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Abstract

Cell differentiation is an essential process for the development, growth, reproduction and

longevity of all multicellular organisms, and its regulation has been the focus of intense

investigation for the past 4 decades. The study of natural and induced stem cells has ushered an

age of re-examination of what it means to be a stem or a differentiated cell. Past and recent

discoveries in plants and animals, as well as novel experimental manipulations are beginning to

erode many of these established concepts, and are forcing a re-evaluation of the experimental

systems and paradigms presently being used to explore these and other biological process.

“The ship wherein Theseus and the youth of Athens returned had thirty oars, and

was preserved by the Athenians down even to the time of Demetrius Phalereus, for

they took away the old planks as they decayed, putting in new and stronger timber

in their place, insomuch that this ship became a standing example among the

philosophers, for the logical question of things that grow; one side holding that the

ship remained the same, and the other contending that it was not the same.”

Plutarch (c. 46 – 120 AC), 75 C.E.

Introduction

The stability of the differentiated state of cells is essential for the growth, survival and

perpetuation of all multicellular organisms studied to date. The generation of new cells from

highly regulated, post-embryonic tissues for growth, repair, reproduction, and defense, for

example, is an essential attribute of multicellular life in both Plant and Animal Kingdoms.

How such capacity to generate new cells is parsed depends in great part on the evolutionary

history of each species. In post-mitotic organisms such as Caenorhabditis elegans, this

means that the adult animals have to live their adult lives with the fixed number of

differentiated cells they were born with. Other organisms such as Drosophila melanogaster
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experience similar fates, except that they possess tissues such as the midgut that are renewed

by resident cellular proliferation throughout adulthood (Ohlstein and Spradling, 2007). Such

mixture of post-mitotic and continually renewed tissues is easily illustrated with what we

know of our own biology. Tissues such as the frontal lobe of our brain is unlikely to be

turning over at any appreciable rate during our adult life (Spalding et al., 2005), whereas the

lining of our gut -a surface area equivalent in size to a tennis court (Heath, 2010)- is

renewed approximately every three to five days (Pinto and Clevers, 2005; Pinto et al., 2003).

Hence, for most known multicellular organisms their relatively constant, outward

appearance is underscored by an incessant, inner transformation in which cells lost to

normal physiological wear and tear (turnover) are replaced by the progeny of dividing cells

(Pellettieri and Sánchez Alvarado, 2007). In other words, biological systems possess critical

mechanisms driven by a balance between cell death and cell proliferation that preserve the

forms and functions of developed tissues. Thus, as in the paradox of the ship of Theseus

(Plutarch, 75 CE), it is through constant change that the appearance of most living

organisms remains the same.

Ever since cells were first observed by Hooke in 1665, and the discovery in the early 1800’s

by Treviranus (Treviranus, 1811), Moldenhawer (Moldenhawer, 1812) and Dutrochet

(Dutrochet, 1824) that cells were separable units providing a fundamental element of

organization to both plants and animals, their fate, functions, and behaviors have held the

fascination of laypeople and biologists alike. Much research in biology has concerned itself

with understanding how cell types are elaborated during embryonic development and how

their functions and identities are maintained throughout life. In fact, it can be easily argued

that for centuries, a significant amount of work in biology has focused on understanding the

differentiation potential of cells, from Hartsoeker’s homunculus (Hartsoeker, 1694) to

present day work on stem cells (Dejosez et al., 2013; Suga et al., 2011) and regeneration

(King and Newmark, 2012; Sánchez Alvarado and Tsonis, 2006). Key, influential concepts

have emerged from this collective and long-standing effort by biologists to understand life:

potency, lineage, competence, fate, and differentiation, for example. And while these

concepts have served us well, there is clear evidence that many are being eroded, while

others are beginning to look more like mere suggestions rather than strict rules to be

followed. Such challenges to the establishment are being ushered by a discreet, but

nonetheless persistent effort to expand modern biological inquiry into novel experimental

systems and paradigms, and by the wholesale embracing of the field of powerful

methodologies that have increased the granularity of our studies to unprecedented levels of

detail and complexity. As such, our present interrogation of cellular potency both in vivo and

in vitro is leading to a re-evaluation of the explanatory system that frames our understanding

of developmental processes. Here we discuss how understudied model systems and novel

technologies such as induced pluripotent stem cells (iPSCs) are forcing us to question long-

established concepts (Figure 1), and propose that such efforts may ultimately help marshal

an age of biological discovery unconstrained by the incrustations of familiarity.

Tissue Homeostasis, Longevity and Stem cells

While development is normally associated with embryogenesis, this biological process does

not end at birth, but continues throughout the natural lifespan of plants and animals. For
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many organisms this can be a remarkably long period of time during which constant cellular

renewal and growth goes on for decades, sometimes centuries. In fact, the functions of many

organs under normal physiological conditions depend on the continuous destruction and

renewal of their cells. Therefore, understanding the mechanisms by which cell proliferation

and tissue turnover are balanced in order to yield constitutive body growth, and constitutive

body regeneration, should provide key insights on adult developmental processes. Consider

the South American flowering plant Azorella compacta (Figure 2a), which adds about 1.5

cm of radial growth per year (Kleier and Rundel, 2004). Based of this rate of growth, it has

been estimated that many specimens found in the Atacama desert likely exceed 3,000 years

of age, making A. compacta one of the oldest living organisms on Earth. Or from the animal

kingdom, consider the rather extreme form of tissue homeostasis that is readily found in the

colonial ascidian Botryllus schlosseri, a close relative of the vertebrates (Figure 2b). This

chordate is known to undergo whole-body regeneration every 7 days or so as part of its

growth and reproductive cycle (Lauzon et al., 1992, 2002; Rinkevich et al., 1992). Other

examples exist, such as the freshwater planarian Schmidtea mediterranea (Figure 2c), which

is known to constantly, and seemingly permanently replace cells lost to physiological wear

and tear with the progeny of proliferating cells, making these organisms negligibly senescent

(Pellettieri and Sánchez Alvarado, 2007).

Because post-natal regulation of growth and homeostasis is found in both the Plant and

Animal Kingdoms, it is likely that the units of selection underpinning this attribute, i.e., stem

cells, and the processes regulating the perpetuation of these cells may be as ancient as the

origins of multicellularity. While we have a very clear understanding of the location and

number of stem cells in flowering plants (Birnbaum and Sánchez Alvarado, 2008), much

remains to be resolved when it comes to animal stem cells. In plants, stem cells reside in

apical and root meristems, and their cell division, determination, differentiation and

patterning have been elegantly defined and characterized during embryogenesis and in

mature plants in both time and space (Brand et al., 2000; Gordon et al., 2009; Reddy et al.,

2004; Reddy and Meyerowitz, 2005; Sugimoto et al., 2011). The situation in animals is quite

different. In the case of Botryllus, for example, while the most parsimonious explanation to

whole body regeneration is the existence of stem cells, their exact anatomical location

remains controversial, and the possibility of neogenesis (production of stem cells from other,

differentiated cells, for example) remains a formal possibility (Laird et al., 2005; Laird and

Weissman, 2004; Rinkevich et al., 2013; Voskoboynik et al., 2007; Voskoboynik et al.,

2008). In planarians, the anatomical location of stem cells (neoblasts) has been known for a

very long time (Elliott and Sánchez Alvarado, 2013), and while evidence exists that at least

some of these cells are pluripotent (Wagner et al., 2011), it still remains to be determined

whether or not there exists discrete heterogeneities of stem cells among the neoblast

population and whether such heterogeneities are defined or plastic. Problematic in the field,

therefore, is the significance of the extensive heterogeneity of expression of fate determinant

genes in the planarian stem cells (Chen et al., 2013; Lapan and Reddien, 2012; Reddien,

2013; Scimone et al., 2014; Scimone et al., 2011), which is currently interpreted as

reflecting co-existing populations of committed, yet nevertheless undifferentiated cells

(Reddien, 2011, 2013).
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Although one would expect our knowledge of stem cell biology in these invertebrate species

to be incomplete due to the limited tools available to mechanistically interrogate them, it

would not be necessarily expected that a similar state of affairs exists in better-studied

animals such as mice. The biology of mammalian stem cells is usually inferred from the

study of cells that were isolated based on their expression of surface markers, rather than by

studying them in vivo. It is known, though, that removal of cells from their native milieu

results in changes in their behavior and that the markers used to isolate them can be both

transient and heterogeneous in their expression to the point where pluripotent stem cell

identity can be a remarkably dynamic state (MacArthur and Lemischka, 2013). These

factors have essentially conspired against us, and have prevented us from having a clear

understanding of the actual number of self-renewing stem cells present in mammalian

tissues, or the dynamics that govern their renewal.

Consider the mammalian small intestine as an example. For many years, the location and

types of stem cells in the crypts of this organ has been hotly debated. Some placed the stem

cells in specific locations of the crypt (e.g., the +4 position) (Barker et al., 2007; Clevers and

Bevins, 2013), while others argued for the existence of quiescent or label retaining stem

cells in other locations as being the stem cells in this organ (Tian et al., 2011; Yan et al.,

2012). Genetic studies have begun to resolve these differences. We now know that some of

the markers identified from isolated cells and expressed in different yet overlapping cell

populations such as mTERT, Lgr5 or Hopx may represent candidate stem cell populations

because all of them can give rise to long-lived clonal progeny (Barker et al., 2007;

Montgomery et al., 2011; Takeda et al., 2011). We also now know that non-self-renewing

secretory precursor cells in the intestine are the label retaining cells, which only under

growth-promoting conditions can change their terminally differentiated fate and become

stem cells. These committed secretory precursors give rise to Paneth and enteroendocrine

cells, and while expressing stem cell markers, they are quiescent under homeostatic

conditions (Buczacki et al., 2013). Moreover, the number of stem cells per functional

intestinal crypt is remarkably small (5 to 7; (Kozar et al., 2013), begging the question of how

such a minute number of equipotent, clonogenic cells can generate different numbers of

cells, expressing different markers (e.g., mTERT, Lgr5, Hopx), with different degrees of

overlap (Muñoz et al., 2012), and the capacity to interconvert into each other (Takeda et al.,

2011).

Given the importance of knowing how many stem cells may actually exist in a given tissue,

and how their population dynamics is regulated during growth, tissue homeostasis, and

regeneration, it is evident that much work needs to be done to explore the fundamental

nature of stemness in vivo. If the normal fate of cells in adult tissues is plastic and

environmental changes such as growth-promoting conditions can switch their development

from a program of terminal differentiation to one of active clonogenicity, we need to invest

more effort in studying how stemness arises not only as a cell autonomous property, but

rather as a property emerging from the behavior of cell populations. While stem cells in

culture may help identify molecules that are associated with stem cell function,

understanding the properties of stem cells will require precise lineage and fate mapping

studies in vivo, and we predict that this will be accompanied by the active prospecting and
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identification of novel stem cell function paradigms in both currently studied and as yet to

be interrogated organisms.

The Plasticity of Cell Fate

If development is a continuum from conception to death, then it is important to ask what it

means for a cell to be “functionally mature” or “differentiated”. The origins of the modern

concept of cellular differentiation can be traced as far back to the influential book The

Theory of the Germ Plasm by August Weismann (Weismann, 1893). The concept put

forward by Weismann invokes the production of two cell types early in embryogenesis: one

that will pass on the individual’s genetic information to the next generation (germ cells in

the gonads), and another that produces all other cell types in the organism (somatic cells).

The implication being that as somatic cells develop, they become progressively and

irreversibly restricted in their differentiation potency to the point that each cell can only

differentiate into a single, specific cell type (e.g., muscle, neurons, epithelia, etc.). From the

outset, this concept was challenged by studies of regeneration, in which new tissues are

made from pre-existing, and according to Weisman’s theory, terminally differentiated cells,

a difficulty Weisman himself recognized by dedicating a full, yet inconclusive chapter to

this topic in his book (Weismann, 1893).

Interestingly, data was already available demonstrating that embryonic cells capable of

giving rise to the soma were not restricted in their developmental potency, work that

presumably should have been readily accessible to Weismann. The work involved the study

of siphonophore embryos and was published in 1869 by none other than Ernst Haeckel

(Haeckel, 1869). Although traditionally credited to Roux and Driesch (Gilbert, 2013),

Haeckel discovered that amputated fragments of Siphonophore embryos could produce

complete larvae (Haeckel, 1869) (Figure 3). Although this paper has been widely ignored by

scientists and most historians of science (see (Richards, 2008) for a salient exception), it is

the first clear demonstration of the pluripotency of embryonic cells, preceding the work of

Roux and Driesch by almost 30 years.

Eventually, other experimental evidence was put forward to suggest that the developmental

fate of cells can indeed be quite plastic. Using hydra with different pigments (Figure 4),

Ethel Browne described how the mouth (hypostomal) tissue when grafted into the body wall

of another hydra produced “the necessary stimulus to call forth the development of a new

hydranth” at the site of transplantation (Browne Harvey, 1909). Later, Hilde Proescholdt

Mangold, a graduate student working in Hans Spemann’s laboratory, would perform similar

experiments with frog embryos, in which she grafted a piece of the lip of the blastopore to

the flank of another gastrula distant from the host blastopore, resulting in the induction of a

secondary body axis (Mangold and Spemann, 1924). Altogether, the experiments of

Haeckel, Browne, Proescholdt and others (Lewis, 1904; Spemann, 1901) showed

conclusively that the fate of embryonic cells was not irreversible and that their

differentiation programs could be experimentally reprogrammed.

Equally interesting is the fact that such plasticity is not only confined to embryonic cells. In

1891, Colluci reported the ability of newts to regenerate their lenses after full lentectomy
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(Colluci, 1891), and in 1895, Wolff demonstrated that the source of the regenerated lens

were the pigmented epithelial cells of the dorsal iris, providing the first example of in vivo,

adult cellular reprograming (Wolff, 1895). Subsequent work demonstrated that the

pigmented dorsal epithelial cells had to re-enter the cell cycle and de-differentiate in order

for lens regeneration to occur, (Eguchi and Shingai, 1971; Reyer, 1977; Yamada, 1977).

More recently, it has been shown in planarians that postmitotic tissues in amputated

fragments devoid of stem cells can reprogram their genomic output, and both express

(Reddien et al., 2007) and repress (Gurley et al., 2010) patterning signals. Such modulation

is required to allow the amputated fragments to dramatically re-arrange pre-existing tissues

to produce small animals with a complete complement of organ systems of appropriate

allometric proportions. These observations indicate that reprograming mechanisms in

differentiated cells must exist that allow a rapid change in site of expression of signaling

proteins regulating planarian body patterning.

Most remarkable still is the fact that complete adult organisms can revert in their entirety to

a larval state through reprogramming mechanisms that remain to be elucidated (Figure 5).

Upon thermal, chemical, physical stress, or merely aging (senescence), the hydrozoan

species Turritopsis dohrnii, Turritopsis nutricola, Laodicea undulate and Podocoryne

carnea and possibly many more (Piraino et al., 2004) have been reported to revert their life

cycle by back-transformation of the adult state into juvenile, earlier developmental stages

(Carla et al., 2003; Piraino et al., 1996; Schmich et al., 2007). This exaggerated potential for

dedifferentiation provides a unique experimental paradigm to understand how regulatory

networks of gene expression and their attendant cell behaviors may control the directionality

of ontogeny, i.e., normal vs. reverse development. Hence, it appears that in Nature, for many

cells in many organisms, the differentiated state is not terminal but, instead, stable and that

under varied environmental conditions such as injury and disease, or even the natural

process of aging, such state can be reprogrammed.

Cellular reprogramming

The in vivo plasticity of the differentiated state can be induced artificially by directly

manipulating cells and their environment. A notable example in which environmental

perturbations were shown to drive changes in cell fate was reported in the middle of the 20th

century by Holtfreter (1947). In these experiments, frog cells fated to form skin developed

into brain tissues when exposed to a solution of low pH (Holtfreter, 1947). Yet, the first

attempt to directly, and specifically reprogram cells involved nuclear transplantations from

older, differentiated cells, into younger, undifferentiated cells. This notion was first

proposed by Hans Spemann (Spemann, 1938), but was brought to fruition by the patient and

groundbreaking work of Briggs and King, who developed methods to transplant the nuclei

of blastula cells into enucleated frog oocytes (Briggs and King, 1952). This accomplishment

was soon followed by the work of John Gurdon who extended this method to transplant

nuclei from frog intestine into oocytes and produce clonal, somatically derived adult frogs

(Gurdon et al., 1958). As our understanding of the molecular processes leading to the

commitment and differentiation of cells increased, it became possible to reprogram cells not

by transplanting their nuclei but by introducing gene functions into cells. This was brilliantly

accomplished by Harold Weintraub (1989) when he and his group elegantly demonstrated
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that transforming fibroblast, pigment, nerve, fat and liver cells with a single transcription

factor, in this case MyoD, was sufficient to push these cells into a myogenic developmental

pathway (Tapscott et al., 1988; Weintraub et al., 1989).

This body of work paved the way for the generation of induced pluripotent stem cells

(iPSCs) in 2006 (Takahashi and Yamanaka, 2006). By simultaneously introducing four

transcription factors, namely Oct3/4, Sox2, Klf4 and c-Myc, mouse fibroblasts were

transformed into cells that were nearly identical to embryonic stem (ES) cells. By culturing

an inner cell mass of blastocysts, mouse ES cells were first generated in 1981 by Martin

Evans (Evans and Kaufman, 1981) and Gail Martin (Martin, 1981). Such ES cells proliferate

infinitely while maintaining pluripotency. The unexpected finding that somatic cells can

revert all the way back to the embryonic state by a handful of transcription factors soon led

to the chemical manipulation of signaling pathways to reprogram cells (Hou et al., 2013; Li

et al., 2009), and to the discovery of factor-mediated conversion of fibroblasts into other cell

lineages, such as neurons (Vierbuchen et al., 2010), hepatocytes (Sekiya and Suzuki, 2011)

and cardiac myocytes (Ieda et al., 2010).

The fact that it is possible to reprogram cells by either perturbing their environment or

changing their genomic output artificially, indicates that that the plasticity of the

differentiated state may not be restricted to simple animals, and that programs for

dedifferentiation may be more prevalent and much more broadly distributed among all

animals (including humans) than most care to contemplate at the present time. Recent work

in mice suggests that this may be the case. When white blood cells are exposed to a solution

of low pH, the cells dedifferentiated and began to express gene markers typical of early

embryos, a phenomenon termed stimulus-triggered acquisition of pluripotency (STAP)

(Obokata et al., 2014b). Equally remarkable, when injected into embryos STAP cells

produced chimaeras a property that was previously thought to be the exclusive realm of

embryonic stem cells and iPSCs (Obokata et al., 2014a).

The STAP phenomenon may explain a series of controversial findings regarding the

existence of pluripotent stem cells in the adult mammalian body. In 2001, Verfaillie and

colleagues reported the isolation of pluripotent stem cells from adult bone marrow by a

combination of selecting for specific surface markers and expanding the obtained cells in

defined culture conditions. They designated these cells MAPCs for multipotent adult

progenitor cells (Reyes and Verfaillie, 2001). Subsequently, these findings were followed by

the report that chimeric mice could be generated by transplanting mouse MAPCs into

blastocysts (Jiang et al., 2002). This body of work, however, was met with skepticism

because it could only be reproduced in a few laboratories. More recently, other groups have

also reported on the isolation of pluripotent stem cells from adult human tissues (Heneidi et

al., 2013; Kuroda et al., 2010; Obokata et al., 2011; Roy et al., 2013). Of note, the Desawa

and Chazenbalk laboratories showed that pluripotent stem cells, which they designated

Muse (Multi-lineage differentiating Stress Enduring) cells, could be derived from human

somatic tissues exposed to long-term exposure to collagenase, serum deprivation, low

temperatures and hypoxia, and argued that Muse cells already existed in normal adult bodies

but were preferentially expanded under conditions of severe cellular stress (Heneidi et al.,

2013; Kuroda et al., 2010). Although the Muse and STAP procedures are remarkably
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similar, the STAP papers have provided a different interpretation. In essence, that the adult

pluripotent stem cells of mammalian tissues that previous work regarded as pre-existing

stem cells may have arisen by stress-induced reprogramming during isolation and

cultivation. Hence, it appears that in Nature, for many cells, and in many organisms, the

differentiated state is not terminal but, instead, stable and that under varied environmental

conditions such as injury and disease, or even the natural process of aging, such state can be

reprogrammed.

Technology from science: patient-derived stem cells and medical

applications

The discovery in 2007 that human iPSCs could be generated opened the door to

unprecedented opportunities to supply multiple functional human cells in large quantities

(Park et al., 2008; Takahashi et al., 2007; Yu et al., 2007). One potential application of

iPSCs in medicine is in the field of cell therapy. The transplantation of differentiated cells

derived from iPSCs has been shown to successfully induce functional recoveries in rodent

models of sickle cell anemia (Hanna et al., 2007), platelet deficiency (Takayama et al.,

2010), Parkinson’s disease (Wernig et al., 2008), diabetes (Alipio et al., 2010) and spinal

cord injury (Tsuji et al., 2010). The first clinical trial using iPSCs will start in Japan in 2014

for patients suffering from age-related macular degeneration, a disease affecting at least 25–

30 million people worldwide (WHO, 2012).

Other equally important medical application of iPSCs is drug development. Patient-derived

iPSCs have proven effective in providing models of disease with which to obtain a better

understanding of various disease mechanisms and the screening of chemicals and natural

derivatives for the development of effective drugs (Inoue et al., 2014). To our surprise,

disease phenotypes have been recapitulated using patient-derived iPSCs from not only early

onset monogenic diseases, but also from polygenic late onset diseases, such as sporadic

forms of Alzheimer diseases (Kondo et al., 2013). Furthermore, human somatic cells, such

as cardiac myocytes and hepatocytes, are useful for predicting the toxicity of drug

candidates (Guo et al., 2011; Medine et al., 2013). Therefore, iPSC technology is expected

to revolutionize the process of drug discovery in the coming years.

More recently, the three-dimensional structures of the retina (Eiraku et al., 2011) and

pituitary gland (Suga et al., 2011) were recapitulated in vitro by the self-organization of

mouse ES cells. Furthermore, vascularized human livers were generated in mice by

transplanting a mixture of human iPS cell-derived hepatocytes, endothelial cells and

mesenchymal stem cells (Takebe et al., 2013). These new strategies further broaden the

potential applicability of iPSCs cells in the emerging and rapidly evolving fields of

regenerative medicine, disease modeling, and drug development.

Conclusions: On breaking rules

In biology, and particularly in evolution, rules are meant to be broken. Most, if not all

evolutionary advances have arisen from the violation of pre-existing rules. The evolution of

unicellular to multicellular, sessile to motile, and aquatic to terrestrial animals, for example,
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required breaking with established norms for new forms of life and lifestyles to emerge.

Rule breakers drive the expansion of life into new territories that at first appeared

inhospitable. In turn, these organisms will themselves evolve a new cohort of rule breakers

that will continue to expand the reach of life into previously uninhabited domains. If

breaking rules is as important to the perpetuation of life, as simply following them, Nature

must have an abundance of rule breakers in its fold. Hence, it is not difficult to imagine how

the small number and almost arbitrary species we have selected to study in depth, may be

restricting our understanding of biology to a comparatively narrow set of attributes from

which we hope to extract the rules and principles governing complex biological phenomena.

The study of stem cells and potency in the past decade and a half has had important

repercussions in our understanding of biology in general and development in particular, and

has forced us to rethink what it means for cells and tissues to be differentiated. Not only has

this effort ushered new studies of key principles of developmental biology such as the

regulation of genomic and epigenomic output during both embryogenesis and adult

physiological functions, but it has also provided novel paradigms for the development of

therapeutic strategies aimed at addressing a wide gamut of human ailments. It is becoming

increasingly clear that the concept of terminal differentiation, while conceptually useful, is

not biologically accurate. The accepted rules of differentiation are being broken daily by

Nature and it is quite likely that many more such rules may simply be suggestions, and that

the concepts of stemness, determination, biological and chronological time among others

will ultimately end up being re-examined and redefined.

The concept of stable rather than terminal differentiation should, for example, lead to the re-

examination of current strategies aimed at differentiating human pluripotent stem cells.

Although the generation of fully functional mature cell types from human pluripotent stem

cells has advanced significantly in recent years, this process still remains a major challenge.

The idea that the differentiated state of a cell may not be terminal but stable underscores the

importance of identifying environmental factors that maintain the stable differentiation cell

state, an aspect that has not been widely explored and might offer novel solutions for

producing fully functional mature cell types from human pluripotent stem cells. It is our

belief, that many more conceptual dogmas will be challenged in the years to come, and that

progress in our knowledge of life and the attendant understanding of complex biological

systems that should emerge from it will see many more rules being broken by experimental

facts. This will likely be driven by the discovery of new paradigms for the study of stem

cells, gene regulation, tissue homeostasis and longevity, for example. We predict that 40

years from now biology will likely be a field hardly recognizable from what it is today.
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Figure 1. Potency, reprogramming and differentiation
Discoveries and technological breakthroughs associated with the concept of cellular

differentiation. The background image is plate 37 from Haeckel’s Kunstformen der Natur

(Haeckel, 1904) and depicts a siphonophore.
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Figure 2. Biological adaptations of stem cell functions
A) The evergreen perennial plant Azorella compacta grows constitutively through the

continuous proliferation and differentiation of its meristem stem cells (Credit: Pedro Szekely

(http://commons.wikimedia.org/wiki/File:3,000_Year_Old_Yareta_Plant_

%282087602585%29.jpg). B) The colonial ascidian Botryllus schlosseri regenerates its

whole body almost weekly as part of its sexual and asexual reproductive strategy (Credit:

Parent Géry (http://commons.wikimedia.org/wiki/File:Botryllus_schlosseri_

%28Pallas,_1766%29_.jpg). C) The negligibly senescent planarian Schmidtea mediterranea

is a constitutive adult which constantly replaces dying differentiated cells with the freshly

minted progeny of its abundant stem cell population (Credit: Erin Davies).
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Figure 3. Demonstration of pluripotency of blastomeres in siphonophores
Dissection of siphonophore larvae in half (Fig. 73 and 74 in plate). The same larvae halves a

few hours after physical separation (Figs. 75 and 76 in plate). Larvae separated into thirds 8

days after dissection (Figs. 77, 78 and 79). Figures 77 and 79 illustrate larvae fragments that

developed an air sac and polyps (Fig. 77) and a normal, full larvae (Fig. 79). Finally, Figs

80, 81, 82, and 83 illustrate the results of quartering siphonophore larva with only 83

developing normally (Haeckel, 1869).
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Figure 4. Pioneering work of Ethel Browne Harvey demonstrating the ability of transplanted
tissues to reprogram the fate of host cells
Reproduced from the original (Browne Harvey, 1909), this image illustrate the specific

outcomes of transplanting of various body parts between pigmented (green) and

unpigmented strains of Hydra. Fig. 42: Graft of white tentacle with peristome in middle of

green hydra. Fig. 43: Graft of white tentacle with peristome in foot of green hydra. Fig. 44:

Graft of green tentacle without peristome in white hydra. Fig. 45: Graft of green body tissue

in white hydra. Fig. 46: Graft of green hydranth in white hydra. Fig. 47: Graft of green foot
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in white hydra. Fig. 48: Heteromorphosis in reversed ring of green tissue grafted on white

stock.
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Figure 5. Animals reported of being capable of reverse development
A) Turritopsis dohrnii. B) Laodicea undulate (Credit for both images: Alvaro A. Migotto

http://cifonauta.cebimar.usp.br/photo/2190/ and http://cifonauta.cebimar.usp.br/photo/

10792/).
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