
From Data Patterns to Mechanistic Models in Acute Critical
Illness

Jean-Marie Aerts, Ph.D.¶, Wassim M. Haddad, Ph.D.#, Gary An, M.D.$, and Yoram Vodovotz,
Ph.D.*,§,†

¶Division Measure, Model & Manage Bioresponses (M3-BIORES), Department of Biosystems, KU
Leuven, B-3001 Leuven, Belgium

#School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

$Department of Surgery, University of Chicago Medicine, Chicago, IL 60637

*Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213

§Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative
Medicine, University of Pittsburgh, Pittsburgh, PA 15219

Abstract

The complexity of the physiologic and inflammatory response in acute critical illness has stymied

the accurate diagnosis and development of therapies. The Society for Complex Acute Illness was

formed a decade ago with the goal of leveraging multiple complex systems approaches in order to

address this unmet need. Two main paths of development have characterized the Society’s

approach: i) data pattern analysis, either defining the diagnostic/prognostic utility of complexity

metrics of physiological signals or multivariate analyses of molecular and genetic data, and ii)

mechanistic mathematical and computational modeling, all being performed with an explicit

translational goal. Here, we summarize the progress to date on each of these approaches, along

with pitfalls inherent in the use of each approach alone. We suggest that the next decade holds the

potential to merge these approaches, connecting patient diagnosis to treatment via mechanism-

based dynamical system modeling and feedback control, and allowing extrapolation from

physiologic signals to biomarkers to novel drug candidates. As a predicate example, we focus on

the role of data-driven and mechanistic models in neuroscience, and the impact that merging these

modeling approaches can have on general anesthesia.
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Equal but Separate: The State of Complexity in Acute critical illness

Acute critical illness can be defined as the constellation of acute inflammatory and

pathophysiologic consequences that occur subsequent to sepsis, trauma/hemorrhage, and

other acute events such as pancreatitis, that can be differentiated from acute critical illnesses

that do not require critical care (such as acute psychiatric illness). Sepsis alone is responsible

for more than 215,000 deaths in the United States per year and an annual healthcare cost of

over $16 billion [1], whereas trauma/hemorrhage is the most common cause of death for

young people in the United States, costing over $400 billion annually [2–4].

There is currently not a single drug approved by the U.S. Food and Drug Administration

(FDA) specifically for the treatment of acute critical illness. The one drug that had

previously been approved for sepsis, recombinant human activated protein C, was found on

an FDA-mandated repeat Phase III clinical trial to offer no benefit over standard of care; this

drug was subsequently removed from the market [5, 6]. We suggest that inflammation and

associated cellular, tissue, and organ dysfunction form an interconnected complex biological

system whose very architecture is both robust and fragile [7–9]; identifying the critical

control points in such systems is extremely challenging. In addition, animal models that

have formed the primary preclinical experimental platforms have often failed to replicate the

full spectrum of human responses to infection or injury [10–12]. Together, these factors are

likely to blame for the failure of the current reductionist paradigm for discovery of novel

therapeutics for these diseases [13].

The integrated nature of inflammatory and physiological derangements that characterize

acute critical illness has largely defied a synthetic understanding of this disease, and this

complexity, which we define as emergent behaviors and outcomes that cannot be predicted

based on an understanding of the component organs, tissues, cells, and molecules in

isolation, has hampered diagnosis and treatment. Over the period of more than two decades,

multiple investigators have attempted to decipher this complexity through the adoption of

computational tools that colloquially fall under the rubric of complex systems analyses,

which, however, are in fact quite different in their underlying theory and methodology [14,

15]. Generally speaking, these methods can be grouped broadly into distinct but

complementary investigatory approaches. Namely, signal processing algorithms that can

discern the degree of complexity of physiologic waveforms (e.g., heart rate variability),

data-driven analysis of patterns at the molecular level (e.g., bioinformatics applied to

changes in mRNA, protein, or various metabolites), and mechanistic mathematical and

computational modeling of the biological processes thought to drive acute critical illness.

The Society for Complex Acute Illness (SCAI, originally called the Society for Complexity

in Acute Illness) was established in 2004 to provide an organizational structure and a forum

to facilitate the integration of these complex systems methods into the field of acute critical

illness. Two recent annual international conferences on complex acute critical illness—the

11th annual meeting in Ottawa, Canada, and the 12th annual meeting in Budapest, Hungary

—highlighted the international scope, clinical achievements, and scientific advances made

in furthering complex systems analysis in acute critical illness (see the Journal of Critical

Care, volume 28, issues 1 and 6, respectively). These conferences also demonstrated the
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robustness, durability, and maturity of this field. SCAI members have conclusively

demonstrated that metrics such as heart rate variability can alert caregivers to impending

clinical complications of acutely ill patients; have highlighted examples of informatics-

based analyses of networks and principal drivers of outcomes in cells, animals, and patients;

and have demonstrated the potential utility of mechanistic modeling for simulating clinical

trials and predicting the inflammatory trajectories of individuals.

Despite this encouraging progress, or perhaps because of it, there has been a certain

solidification of work in these distinct complex systems arenas. While such specialization

and focus are inevitable outcomes of the scientific endeavor, the simple recognition of this

phase of scientific development should trigger compensatory strategies to integrate and

unify what is certainly a common target of investigation. Therefore, we suggest that the time

nigh to begin to unify and synthesize these distinct complex systems approaches to acute

critical illness. In fact, we assert that the different aforementioned approaches represent

complementary viewpoints of the same system, each with its distinct benefits but

individually incapable of providing the global view necessary to engineer effective control/

therapeutic strategies to positively affect human health.

In short, the various aspects of complex systems analysis can be categorized as follows:

i. Analyses of Molecular and Physiologic Patterns: Multidimensional analysis of

molecular/genetic data provides high-resolution component characterization of

system phenotypes, that is, identification of the various molecular and genetic

configurations that are associated with different types and phases of disease.

Sophisticated analysis of physiological signals, such as heart rate, provides high-

level physiological phenotype characterization of clinically relevant output

behaviors of the integrated biological system, that is, organ behavior and state.

These pattern-oriented data are analyzed and interpreted using data-driven

(statistically-based) computational models.

ii. Mechanistic Modeling (at both the molecular and physiological control levels):

Dynamic linking between phenotypic states, that is, how does one state (be it

characterized as a physiologic signal or a molecular/genetic configuration)

transition to another? This step is critical to the development of putative clinically

applicable control/therapeutic strategies to enhance human health.

In this paper, we outline the progress in each distinct field and highlight the pitfalls inherent

in maintaining the status quo. We then describe a vision for linking data-driven and

mechanistic models in order to drive innovations in acute critical illness diagnosis and care.

We cite a predicate example from the field of neuroscience, in which data-driven network

models of the brain may be leveraged, via the intermediacy of mechanistic mathematical and

computational modeling, to yield novel insights into general anesthesia.

Data Patterns: From Molecules to Physiology to Models

The responses to severe infection and trauma/hemorrhage involve a generalized activation

and systemic expression of the host’s inflammatory pathways—the so-called Systemic

Inflammatory Response Syndrome (SIRS). In parallel to, and at least in part driven by SIRS,
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a profound physiological dysfunction accompanies acute critical illness. At the genomic

level, it is now clear that most cell types and a plethora of biological pathways are induced

in acutely ill patients [16]. This dysfunction can be observed in the failure of organs to carry

out proper functions, and this progressive failure of the lungs, kidneys, liver, and heart is

known as the Multiple Organ Dysfunction Syndrome (MODS). SIRS and MODS evolve

rapidly in sepsis and trauma. Treatment of existing MODS beyond supportive therapy is

quite difficult, and so there has been a search for therapeutic modalities that could be

deployed as early as possible.

The search for early diagnostics and as well as efficacious and safe therapeutic options has

been stymied by the complexity of the underlying, dynamically coupled inflammatory and

pathophysiological sequelae of acute critical illness. Furthermore, a notion has emerged that

reductionist approaches to such a complex system may be inadequate to this task. Over the

past decade, systems and computational biology have emerged as an alternative to

reductionist, molecule-, pathway-, and physiologic endpoint-centric conceptual frameworks.

Two, heretofore parallel, approaches have evolved over time in an attempt to address the

diagnosis and therapy of acute critical illness from a systems perspective, both of which

utilize patterns of information.

One area of active research involves the analysis of physiological signals retrievable from

bedside monitoring devices, dealing with the processing and interpretation of complex

physiological signals. Twenty years of research in this area have led to the identification of

metrics representing loss of complexity of physiologic variability in heart rate and breathing

patterns; these metrics are finally being used for the diagnosis of sepsis in a limited capacity

[17–20]. These descriptive methods have been used in an attempt to elucidate more precise

and potentially predictive metrics associated with clinical manifestations of sepsis/MODS,

with the hope that these metrics will also provide some mechanistic insight into the control

systems responsible for their output.

For example, MODS has been viewed as a decoupling of the oscillatory systems manifest in

intact organ-to-organ feedback [21]. Both experimental and clinical studies have suggested

that one measure of this disrupted oscillatory coupling is reduced variability (or increased

regularity) in various physiologic signals, chief among them being heart rate [22–24]. Time-

domain analysis of heart rate variability (HRV) has subsequently evolved as a potentially

noninvasive diagnostic modality for sepsis [23, 25–33]. In addition to HRV, examination of

other physiologic parameters using a complex systems approach has also yielded valuable

insights into the physiology of sepsis [34, 35]. There have been some attempts to establish

anatomic correlates to the control systems involved in organ-to-organ oscillatory coupling.

In particular, HRV data have been used indirectly to detect variability attributed to

sympathetic and parasympathetic branches of the autonomic nervous system as well as other

physiological processes that affect heart rate, including respiration, blood pressure, and

temperature [25].

However, despite the demonstrated validity and usefulness of these types of biological

patterns and physiological signal analyses, these methods remain primarily

phenomenological in nature, in essence connecting physiologic patterns with clinical
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outcome through the use of statistical methods [36]. As in HRV, inflammation in acute

critical illness manifests in patterns evident at the genomic [37–40], proteomic [41–44], and

metabolomic [43–45] levels. The growing number of these studies has resulted in a “data

deluge” [46]. Researchers are being overwhelmed by data in large part because the methods

of choice for analysis of these data are invariably based on statistical associations [47–54].

Such analyses may suggest principal drivers of inflammation and MODS [54, 55], and may

define the interconnected networks of mediators and signaling responses that underlie the

pathobiology of acute critical illness [56, 57]. However, in order to gain mechanistic insights

necessary for the rational design and development of therapeutics, and potentially also for

the next generation of diagnostic applications, a precise dynamic characterization of the

cellular and molecular mechanisms responsible for generating the acute critical illness

phenotype is required [58–61].

A second area of active research involves data-based or data-driven modeling approaches

that do not rely on a priori knowledge of the internal state of the system, but rather on input-

output data measured directly on the system [62–64]. Frequently used data-driven

approaches applied to biological system analysis include input-output transfer function

models [65–68], autoregressive time series analysis [69, 70], nonlinear time series and

Voltera integral series analysis methods (such as principal component analysis [54, 55, 71,

72]), and network-centric models [54]. For monitoring of biological systems, these data-

driven approaches have several advantages. Since these data-driven modeling methods are

based on data and not on a priori knowledge reflecting the complexity of the system, they

only describe the dominant (dynamic) modes as present in the data, which results in compact

model structures that can be easily implemented in process hardware [73]. These can

include, for example, intelligent machines such as computer hardware and signal processors,

as well as computer software algorithm execution. Furthermore, several time-efficient,

recursive parameter estimation methods allow these data-driven approaches to be applied in

real-time and model parameter values to be updated frequently, which allows for

quantification of time-varying nonlinear dynamic features of biological systems [74, 75].

Models based on data-driven techniques such as principal component analysis can suggest

independent drivers of complex biological phenomena [54, 55, 71, 72], and there are

examples in the literature of using principal component analysis to derive key modules of

mechanistic mathematical models [72], which we discuss in greater detail below. Network-

based models can suggest how multiple, ostensibly related, variables interact with each other

across individuals, across time, or both [54, 56, 57, 76]. Finally, in applications where

sensors and/or measuring techniques are available for capturing data on individuals, these

data-driven modeling approaches allow modeling and monitoring dynamic changes (in real

time) on an individual basis, in essence comprising a novel class of biomarkers [77].

However, there are also important limitations to be taken into account when applying these

data-driven modeling approaches. These approaches, by definition, rely on available data

and as such are dependent on the quality of the sampled data [78]. More specifically,

measurement problems can occur on different levels. In particular, the selection of the

relevant system variables to be measured can, in certain applications, be nontrivial. In

several applications, the system cannot be sampled at high sampling rates resulting in
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aliasing or loss of dynamic information [79]. For proper parameter estimation and model

structure selection, it is important that the measured data contain sufficient dynamic

information, which under field or clinical conditions is not always the case. In many

applications, system data measurements are collected in real time and the system cannot be

perturbed dynamically [70]. In certain cases, sampling too quickly can influence the

biological response of the system [79]. Due to sensor constraints, measurement artifacts can

influence the quality of the model parameter estimation significantly [62]. Furthermore,

since data measurements are often corrupted by noise, appropriate preprocessing techniques

and/or parameter estimation is needed for reliable model estimation [64].

One of the key drawbacks of purely data-driven modeling techniques for monitoring of

biological processes is their input-output nature, which does not provide any knowledge of

the internal state of the process. In most physical systems the output of the system also

depends on the system’s initial state. In addition, an input-output system description cannot

deal with physical system interconnections [80]. Hence, these methods do not provide any

direct mechanistic information about the system; rather they are based on association among

data variables in some fashion or another [63, 81]. This concern may not present a problem

when these models are used for predicting future system behavior when a large amount of

data is available regarding the behavior of the system. However, for monitoring the status of

a system it becomes more difficult when the quantified model features cannot be interpreted

in a biologically/physiologically meaningful way [82]. As such, data-driven models alone

should not be used to determine means for controlling biological systems, since the lack of

biological knowledge in these models can potentially result in control actions that harm the

system [83].

Finally, it should be noted that the black-box, input-output nature of data-driven models for

biological systems can form an important obstacle when introducing these models into

practical applications since the users (e.g., healthcare providers) of model-based decision

software are often convinced to use the model when they understand the biological/

physiological principles that form the basis of the models [82]. However, despite these

limitations, the results of data-driven modeling provide a necessary link towards mechanistic

modeling by adding inference of potential causal relationships onto the molecular

configurations identified in high-throughput data.

Applications of Mechanistic Models to Acute critical illness

The ultimate translational goal of biomedical research is to be able to affect control on the

biosystem in order to positively affect human health, and this requires the construction of

mechanistic knowledge-based models. Dynamical systems modeling predicated on

mechanistic models, wherein an internal state model is used to describe the system dynamics

using biological and physiological laws and system interconnections, is of fundamental

importance in the description of physical dynamical systems. Toward this end,

comprehensive complex systems analysis in the study of sepsis invovles mathematical and

computational dynamical modeling at the cellular and molecular level. In the setting of acute

critical illness, we suggest that the development of novel treatment strategies for acute

critical illness must be driven by mechanistic computational modeling [84], because
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inevitably, data must be integrated in order to predict higher-order system properties in a

clinically relevant manner.

There are predicate examples of the utility of mechanistic models in science. The physical

sciences over the last century have made significant progress, in large part due to scientific

investigation that relied heavily on mathematical models of physico-chemical processes

[64]. Translating that success to the biological arena, however, presents a different level of

challenge. Biological reality is very complex, involving multiple feedback loops, nonlinear

interactions, system uncertainty, and dependence on system initial conditions as well

situation-specific rates of reactions that often necessitate large-scale stochastic modeling.

The literature contains many reports of simplified (reduced-order) mechanistic models,

including those focused on aspects of acute inflammation, which have yielded useful

insights into the mechanisms and pathophysiology of acute critical illness [85–88].

However, such models are at best only capable of general, high level predictions, which are

not sufficiently specific so as to be testable in individual patients or in in vitro/in vivo

experiments.

Alternatively, modeling biological systems in a realistic fashion often necessitates complex,

large-scale models describing the underlying system dynamics [89]. An important advantage

of such mechanistic models is that they represent the state-of-the-art knowledge of the

considered system [7, 90–93], and are particularly useful in the general scientific process of

connecting biophysical findings to psychophysical phenomena, generating new hypotheses

and developing new assertions [94], and improving reliability of drug development and drug

dosing [13]. However, in terms of direct translational utility in terms of clinical decision-

making (monitoring and/or controlling of systems), these models are either too unwieldy

[95, 96] or contain too much uncertainty [94].

Nevertheless, mechanistic modeling has made key contributions to the study of acute critical

illness. For example, mechanistic models have helped suggest the central role of Damage-

associated Molecular Pattern (DAMP) molecules in acute critical illness, specifically in

establishing and perpetuating the positive feedback loop of inflammation-damage-

inflammation [8, 9, 58, 77, 84, 93, 97]. Mechanistic modeling has also helped decipher

inflammatory preconditioning, namely the different inflammatory responses that ensue when

multiple stimuli are given in succession [88, 98–103]. Other applications of mechanistic

modeling involve the understanding of multifactorial therapies for critical illness, suggesting

specific ways by which they reprogram and re-compartmentalize the inflammatory response

[55, 104]. Key translational applications such as in silico clinical trials based on mechanistic

models of inflammation and damage/dysfunction were pioneered in the arena of critical

illness [105, 106]. These models have grown in sophistication, and are beginning to show

the potential for predicting the inflammatory responses of individual human subjects [107,

108] and large, outbred animals [13, 72, 109].
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Conceptualizing Data with Mechanism: An example from neuroscience and

general anesthesia

The foregoing sections have delineated the benefits and challenges inherent in purely data-

driven and mechanistic modeling in the setting of acute critical illness. Thus, neither method

is ideal, though it may be argued that both approaches offer complementary value to a

purely reductionist approach. In multiple fields of biomedical science, there is a growing

recognition of the need to link purely data-driven models with mechanistic models in order

to retain the advantages while minimizing the disadvantages of these two modeling

approaches [110, 111]. As mentioned above, there have been rare examples of this type of

synthesis in acute critical illness. One such example [72] involved utilizing principal

component analysis to define the key inflammatory mediators involved in the lung and

blood responses to Gram-negative bacterial endotoxin in swine, and then using that

information to construct a two-compartment, mechanistic dynamical model of inflammation

and pathophysiology in these animals.

However, such examples are the exception rather than the rule. There is a great deal of

“activation energy” required in order to drive this type of synthesis, and a key barrier that

must be overcome is the cost versus benefit of investing this effort. Thus, we discuss general

anesthesia as a useful example of how complex dynamical mechanistic models can interact

with data-driven modeling of a complex physiological system in order to provide an

integrating conceptual framework of value to the critical care community.

Although general anesthesia has been used in the clinical practice of medicine for over 150

years, the mechanism of action for inducing general anesthesia is still not fully understood

[112] and is still under considerable investigation [113–117]. With advances in

biochemistry, molecular biology, and neurochemistry there has been impressive progress in

the understanding of the molecular properties of anesthetic agents. However, despite these

advances, we still do not understand how anesthetic agents affect the properties of neurons

that translate into the induction of general anesthesia at the macroscopic level. In fact, to

date, no single unifying receptor mediating general anesthesia has been identified. We

suggest that the most likely explanation for the mechanisms of action of anesthetics lies in

the network properties of the brain, where the fundamental unit in the brain is the excitable

neuron. These network properties are being discovered largely through data-driven modeling

[118, 119].

In fact, it has been known for a long time that general anesthesia has profound effects on the

spectrum of oscillations in the electroencephalograph [120, 121]. In both animal and human

studies, it has been observed that with increased doses of anesthetic agents the transition

from consciousness to unconsciousness or from responsiveness to non-responsiveness in

individual subjects is very sharp, almost an all-or-none transition [122], confirming the

clinical observations of generations of clinicians. There is also extensive experimental

verification that collections of neurons may function as oscillators [123–125] and that

synchronization of oscillators may play a key role in the transmission of information within

the central nervous system.
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More recently, the authors in [117] have suggested that thalamocortical circuits function as

neural pacemakers and that alterations in the thalamic oscillations are associated with the

induction of general anesthesia. Furthermore, it is well known that anesthetic drugs

frequently induce epileptiform activity as part of the sharp progression to the state of

unconsciousness [126]; epileptiform activity implies synchronization of oscillators. This

leads to the possibility that synchronization of these oscillators is involved in the transition

to the anesthetic state, in a manner similar to the aforementioned concept of oscillators in

organ-organ coupling [21].

One fascinating possibility in understanding how the molecular properties of anesthetic

agents lead to the behavior of the intact organism exhibiting nearly discontinuous transitions

from consciousness to unconsciousness as the concentration of anesthetic drugs increases, is

to develop mechanistic models that capture phase transitions of the neural network that

resemble a thermodynamic phase change [127]. By merging the two universalisms of

thermodynamics and dynamical systems theory–both of which are aspects of mechanistic

modeling–with neuroscience, the authors in [128–130] provide insights to the theoretical

foundation for understanding the network properties of the brain by rigorously addressing

large-scale interconnected biological neuronal network models that govern the

neuroelectronic behavior of biological excitatory and inhibitory neuronal networks. As in

thermodynamics, neuroscience is a theory of large-scale systems wherein graph theory

[131]–a form of data-driven modeling–can be used in capturing the connectivity properties

of system interconnections, with neurons represented by nodes, synapses represented by

edges or arcs, and synaptic efficacy captured by edge weighting.

In current clinical practice, potent drugs are administered which profoundly influence levels

of consciousness and vital respiratory (ventilation and oxygenation) and cardiovascular

(heart rate, blood pressure, and cardiac output) functions. These variation patterns of the

physiologic parameters (i.e., ventilation, oxygenation, heart rate, blood pressure, and cardiac

output) and their alteration with levels of consciousness, can potentially provide scale-

invariant fractal temporal structures to characterize the degree of consciousness in sedated

patients. In particular, the degree of consciousness reflects the adaptability of the central

nervous system and is proportional to the maximum work output under a fully conscious

state divided by the work output of a given anesthetized state [132]. The fractal nature (i.e.,

complexity) of conscious variability enables the central nervous system, as a large-scale

interconnected neuronal network, to maximize entropy production and optimally dissipate

energy gradients. A fully conscious healthy patient would exhibit rich fractal patterns in

space (e.g., fractal vasculature) and time (e.g., cardiopulmonary variability) that optimize the

ability for oxygenation and ventilation. Within the context of aging and acute illness,

variation of physiologic parameters and their relationship to system complexity, fractal

variability, and system thermodynamics have been explored in [21, 132–136].

Merging system thermodynamics with neuroscience can provide the theoretical foundation

for understanding the mechanisms of action of general anesthesia using the network

properties of the brain. Developing a mechanistic, dynamical systems framework for

neuroscience [128–130] and merging it with system thermodynamics [137–139] by

embedding thermodynamic state notions (i.e., entropy, energy, free energy, chemical
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potential, etc.) in theory would allow us to directly address the otherwise mathematically

complex and computationally prohibitive large-scale neural population models that have

been developed in the literature. In particular, a thermodynamically consistent neuroscience

model would emulate the clinically observed self-organizing, spatio-temporally fractal

structures that dissipate energy optimally and optimize entropy production in

thalamocortical circuits of fully conscious patients. This thermodynamically consistent

neuroscience framework can provide the necessary tools involving semistability [130],

synaptic drive equipartitioning (i.e., synchronization across time scales) [130], energy

dispersal, and entropy production for connecting biophysical findings to psychophysical

phenomena for general anesthesia.

In particular, we hypothesize that as the model dynamics describing the cortical neural

network transition to an anesthetic state, the system will involve a reduction in system

complexity—defined as a reduction in the degree of irregularity across time scales—

exhibiting semistability and synchronization of neural oscillators (i.e., thermodynamic

energy equipartitioning) [129, 140]. In addition, connections among thermodynamics,

neuroscience, and the arrow of time [137–139] can be explored by developing an

understanding of how the arrow of time is built into the very fabric of our conscious brain.

Connections between thermodynamics and neuroscience are not limited to the study of

consciousness in general anesthesia; they can also be seen in biochemical systems,

ecosystems, gene regulation and cell replication, as well as numerous medical conditions

(e.g., seizures, epilepsy, schizophrenia, hallucinations, etc.), which are obviously of great

clinical importance but have been lacking rigorous theoretical frameworks.

Conclusions and Future Prospects

The unmet need for new treatments and diagnostic modalities for acute critical illness is, in a

word, acute. While decades of work have led to many novel insights from the molecular to

the physiological level, the net result has been disappointing. We suggest that this is not

because the effort has not been worthwhile or because promising candidate approaches were

not pursued. Rather, it is our contention that what has not taken place is the process of

synthesis of these insights into a larger whole. Computational modeling is a promising

avenue for such synthesis; however, the current approach is based purely on statistical tools

by which to associate multiple variables to outcomes. Mechanistic mathematical modeling

based on dynamic measurements can circumvent many of the pitfalls of data pattern

analysis, but what is needed is a synthesis of these two approaches.

In this paper, we have attempted to present this perspective, with an example from the arena

of anesthesia with which we hope members of the critical care community will be

acquainted. Researchers in the neurosciences are attempting to synthesize data-driven

concepts of neural circuits with mechanistic models of brain function and general anesthesia,

though this effort is still ongoing. The anticipated payoff is the development of anesthetic

models that can significantly advance our understanding of pharmacological agents and

anesthetics, as well as advance the state-of-the-art of drug delivery for general anesthesia.

We suggest the need for similar efforts in the setting of acute critical illness. The payoff for

this community would be personalized (or precision) medicine using known drugs but
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driven by quantitative data via predictive, mechanistic models. Ultimately, such models

could be used to design completely new drugs or feedback control devices (or combinations

thereof) that would modulate inflammation and physiology in order to reduce morbidity and

mortality from acute critical illness. While this vision is also a ways off, early steps in this

direction are promising and merit further effort. We hope that members of the Society for

Complex Acute Illness will lead the way in this endeavor and take the advantage of the

undeniable opportunities offered by bringing together these two complexity-inspired

approaches.
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