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Abstract: Hypoxia is a pathological condition arising in living tissues when oxygen supply does not adequately cover 
the cellular metabolic demand. Detection of this phenomenon in tumors is of the utmost clinical relevance because 
tumor aggressiveness, metastatic spread, failure to achieve tumor control, increased rate of recurrence, and ulti-
mate poor outcome are all associated with hypoxia. Consequently, in recent decades there has been increasing 
interest in developing methods for measurement of oxygen levels in tumors. Among the image-based modalities for 
hypoxia assessment, positron emission tomography (PET) is one of the most extensively investigated based on the 
various advantages it offers, i.e., broad range of radiopharmaceuticals, good intrinsic resolution, three-dimension-
al tumor representation, possibility of semiquantification/quantification of the amount of hypoxic tumor burden, 
overall patient friendliness, and ease of repetition. Compared with the other non-invasive techniques, the biggest 
advantage of PET imaging is that it offers the highest specificity for detection of hypoxic tissue. Starting with the 
2-nitroimidazole family of compounds in the early 1980s, a great number of PET tracers have been developed for 
the identification of hypoxia in living tissue and solid tumors. This paper provides an overview of the principal PET 
tracers applied in cancer imaging of hypoxia and discusses in detail their advantages and pitfalls. 
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Introduction 

Hypoxia is a pathological condition arising in liv-
ing tissue when the oxygen supply does not 
adequately cover the cellular metabolic de- 
mand. This phenomenon is also present in the 
vast majority of solid tumors and has been 
associated with a tendency toward poor prog-
nosis [1]. The first to demonstrate the presence 
of hypoxia in human tumors were Tomlinson 
and Gray in the early 1960s [2]. So far we have 
evidence that up to 60% of locally advanced 
solid tumors are characterized by areas of 
reduced (hypoxia) or almost absent oxygen sup-
ply (anoxia) [3]. Detection of this phenomenon 
in tumors is of the utmost clinical relevance, 
because tumor aggressiveness, metastatic 
spread, failure to achieve tumor control, 
increased rate of recurrence, and ultimate poor 
outcome are all associated with hypoxia [4].

Onset of hypoxia in tumors is often the result of 
abnormal perfusion, which is typical of tumor-
related neoangiogenesis and predominantly 
causes a transient hypoxia (acute hypoxia). In 
other cases hypoxia is caused by insufficient 
oxygen diffusion due to increased distance 
between the involved tissue and the blood sup-
ply (chronic hypoxia) or, to be more specific, a 
distance exceeding 100 µm from the nearest 
blood vessel, this being the diffusion distance 
of soluble oxygen [2]. Another mechanism of 
hypoxia induction is altered oxygen transport, 
such as occurs in disease- and/or treatment-
related anemia [1, 3, 5-7].

The hypoxia epiphenomenon is translated into 
a downstream cascade of cellular adaptation 
mechanisms and is associated with various 
changes in gene expression, mostly mediated 
by the hypoxia-inducible factors 1 and 2 (HIF-1α 
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and HIF-2) [5]. As reported by Post and Van 
Meir, the level of HIF gene activation is a func-
tion of oxygen concentration and increases 
exponentially when O2 levels fall below 5% [8]. 
In general the median pressure of oxygen (pO2) 
at which living tissues experience hypoxia is 
cited as around 8-10 mmHg [9, 10]. At these 
oxygen levels, HIFs will trigger activation of 
genes involved in glycolysis, cell proliferation, 
cell survival, angiogenesis, and metastatic 
invasion [5, 11]. This pattern of gene expres-
sion alters the malignant potential of tumors, 
following which cancer cells can become resis-
tant to radiation treatment and chemotherapy 
[12, 13].

Consequently, in recent decades there has 
been increasing interest in developing methods 
for measurement of the levels of oxygen in 
tumors. These methods can be invasive, such 
as the polarographic O2 sensor (Eppendorf 
GmbH, Hamburg, Germany), or non-invasive, 
mainly based on imaging techniques [12]. 
Imaging modalities are undoubtedly more 
appealing for the assessment of tumor hypoxia 
because they guarantee all-encompassing 
visualization of the neoplastic tissue and can 
identify the phenomenon even at sites inacces-
sible to invasive procedures. Among the many 
techniques now available are optical-based 
methods, magnetic resonance imaging (MRI), 
and nuclear medicine techniques [14, 15]. 
Some of their principal characteristics and limi-
tations are summarized in Table 1, although an 
in-depth understanding of the value of each 
modality would require a more extensive report, 
which is beyond the scope of this review 
[14-18]. 

Among the image-based modalities for hypoxia 
assessment, positron emission tomography 
(PET) is one of the most extensively investigat-
ed based on the various advantages it offers: 
(a) a broad assortment of radiopharmaceuti-
cals; (b) good intrinsic resolution (5 mm); (c) 
three-dimensional (3D) tumor representation; 
(d) possibility of semiquantification/quantifica-
tion of the hypoxic tumor burden; (e) overall 
patient friendliness, and (f) ease of repetition 
[19]. Compared with the other non-invasive 
techniques, however, the biggest advantage of 
PET is that it displays the highest specificity for 
hypoxic tissue [20].

The object of the current paper is therefore to 
provide an overview of the principal PET radio-

pharmaceuticals applied in cancer imaging of 
hypoxia and to discuss in detail their advantag-
es and pitfalls. 

PET imaging of hypoxia

Starting with the 2-nitroimidazole family of 
compounds in the early 1980s [15, 21], a great 
number of PET tracers have been developed for 
the identification of hypoxia in living tissues 
and solid tumors (Table 2). The driving force 
behind this development has been the need for 
highly specific imaging “probes” able to over-
come the inconsistent correlation between 
findings on other imaging modalities, including 
PET with 18F-fluorodeoxyglucose (18F-FDG), and 
the hypoxia levels determined in tumor tissue 
[3, 15, 22].

18F-fluorodeoxyglucose (18F-FDG)

Undoubtedly 18F-FDG PET remains a corner-
stone for tumor evaluation, response assess-
ment, and disease prognostication, but it 
requires careful handling when trying to depict 
hypoxic tissue. The fact that tumor hyperglycol-
ysis due to up-regulation of glucose transport-
ers (GLUTs) and glycolytic enzymes can be driv-
en by HIF-1α [22, 23] offers some justification 
for the use of 18F-FDG as a surrogate marker of 
hypoxia [24]. Moreover, we know that under 
reduced levels of oxygen (↓pO2), living cells 
switch their metabolic pathway for ATP produc-
tion to anaerobic glycolysis, also known as the 
Pasteur effect [25].

However, in the case of hypoxic tumor cells, a 
wide overlap exists between 18F-FDG uptake 
due to aerobic glycolysis, the so-called Warburg 
effect [26], and anaerobic glycolysis [25, 27] 
(i.e., normoxic and hypoxic conditions, respec-
tively) (Figure 1). The fact that HIF-1α expres-
sion can be observed also in non-hypoxic tumor 
regions [28, 29] suggests that other factors 
can indirectly influence glucose metabolism 
and 18F-FDG uptake in those areas [22]. It 
therefore appears comprehensible why, in 
many experiments, the correlation between 
18F-FDG uptake and the level of tumor hypoxia 
has not been confirmed or conflicting results 
have been obtained [3, 30]. These shortcom-
ings apply to the imaging of a variety of tumor 
types, including head and neck carcinoma, lung 
cancer, sarcomas, breast cancer, and brain 
tumors [22, 31-38]. For instance, in two differ-
ent studies of, respectively, 24 and 36 patients 
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Table 1. Examples of non-invasive methods for hypoxia determination in living tissues [14-18]
Modality Technique Limitations

Optical-based Phosphorescence Infusion of water-soluble phosphor probes into the 
vasculature.

The measurement represents the vascular 
pO2, not tissue pO2.

Near-infrared spectros-
copy (NIRS)

Non-invasive assessment of hemoglobin (Hb) 
saturation.

The measurement provides information on 
vascular oxygenation, but not on tissue pO2.

MRI-based Blood oxygen level-depen-
dent magnetic resonance 
imaging (BOLD MRI)

BOLD images reveal the changes in the amount of 
oxygen bound to hemoglobin in blood owing to de-
oxyhemoglobin, which is a paramagnetic substance.

The measurement provides information on 
changes in blood oxygenation, but not on 
the absolute oxygen concentration in tissue.

19F-MRI or NMR (nuclear 
magnetic resonance) 

Perfluorocarbons (PFCs) are injected intravenously 
and their 19F spin lattice relaxation rate (R1) varies 
linearly with the dissolved oxygen concentration.

The relaxation rate of 19F may depend on 
other physiological factors present in the 
tissue and not only on O2 concentration.

Electron paramagnetic 
resonance imaging (EPRI)

Use of implantable paramagnetic particulates or 
soluble probes, intravenously injected, that physi-
cally interact with oxygen.

The molecules may predominantly distribute 
in the vasculature, thus biasing in part 
measurements of tissue oxygenation.

Proton–electron double 
resonance imaging (PE-
DRI)

Injection of an external probe that has unpaired 
electrons and use of a strong EPR impulse.

The molecules may predominantly distribute 
in the vasculature, thus biasing in part 
measurements of tissue oxygenation.

DCE-MRI (dynamic Gd-
DTPA-enhanced MRI)

Injection of contrast agent and determination of 
vasculature perfusion/permeability.

Low specificity, because the measurement 
provides information on both vascular and 
tissue oxygenation.

Nuclear-based Single-photon emission 
computed tomography 
(SPECT)

Injection of gamma (γ) emitting radiopharmaceuti-
cals  selective for hypoxic tissue. High specificity

Limited resolution dependent on voxel-
based distribution of hypoxia.

Positron emission tomog-
raphy (PET)

Injection of positron (β+) emitting radiopharmaceuti-
cals  selective for hypoxic tissue. High specificity.

Limited resolution compared to MRI and 
optical methods, but superior to SPECT. 

with head and neck squamous carcinoma [31, 
33], direct comparison of 18F-FDG uptake and 
hypoxia determination using a polarographic O2 
sensor documented a lack of correlation. 
Similarly, no correlation of glucose metabolism 
on 18F-FDG PET and hypoxia was observed in 
non-small cell lung cancer (NSCLC) patients 
[32-34]. These data are not to be considered 
absolutely negative, because 18F-FDG has been 
documented to be capable of defining more 
aggressive tumor types, also correlated with 
HIF-1α expression, in patients with gastric car-
cinoma [39] or tongue cancer [40], as well as in 
those with both the above-mentioned neopla-
sia, i.e., NSCLC [23, 27] and oral squamous cell 
carcinoma [40, 41].

In summary, the limitations on the specific 
application of 18F-FDG for the detection of 
hypoxia persist, and in the case of tumor imag-
ing it is advisable to combine this tracer with 
other hypoxia-avid ones in order to achieve a 
comprehensive assessment of the tumor char-
acteristics [25].

Nitroimidazole family of compounds

18F-fluoromisonidazole (18F-FMISO)

The fluorinated nitroimidazole derivative 
18F-fluoromisonidazole, or 18F-FMISO, is the 

most widely studied PET tracer for hypoxia 
imaging. It was first developed for this purpose 
in 1986 [82, 83] and since then has been 
extensively used for the detection of many 
tumor types in both the preclinical and the clini-
cal context [3, 15]. Like the other compounds in 
the nitroimidazole family, this tracer is passive-
ly diffused through the cell membrane owing to 
its lipophilicity, and once within the intracellular 
environment it is reduced into R-NO2 radicals by 
the nitroreductase enzyme (NTR) (Figure 1). 
This process is still reversible and when the cell 
is well oxygenated, the tracer is not entrapped 
and can freely flow back into the extracellular 
environment. Conversely, in the presence of 
reduced levels of oxygen (pO2 <10 mmHg) the 
process of 18F-FMISO reduction continues slow-
ly; the consequence is the progressive produc-
tion of R-NHOH compounds that bind covalently 
to intracellular molecules, and ultimately 
entrapment of the tracer within the cell [59, 84, 
85]. 

The amount of 18F-FMISO uptake is therefore 
influenced by the O2 level in tumor tissue, as is 
confirmed by the good correlation observed 
between tracer uptake and pO2 polarography 
[32, 33] or immunohistochemical determina-
tion of hypoxia [86, 87]. However, the time line 
of the above-mentioned processes is rather 
long for an 18F-fluorine labeled tracer (T1/2 109 
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Table 2. Principal radiopharmaceuticals applied in PET imaging of tumor hypoxia
Uptake mechanism Tracer Tumors imaged Benefits Limitations
Pasteur effect (anaerobic glycolysis) 
[25] 

18F-FDG (18F-fluorodeoxyglucose) NSCLC [23, 27, 32, 37]  
Head and neck tumors [31]  
Oral squamous cell carcinoma [40, 41] 
Gastric cancer [39]

Good correlation with tumor aggressiveness and 
prognosis 
Easily reproducible and broad availability

Overlap between uptake in 
normoxic (Warburg effect) [26] 
and hypoxia tumor tissue

Nitroimidazole-like uptake: reduction 
into RNO2 radicals and RNHOH com-
pounds in hypoxic conditions.  
Then covalent binding to macromol-
ecules [21, 59]

18F-MISO (18F-fluoromisonida-
zole)

Head and neck tumors [35, 42-45]  
Locally advanced HNSCC [35, 46]  
Glioblastoma multiforme (GBM) [37, 47, 48]  
Breast cancer [49]  
NSCLC [32, 33, 50]  
Renal cell carcinoma [51]

Broadest evidence of value as a hypoxia tracer.  
Good correlation with immunohistochemistry and 
prognosis in most cases. 
Good availability

Lack of correlation in all tumors 
Low tumor-to-background ratio 
Variable reproducibility

18F-FAZA (18F-fluoroazomycin-
arabinozide)

Head and neck tumors [52, 53]  
Cervical cancer [54]  
Prostate cancer [55]  
NSCLC [56, 57]  
Rectal cancer [58]

Good correlation with immunohistochemistry and 
prognosis in most cases.  
Faster diffusion and clearance with slightly higher 
tumor-to-background ratio than 18F-MISO.

More limited evidence com-
pared to 18F-MISO.

18F-FETNIM (18F-fluoroerythroni-
troimidazole)

NSCLC [60]  
Esophageal cancer [61]

Promising tracer with possible correlation with 
outcome.  
Slightly higher tumor-to-background ratio than 
18F-MISO.

Limited evidence compared to 
18F-MISO.

18F-EF5 (18F-2-nitroimidazol-
pentafluoropropyl acetamide)

Brain tumors [62]  
Soft tissue sarcoma [63]  
Head and neck tumors [64]

Promising tracer with possible correlation with 
outcome

Limited evidence.

18F-EF3 (18F-2-nitroimidazol- tri-
fluoropropyl acetamide)

Rats bearing syngeneic rhabdomyosarcoma 
tumours [65]  
Head and neck tumors [66]

Promising tracer. Very limited evidence, mostly 
preclinical.

18F-FETA (18F-fluoroetanidazole) Mice bearing MCF-7, RIF-1, EMT6, 
HT1080/26.6, and HT1080/1-3C xeno-
grafts [67, 68]

Promising tracer with better biodistribution than 
18F-MISO.

Preclinical evidence

124I-IAZG (124I-iodoazomycin 
galactopyranoside)

Hepatocellular carcinoma [69] Promising tracer Preclinical evidence

68Ga-labeled nitroimidazole ana-
logs (68Ga-NOTA-nitroimidazole, 
68Ga-DOTA-nitroimidazole, 68Ga-
SCN-NOTA-nitroimidazole)

Tumor xenografted mice [70, 71] Promising tracer Preclinical evidence

Reduction of Cu(II)-ATSM complex into 
Cu(I)-ATSM and dissociation of Cu(I) in 
hypoxic conditions: then Cu(I) nuclide 
binding to intracellular proteins [77]

60,61,62,64Cu-ATSM (60,61,62,64Cu-
diacetyl-bis(N4-methylthiosemi-
carbazone)

NSCLC [34]  
Head and neck tumors [72, 73]  
Cervical cancer [74, 75]  
Rectal cancer [76]  
Brain tumors [78]

Good correlation with immunohistochemistry and 
prognosis.  
Early uptake of the tracer with high tumor-to-
background ratio.  
Possibility for late acquisition with 64Cu-ATSM.  
Possibility for radionuclide therapy with 64Cu-ATSM.

Evidence more limited com-
pared to 18F-MISO.
Less clear mechanism of uptake 
in tumor hypoxia compared to 
nitroimidazole-like compounds.

Recognizes carbonic anhydrase IX 
(CA IX) [80]

124I-cG250 (124I-chimeric mAb 
G250)

Renal cell carcinoma [79] Promising tracer Preclinical evidence

89Zr-cG250-F(ab′)2 (
89Zr-chimeric 

G250 F(ab′)2)
Head and neck tumors [81] Promising tracer Preclinical evidence

Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancer.
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min), because selective retention of 18F-FMISO 
in hypoxic tissue requires an uptake period of 
around 2-4 h after intravenous injection [11, 
45, 88]. In addition, despite this uptake period, 
tracer accumulation is still low, as documented 
by the low tumor-to-plasma or tumor-to-muscle 
ratio of 1.2-1.4, used as the optimal cut-off for 
definition of hypoxia [15, 45]. These aspects 
represent the main drawbacks of 18F-FMISO, 
and may limit the applicability of the tracer in 
clinical practice. To overcome the problem, a 
dynamic approach has been tested by 
Thorwarth et al. [89, 90], in which a kinetic 
analysis is used to separate the component 
associated with hypoxia-specific tracer binding 
from that related to unbound tracer. This kinet-
ic approach is, however, cumbersome and still 
restricted by the resolution limit of the technol-
ogy itself.

Hypoxia imaging with 18F-FMISO has been 
investigated in numerous solid tumors, includ-
ing gliomas [38, 47, 48, 91], head and neck car-
cinoma [42-46], NSCLC [33, 50], breast tumors 
[49], and renal carcinoma [51] (Table 2). In 
patients with brain tumors, for instance, Hirata 
et al. [48] supported a role for 18F-FMISO PET in 
differentiating glioblastoma multiforme (GBM) 
from other less malignant gliomas based on 
the level of tumor hypoxia. Moreover, Swanson 
et al. [92] reported a good correlation between 
the hypoxic volume determined by 18F-FMISO 
and the MRI-defined tumor burden, with par-
ticular interest on disrupted vasculature on 
gadolinium-enhanced T1-weighted sequences 
(T1Gd). Their data confirm that the angiogenic 
process is stimulated by hypoxia in GBM and 
indirectly anticipate the more recently reported 
association between tumor aggressiveness 
visualized on 11C-methionine imaging, disrupt-
ed blood–brain barrier vasculature on contrast-
enhanced-MRI, and hypoxia depicted with 
18F-FMISO [93]. 

Additionally, PET imaging with 18F-FMISO has 
been shown to discriminate prognosis in GBM 
For example, Spence et al. [47] studied 22 GBM 
patients before biopsy or between resection 
and radiation therapy (RT) and observed both 
the volume and the intensity of hypoxia as 
determined by 18F-FMISO before therapy to be 
strongly correlated with time to progression 
and survival.

Similarly, in patients with head and neck 
tumors, Rajendran et al. [43] documented a 

prognostic role for pretherapy 18F-FMISO 
uptake with respect to overall survival, with 
hypoxic volume and nodal involvement also 
being predictive factors. Rischin et al. [94] 
demonstrated that in patients receiving-  
non-tirapazamine-containing chemoradiother-
apy for stage III or IV head and neck tumors, 
hypoxia on FMISO PET was associated with a 
higher rate of locoregional failure. The introduc-
tion of kinetic analysis of 18F-FMISO, as report-
ed by Eschmann et al. [42], could also predict 
higher risk of relapse. 

In 20 postmenopausal women with stage II-IV 
breast cancer, Cheng et al. [49] analyzed the 
role of 18F-FMISO PET before and after endo-
crine therapy with letrozole. Tracer uptake was 
detected at 2 and 4 h after injection and tumor-
to-background ratio was correlated to treat-
ment outcome after 3 months. The authors 
observed a positive correlation between base-
line 18F-FMISO uptake and response to therapy 
(p <0.0001) and could define a tumor-to-back-
ground ratio at 4 h of ≥1.2 as the optimal cut-
off point, allowing the prediction of 88% (15/17) 
of cases of progressive disease. No correlation, 
however, was found between 18F-FMISO uptake 
and HIF-1α expression at immunohistoche- 
mistry. 

An important application for hypoxia imaging is 
undoubtedly RT planning. It is well known that 
the pretreatment oxygenation in cancer tissue 
influences response to treatment, because 
treatment effectiveness is strictly related to the 
amount of free oxygen radicals. Consequently 
the radiation dose necessary to achieve the 
same therapeutic effect is much higher for 
hypoxic tumors [88]. 18F-FMISO has therefore 
been investigated in this context. Starting with 
their feasibility study, Lee et al [45] reported 
the use of 18F-FMISO PET to increase the dose 
to hypoxic regions in head and neck carcinoma. 
In the same clinical setting, they tried to deter-
mine the reproducibility of the PET scan at two 
different time points prior to RT [95] and to 
assess the influence on dose-painting at inten-
sity-modulated radiotherapy (IMRT) [96]. On 
the basis of these studies they concluded that 
changes in the spatial distribution of tumor 
hypoxia, as detected by serial FMISO PET, com-
promised the coverage of hypoxic tumor vol-
umes achievable by dose-painting IMRT [96]. 
However, even when such changes occurred, 
dose-painting always increased the equivalent 
uniform dose of the hypoxic areas. In rectal 
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cancer, the use of 18F-FMISO PET for target 
definition prior to RT [97] appears less reli-
able due to non-specific tracer uptake in nor-
moxic tissue and diffusion through the bowel 
wall.

High reproducibility of tumor hypoxia evalu-
ated by 18F-FMISO PET was recently reported 
by Okamoto et al. [98] in 11 patients with 
untreated head and neck cancer who were 
investigated twice with 18F-FMISO PET at an 
interval of 48 h. In this cohort the 4-h tracer 
uptake parameters (SUVmax, tumor-to-back-
ground, and tumor-to-muscle ratio) showed 
no significant difference between the scans 
and, except in one case, the location of the 
SUVmax peaks, although different in PET1 and 
PET2, were within the full-width at half-maxi-
mum of the PET/CT scanner.

In a prospective study by Tachibana et al. [99] 
a limited cohort of ten patients was studied 
before and during fractionated RT with 
18F-FMISO PET/CT in order to determine the 
intratumoral hypoxic areas and their reoxy-
genation. The study revealed a high percent-
age of tumor reoxygenation (8/10) during RT, 
suggesting that dose escalation to the hypox-
ic areas on the initial PET/CT scan might be 
inappropriate. However, the authors suggest-
ed that if frequent imaging with 18F-FMISO 
PET/CT becomes available, adaptive RT for 
tumor hypoxia might be used clinically. 

Figure 1. Overview of the uptake and retention 
mechanisms of FDG (A), F-MISO (B), and Cu-ATSM 
(C) in living cells under hypoxic conditions. For FDG 
there is a wide overlap between the cellular uptake 
in normoxic (Warburg effect) and hypoxic condi-
tions (Pasteur effect). For the other two tracers, 
after passive diffusion through the membrane, 
the radiopharmaceutical is retained according to 
the oxygen tension (pO2) present in the intracellu-
lar environment: in the presence of reduced pO2, 
F-MISO undergoes progressive reduction by the 
nitroreductase enzyme (NTR); also, Cu(II)-ATSM 
nuclide is reduced to copper (I) by the intracellular 
thiols, making the Cu-ATSM complex less stable. 
Both processes are reversible in the presence of 
sufficient O2, and the molecules (F-MISO and Cu 
(II)-ATSM) are free to leave the cell. Conversely, 
in hypoxic conditions the Cu(I)-ATSM complex is 
progressively dissociated, with the formation of 
H2-ATSM and free Cu(I), which is very rapidly in-
corporated into intracellular proteins. In contrast, 
the reduced F-MISO is covalently bound to the in-
tracellular proteins [59, 84, 122, 128]. GLUT, glu-
cose transporter; HK, hexokinase; G-6-P, glucose-
6-phosphate).
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Somewhat similar findings were reported in the 
study by Lee et al. [100], in which resolution of 
tumor hypoxia on mid-treatment 18F-FMISO PET 
during fractionated RT, as would be expected 
for doses higher than 40 Gy, was consistent 
with the concept of reoxygenation. However, 
despite the promising results from the first 
report [45], neither the presence nor the 
absence of hypoxia defined by 18F-FMISO PET 
during mid-treatment evaluation correlated 
with patient outcome.

More contradictory results have been reported 
in NSCLC. Lack of correlation between expres-
sion of tumor markers of hypoxia and 18F-FMISO 
uptake was observed in a series of 17 patients 
with resectable NSCLC [37]. Gabel et al. [33] 
also found a lack of correlation between high 
initial tracer uptake and treatment response in 
NSCLC patients, although they reported that 
decreased 18F-FMISO uptake at post-treatment 
evaluation was indicative of a favorable out-
come. Evidence of utility of 18F-FMISO PET in 
renal cell carcinoma or sarcoma is even more 
limited [36, 51, 101]. 

Taken together, these data raise a question 
mark over the use of 18F-FMISO as a “universal” 
tracer for hypoxia imaging.

18F-Fluoroazomycin arabinoside (18F-FAZA)

The slow uptake of 18F-FMISO in target tissue 
and slow clearance of unbound 18F-FMISO from 

non-hypoxic areas stimulated the development 
of other tracers with improved pharmacokinet-
ics, including 18F-fluoroazomycin arabinoside 
(18F-FAZA), a second-generation 2-nitroimid-
azole compound developed in 1999 [102]. 
Compared to 18F-FMISO, the biodistribution of 
18F-FAZA is improved through the addition of a 
sugar moiety, making it less lipophilic [102, 
103]. Souvatzoglou et al. [53] reported a higher 
contrast with non-target tissues for 18F-FAZA 
compared to 18F-FMISO, with an average tumor-
to-muscle ratio of 2.0±0.3 at 2 h postinjection 
acquisition. The same group [104] had previ-
ously reported that 18F-FAZA has overall supe-
rior pharmacokinetics and that use of dynamic 
analysis offers further potential improvement 
[105-107].

So far 18F-FAZA has shown promising results in 
animal and patient studies [53, 102, 108-111] 
based on its selective accumulation in hypoxic 
tumors via a hypoxia-specific uptake mecha-
nism [104]. In tumor-bearing mice with human 
SiHa cervix xenografts, for instance [112], 
intratumoral distribution of 18F-FAZA was 
strongly correlated with the regional density of 
the pimonidazole-positive cells (pimonidazole 
being a hypoxia marker). 

The role of tumor hypoxia depicted by 18F-FAZA 
as a predictor of anticancer treatment response 
has been investigated in several preclinical 
models. The effect of hypoxia modulation with 
gefitinib, an epidermal growth factor receptor 

Table 3. Characteristics of copper nuclides utilized in PET imaging and comparison with otherpositron 
emitters [59, 137-140]

Nuclides T1/2 Production β+ emission (Emean) Other emissions
Range of β+ in 

tissue
Use

Copper-60 (60Cu) 23.7 min Cyclotron 93% (0.970 MeV) γ emission
1332 keV 88%

1791 keV 45.4%

4.4 mm Diagnostic

Copper-61 (61Cu) 3.33 h Cyclotron 61% (0.500 MeV) γ emission
282 keV 12.20%
656 keV 10.77%

2.6 mm Diagnostic

Copper-62 (62Cu) 9.67 min Generator/cyclotron 97.83% (1.319 MeV) γ emission
1172 0.74%

6.6 mm Diagnostic

Copper-64 (64Cu) 12.7 h Cyclotron 17.6% (0.278 MeV) γ emission 
1345 keV 0.47%

 β- emission 
0.190 MeV 38.7% 

1.4 mm Diagnostic/therapeutic

Fluoride-18 (18F) 109.7 min Cyclotron 96.7% (0.249 MeV) β- emission (0.52 keV) 0.6 mm Diagnostic

Iodine-124 (124I) 4.17 days Cyclotron 22.7% (0.820 MeV) γ emission 
0.602 keV 62.9%

1690.9 keV 11.15%

3 mm Diagnostic

Gallium-68 (68Ga) 67.71 min Generator 88.91% (0.829 MeV) γ emission 
1077 keV 3.2%

2.9 mm Diagnostic
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Figure 2. Example of a patient with localized head and neck squamous cell carcinoma (HNSCC) who was investi-
gated with 18F-FDG PET before (A) and after the end of RT (B). At staging the patient had undergone 64Cu-ATSM PET/
CT (C-E) documenting some mild uptake at the level of the primary tumor in the left tonsil (SUVmax 1.85). As is visible 
in (B) the patient achieved a complete response after treatment.

(EGFR) tyrosine kinase inhibitor, has been 
assessed with 18F-FAZA PET in human EGFR-
expressing A431 squamous cell carcinoma 
xenografts [113]. Also the use of radiosensitiz-
ers, such as tirapazamine, has been investigat-
ed with 18F-FAZA PET in EMT6 tumor-bearing 
nude mice prior to treatment with concurrent 
chemoradiotherapy, RT alone, or chemotherapy 
alone [109]. In each case, hypoxia imaging 
proved efficient in predicting the beneficial 
effect of the treatment.

In a preclinical study, Mortensen et al. [114] 
investigated 92 female CDF1 mice with subcu-

taneous C3H mammary carcinomas prior to 
irradiation (55 Gy). The authors demonstrated 
a significant difference in local tumor control 
between “more hypoxic” and “less hypoxic” 
cases distinguished by either the median 
18F-FAZA tumor-to-blood ratio or the fraction of 
oxygen partial pressure at the pO2 Eppendorf 
electrode.

These data, taken together, have prompted the 
investigation of 18F-FAZA in clinical settings. 
One of the largest cohorts in which the tracer 
has been investigated in the clinical context is 
that reported by Postema et al. [115]. In a 
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Figure 3. Example of a patient with advanced HNSCC who was investigated with 18F-FDG PET at staging (A) and 
after the end of combined chemoradiotherapy (B). Before treatment the patient underwent 64Cu-ATSM PET/CT (C-
E), documenting intense tracer uptake (SUVmax 17.86) both in the primary tumor, involving the right tonsil, and in 
numerous bilateral cervical nodes. Despite the high-dose therapeutic regimen utilized, the patient presented some 
residual disease at end-of-treatment evaluation (B), as confirmed during follow-up.

group of 50 patients with different types of 
solid tumor, i.e., head and neck squamous cell 
carcinoma (HNSCC), small cell lung cancer 
(SCLC), NSCLC, malignant lymphoma, and high-
grade gliomas, the authors aimed first to evalu-
ate the safety and general biodistribution of 
18F-FAZA. They observed highly increased 
uptake of the tracer in all gliomas, with a tumor-
to-background (T/B) ratio range of 1.9-15.6, 
and variable uptake in the remaining tumors, 
with a T/B closer to the average cut-off value of 
1.6-2.0. 

Recently, a group from Melbourne [56] investi-
gated the role of 18F-FAZA in 17 patients with 
locoregionally advanced NSCLC before concur-
rent chemoradiation. Intralesional hypoxia was 
identified in 65% of patients (11/17), and in 
those investigated with 18F-FAZA PET after 
chemoradiation (60 Gy) (8/11), imageable 
hypoxia had resolved in the majority (6/8). 
Disease-free survival, however, did not differ 
significantly between patients with hypoxic and 
those with non-hypoxic tumors.

The first report on RT planning with 18F-FAZA 
dates back to 2007 and focused on dose-paint-
ing according to hypoxia image-guided RT in 18 
patients with advanced HNSCC [116]. In this 
report, Grosu et al. outlined the gross tumor 
volume (GTV) on 18F-FAZA PET by applying a 
threshold of 50% with regard to background. 
This led to the inclusion of any PET-positive 
area with a T/M ratio ≥1.5. For primary localiza-
tions, GTV-FAZA presented with a single conflu-
ent hypoxic area in 61% of cases and with mul-
tiple diffused areas in 22%. In all cases, 
however, GTV-FAZA was inside the GTV outlined 
on CT. Although no comparison with 18F-FDG 
distribution was performed to determine the 
effective benefit of GTV-PET delineation, the 
conclusion was that dose-painting on hypoxic 
areas is potentially feasible. 

The use of 18F-FAZA before RT also appears fea-
sible in cervical cancer, as documented by 
Schuetz et al. [54], although the authors did not 
find a clear impact on survival in their limited 
cohort. Mortensen et al. [52] reported some 
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more thorough results from the DAHANCA 24 
trial on the role of 18F-FAZA PET in head and 
neck cancer before RT. The 40 patients investi-
gated had undergone hypoxia PET before RT 
(66-76 Gy) and during treatment. In 25 cases 
(63%), PET showed a hypoxic volume with a 
tumor-to-muscle ratio (T/M) in the range of 1.1-
2.9 (median 1.5). In this study, the prognostic 
significance of 18F-FAZA PET was confirmed 
(p=0.04): at a median follow-up of 19 months, 
disease-free survival was 93% for patients with 
non-hypoxic tumors and 60% for patients with 
hypoxic tumors.

One of the open questions regarding hypoxia 
image-guided RT is the reproducibility of the 
PET data. Busk et al. [112] performed 18F-FAZA 
PET twice before initiation of fractionated RT in 
mice bearing human SiHa cervix tumor xeno-
grafts and again following treatment. They 
found that 18F-FAZA results were highly repro-
ducible when based on injected dose, whereas 
normalization using an image-derived non-
hypoxic reference tissue (i.e., muscle) yielded 
highly unreliable results. The authors under-
lined the stability of the intratumoral tracer dis-
tribution at baseline and its strong correlation 
with regional density of hypoxic cells. No evi-
dence of general reoxygenation was observed 
during treatment, however, despite changes in 
overall tracer retention in individual mice. 
Consequently the question of reproducibility 
remains open when dealing with fractioned RT, 
especially with the intent of image-guided dose 
escalation.

Other nitroimidazole-like tracers

In view of the limitations of the above-men-
tioned compounds, other nitroimidazole-like 
tracers with high avidity for hypoxic tissue have 
been investigated and developed. One promis-
ing new radiopharmaceutical is 18F-fluoroery- 
thronitroimidazole (18F-FETNIM), which is more 
hydrophilic than 18F-FMISO and can be washed 
out more rapidly from well-oxygenated tissues, 
theoretically allowing a higher tumor-to-back-
ground ratio [117]. Pilot studies in patients with 
head and neck, esophageal, and lung cancer 
have demonstrated 18F-FETNIM PET to be fea-
sible and useful in hypoxia imaging [60, 61, 
118], with the potential to predict response to 
treatment [118] and overall patient outcome 
[60]. Superior overall benefit in relation to 

18F-FMISO has not been demonstrated, howev-
er, and the T/B ratio for this tracer was not sig-
nificantly superior to the ratios for other nitro-
imidazole-like tracers [119].

Similar results have been obtained with 
18F-fluoroetanidazole (18F-FETA), which is a well-
known nitroimidazole-like compound that has 
shown a better biodistribution than 18F-FMISO 
owing to its lower levels of liver and lung reten-
tion [67, 68]. However, in spite of potential ben-
efits, the diffusion of this tracer into tumor tis-
sues appears limited [84].

Another group of hypoxia-avid radiopharma-
ceuticals, with a more stable but also more 
complex labeling chemistry, is represented by 
18F-2-nitroimidazol-pentafluoropropyl acetami- 
de (18F-EF5) and 18F-2 nitroimidazol-trifluoropro-
pyl acetamide (18F-EF3) [66, 120, 121]. These 
tracers are slightly more lipophilic than the for-
merly described compounds and have been 
investigated in animal models as well as in clini-
cal studies on head and neck cancer and cervi-
cal and brain tumors [62-64]. For these tracers, 
too, the optimal tumor-to-muscle cut-off value 
is low (T/M 1.5) and the potential advantage 
over 18F-FMISO is still negligible.

Valuable alternatives may be biochemically 
similar tracers labeled with other nuclides, 
including iodine-124 (124I), e.g., 124I-iodoazomy- 
cin galactopyranoside (124I-IAZG) [69], and gal-
lium-68 (68Ga), e.g., 68Ga-NOTA-nitroimidazole, 
68Ga-DOTA-nitroimidazole, and 68Ga-SCN-NOTA-
nitroimidazole [70, 71] (Table 2). The 68Ga-la- 
beled tracers have the additional advantage of 
utilizing a nuclide produced by a generator 
(68Ga/68Ge) and are thus potentially applicable 
in PET centers without an onsite cyclotron. Up 
to now, however, these tracers have not proved 
superior to the principal nitroimidazole repre-
sentative, 18F-FMISO, for hypoxia imaging. As a 
consequence, their application is still limited to 
preclinical studies [70, 71, 84].

Non-nitroimidazole compounds

Cu-diacetyl-bis(N4-methylthiosemicarbazone) 
(Cu-ATSM) 

Radioactive copper (60,61,62,64Cu) labeled with 
diacetyl-bis(N4-methylthiosemicarbazone) (Cu- 
ATSM) is a very promising PET radiopharmaceu-
tical for hypoxia imaging. First investigated for 
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this purpose in 1997 [122], the compound 
appeared immediately suitable for detection of 
hypoxia in living tissue. A series of copper radio-
isotopes is now available for labeling ATSM, 
each with its specific half-life (T1/2), decay 
scheme, and production facilities (Table 3). The 
mechanism of uptake is still not fully under-
stood, but as Fujibayashi et al. suggested [122], 
retention of the tracer in tumor cells is princi-
pally dependent on cytosolic/microsomal biore-
duction [123]. In fact Cu-ATSM is a neutral lipo-
philic molecule, which is highly membrane 
permeable and can passively diffuse within the 
intracellular environment (Figure 1). Once 
inside the cell, the bivalent copper compound, 
Cu(II)-ATSM, undergoes reduction by thiols and 
is converted into Cu(I)-ATSM complex [124]. In 
hypoxic conditions this complex, less stable 
than the bivalent form, is progressively dissoci-
ated into H2-ATSM and free Cu(I), which is rap-
idly entrapped in intracellular proteins [122, 
125]. The entrapment is reported to reflect the 
level of tissue oxygenation in many tumor types 
[34, 72-74, 76, 78] and when directly compared 
to the principal 2-nitroimidazole family repre-
sentative (18F-FMISO), Cu-ATSM uptake is sig-
nificantly higher in target tissue than in non-
hypoxic areas and occurs at an earlier time 
(10-15 min versus 2-4 h) [88, 126]. These data 
have also been confirmed in relation to other 
nitroimidazole compounds, i.e., 18F-FAZA and 
18F-HX4 [99], in nude mice bearing human 
xenografts.

From recent investigations, it appears plausible 
that a significant role in the Cu-ATSM entrap-
ment is played by copper itself. To test this 
assumption, Hueting et al. [127] analyzed the 
in vitro and in vivo distribution of 64Cu-ATSM 
and 64Cu-acetate in the same animal models 
(EMT6 and CaNT). They showed a similar tissue 
distribution of radio-copper for both tracers 
and suggested that copper metabolism can 
play a role in the mechanism of selectivity of 
Cu-ATSM in hypoxia. More thorough investiga-
tions and consolidated evidence in the clinical 
context are required to confirm these data.

The first human use of Cu-ATSM dates back to 
2000, when Takahashi et al. [128] studied its 
application in four normal subjects and six 
patients with lung cancer. The tracer, in this 
case 62Cu-ATSM, accumulated within a few min-
utes in all patients with cancer, giving a tumor-

to-background ratio of 3.0, whereas it rapidly 
cleared from the blood of all normal subjects. 
Similar findings have been documented for the 
other copper radioisotopes labeled with ATSM. 
In their feasibility study, Dehdashti et al. [34] 
analyzed the role of 60Cu-ATSM in patients with 
NSCLC and correlated imaging findings with 
follow-up (n=19) and response to therapy 
(n=14). As expected, the tracer had a variable 
distribution in tumor masses, depending on 
hypoxia level, and the authors were able to 
define a tumor-to-muscle (T/M) ratio of 3.0 as 
effective in distinguishing treatment respond-
ers from non-responders. 

The same group [74] evaluated the prognostic 
significance of 60Cu-ATSM in 14 patients with 
cervical cancer before RT and chemotherapy. 
This time the selected T/M ratio was 3.5, which 
could optimally distinguish patients experienc-
ing recurrence from those free of disease at 
last follow-up. Similar results were obtained in 
a more recent study in 38 patients with cervical 
carcinoma [128]. In this case, 60Cu-ATSM per-
formed before treatment gave relevant infor-
mation on tumor oxygenation and was predic-
tive of patient outcome.

The group from Yokohama City University [72] 
investigated use of 62Cu-ATSM in 17 patients 
with locally advanced head and neck cancer 
(stage III and IV) prior to chemotherapy or RT. In 
15 cases the authors assessed the relation-
ship between clinical outcome and 62Cu-ATSM 
uptake. The SUVmax in their analysis differed sig-
nificantly (p <0.05) in patients free of disease 
at 2 years postirradiation follow-up versus 
those with residual/recurrent disease. More 
specifically, all cured patients had a SUVmax 
<5.0 and all patients (n=10) with persistent dis-
ease had a SUVmax >5.0 (Figures 2 & 3).

Recently 62Cu-ATSM was investigated in 22 
patients with gliomas [78] with the intent of dif-
ferentiating tumor grade according to uptake 
and correlating findings with contrast-enhanced 
regions on MRI and HIF-1α expression at immu-
nohistochemistry. Using a tumor-to-background 
ratio threshold of 1.8 at 30-40 min post injec-
tion, 62Cu-ATSM uptake was found to be predic-
tive of HIF-1α expression, with 92.3% sensitivi-
ty and 88.9% specificity. Moreover, it correlated 
significantly with the presence of a necrotic 
component (p=0.002) and defined regional 
uptake in 61.9% (13/21) of tumors within the 
contrast-enhanced region on MRI.
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However, other preclinical data suggest that 
Cu-ATSM may not be suitable for hypoxia detec-
tion in all types of tumor. In a fibrosarcoma ani-
mal model (FSA) and in prostate cancer cell 
lines (PC-3, 22Rv1, LNCaP, LAPC-4, and R3327-
AT) [130-132], the tracer showed limited selec-
tivity for hypoxia, suggesting the need for spe-
cific tumor-type studies with Cu-ATSM and also 
for more clinical evidence in these types of 
solid tumor. This latter aspect is crucial because 
animal models do not completely match human 
cancer and tend to give discordant findings 
based on the cell line utilized. For example, the 
rat model of fibrosarcoma investigated by 
Jalilian et al. in 2009 [133] with 61Cu-ATSM 
yielded completely different results from the 
findings of Yuan et al [130] using the FSA model.

With regard to RT planning, the principal advan-
tage of Cu-ATSM is its high tumor-to-back-
ground ratio (T/B >3.0). As reported by Dalah et 
al. [134] in their simulation of tissue activity 
curves for 64Cu-ATSM and 18F-FMISO for sub-
target volume delineation, a good tumor-to-
background ratio allows high sensitivity and 
specificity targeting of positive lesions on PET. 
This was also shown in the feasibility study 
reported by Chao et al [135] in head and neck 
tumors, where the use of IMRT based on 
Cu-ATSM led to a higher dose (80 Gy) in hypoxic 
areas and spared more than half of the parotid 
glands to less than 30 Gy [116]. However, one 
weakness of 64Cu-ATSM needs to be under-
lined: the total body irradiation at diagnostic 
administered activities (500-800 MBq) is twice 
as high as the dose calculated for 18F-FMISO 
[59, 136]. 

Nevertheless, among the different copper 
nuclides, 64Cu represents the best compromise 
based on T1/2, intrinsic image resolution and 
production yield (Table 3). In a direct compari-
son of 60Cu-ATSM and 64Cu-ATSM in ten patients 
with cervical carcinoma [75], for instance, 
64Cu-ATSM proved as safe as 60Cu-ATSM while 
also offering the advantage of better image 
quality. Another advantage of the use of 
64Cu-ATSM is the theranostic potential of the 
nuclide, which emits medium-energy β- parti-
cles, along with positrons, and produces high 
linear energy transfer (LET) Auger electrons 
[136, 141]. At adequate doses and thanks to 
the short path length of the emissions, the 
nuclide can produce a toxic effect on targeted 
cells with minimal effects on neighboring tis-

sue, as already reported in some preclinical 
studies [141, 142]. This therapeutic effect 
could also be seen by Yoshii et al. [143] in a 
mouse colon carcinoma (Colon-26) model, 
where 64Cu-ATSM administration at 37 MBq 
twice a week reduced tumor volume as well as 
the percentage of CD133+ cells and the meta-
static ability of Colon-26 tumors. However, this 
potential application needs more clinical evi-
dence, so that for the time being the major use 
of 64Cu-ATSM in the diagnostic field is for hypox-
ia assessment.

124I-cG250 and 89Zr-cG250-F(ab′)

Carbonic anhydrase IX (or CAIX) is a transmem-
brane enzyme involved in the cellular regula-
tion of pH homeostasis and represents one of 
the downstream targets of HIF-1α [81]. Its role 
is to hydrolyze the carbon dioxide (CO2) into car-
bonic acid (H2CO3) and stabilize intracellular pH 
[81, 144]. With the exception of renal cell carci-
noma, where the CAIX expression is not related 
to hypoxia, in tumors this enzyme is up-regulat-
ed as a result of reduced levels of oxygenation, 
namely <20 mmHg, and can therefore be tar-
geted for hypoxia imaging [79, 81, 145].

The first compound developed for the identifi-
cation of CAIX, although at the time the enzyme 
was not known, was the antibody Grawitz250 
(G250) [146]. Later the chimeric version of the 
antibody was labeled with 124I-iodine as a tracer 
for PET imaging (124I-cG250) [79, 147], and 
more recently selected antibody fragments 
have been labeled with 89Zr-zirconium 
(89Zr-cG250-F(ab′) for the same purpose [81]. 
This category of tracers has the potential to 
detect hypoxia in tumors, other than renal cell 
carcinoma, owing to the good correlation 
reported between tracer uptake and CAIX 
expression, although the evidence is still too 
limited and is reliant only on preclinical 
studies.

Conclusions

The clinical relevance of hypoxia in patients 
with cancer means that it has the potential to 
become a useful prognostic biomarker. 
Furthermore, the possibility of identifying 
hypoxia in vivo without any invasive interven-
tion may be of great value in improving treat-
ment. Among the numerous PET tracers inves-
tigated, a broad range of radiopharmaceuticals 
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have been found to specifically identify hypoxia 
expression in tumors. It is nevertheless not 
straightforward to determine the most useful 
tracer for this purpose because many factors 
influence the choice. Evidence-based data 
favor the use of 18F-FMISO, but the issue of sub-
optimal imaging persists. On the other hand, if 
importance is placed on high PET image quali-
ty, 64Cu-ATSM would be selected; in this case, 
however, evidence is more limited and the 
mechanism of uptake in hypoxic tissue is still 
not completely clear. Alternatively, “new” trac-
ers labeled with cyclotron-independent nuclides 
hold appeal despite the apparent lack of supe-
riority compared to 18F-FMISO. Nonetheless, if 
a “winner” has to be chosen in this “competi-
tion”, we would select the tracer that demon-
strates better image quality.
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