral vascular myogenic tone and inward cerebral

vascular remodeling.132 The contributions of these age-related changes to inflammation and

vascularization to obesity have important implications for the susceptibility and progression

of cognitive decline.

Summary

As described above, a number of factors have been proposed to cause high-fat diet-induced

damage to the brain, especially with aging, including oxidative stress, insulin resistance,

inflammation, and changes to vascularization/BBB integrity. The contribution of insulin

resistance, essential fatty acid consumption, and oxidative stress may be coordinated with

inflammatory and vascular alterations to cause overall changes in brain function with

consumption of high-fat and high-glycemic index-type diets. However, not enough studies

have been conducted to fully understand the role of each of these cascades for high-fat-

induced cognitive impairment. Based on the epidemic proportions of diabetes and obesity in

the United States today, it is important to reveal these factors. A diagram illustrating our

current thoughts regarding mechanisms involved, as outlined in this review is shown in Fig.

1. Our studies strongly suggest that aged individuals are more susceptible to damaging

effects of high-fat diets than young subjects, making diet intervention and exercise programs

even more valuable from the standpoint of preventing further cognitive decline in elderly

patients.
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Figure 1.
Possible mechanisms of diet-induced cognitive decline. Mechanisms described in this

review likely act in concert to cause cognitive decline. These mechanisms include, but are

not limited to, altered vascularization and BBB integrity, inflammation, and oxidative stress.

In this diagram, we show activation of endothelial cells which increases BBB penetration

allowing more inflammatory molecules and ROS to enter the brain. Then, microglial cells

perpetuate the inflammatory cascade causing damage to neuronal health.
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Table 1

Rodent studies: effect of diet on cognition

Diet composition Cognitive results Postulated biological
mechanism

References

Lard-based diet (40% calories from fat) Worse performance on working
 memory and retention

Not discussed 21

Lard & corn oil (39% energy) Worse performance on Morris water
 maze

Oxidative stress, reduced BDNF
 levels

31

High fat diet (45% calories from fat) Worse performance on operant-
 based delayed matching to
 position task

Insulin resistance 32

High fat, high glucose diet supplemented
 with high fructose corn syrup

Worse performance on a spatial
 learning task

Insulin resistance, Reduced
 BDNF levels

33

High saturated fat and cholesterol Worse performance on the Water
 Radial Arm Maze

Inflammation, reduced dendritic
 integrity in the hippocampus

34

‘Western diet’ (41% calories from fat) or
 Lard (60% calories from fat)

Impaired retention on behavioral test
 for 60% fat but not ‘Western diet’

Oxidative stress 35

High fat diet (45% calories from
 fat) + Metformin

Improved performance on operantbased
 task

Insulin sensitivity 36

High-fat high-carbohydrate + Vitamin E Improved performance on Water
 Radial Arm Maze

Oxidative stress 37

High fat diet (45% calories from fat) Impaired performance on Fear
 Conditioning Task

Oxidative stress 38

High fat diet + Sugar Impaired performance on serial
 feature negative task

Vascular/adiposity 39
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Table 2

Human studies: effect of diet on cognition

Diet composition Cognitive results Postulated biological
mechanism

References

High linoleic acid intake Worse performance on Mini Mental State Exam Oxidative stress 14

Poor diet resulting in impaired
 glucose tolerance

Worse performance on Mini Mental State Exam Disturbed glucose
 metabolism

47

Low intake of monounsaturated and
 saturated fat

Best performance on the Mini-Mental State
 Examination and Pfeiffer’s Mental Status
 Questionnaire

Oxidative Stress, lack of
 micronutrients such as
 vitamin C, folate, zinc

41

Higher intakes of saturated fat and
 trans-unsaturated fat

Decline in performance on: East Boston Tests
 of Immediate and Delayed Recall, the Mini-
 Mental State Examination, and the Symbol
 Digit Modalities Test

Cholesterol levels –
 atherogenic

42

High intake of n-3 polyunsaturated
 fatty acids and docosahexaenoic
 acid (22:6n-3)

Reduced risk of Alzheimer’s disease not discussed 44

Increased caloric intake and
 increased cholesterol intake

Poorer performance on simple reaction time,
 symbol-digit substitution, and serial digit
 learning

not discussed 43
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