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Abstract

The mechanistic target of rapamycin complex I (mTORC1) is a central regulator of cellular and

organismal growth and hyperactivation of this pathway is implicated in the pathogenesis of many

human diseases, including cancer and diabetes. mTORC1 promotes growth in response to the

availability of nutrients, such as amino acids, which drive mTORC1 to the lysosomal surface, its

site of activation. How amino acid levels are communicated to mTORC1 is only recently coming

to light by the discovery of a lysosome-based signaling system composed of the Rag GTPases and

Ragulator, v-ATPase, GATOR and Folliculin complexes. An increased understanding of this

pathway will not only provide insight into growth control, but also into the human pathologies

triggered by its deregulation.
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Overview of mTORC1 signaling

Growth is a fundamental biological process that is highly influenced by an organism’s

environment. For multicellular eukaryotes, including mammals, nutrient availability within

the local environment is a major determinant of growth and is sensed through central

signaling pathways that engage anabolic programs necessary to increase cell and body size.
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By coupling nutrient sensing to long-range growth factor and hormonal signaling networks,

animals are able to readily adjust their growth and development programs to an ever-

changing environment. One central nutrient sensing pathway is the mechanistic Target of

Rapamycin (mTOR) pathway, which has emerged over the last twenty years as a master-

regulator of cellular, organ and organismal growth (1).

mTOR is an atypical serine-threonine kinase (2, 3) that nucleates two distinct multi-protein

complexes commonly known as mTORC1 and mTORC2. While mTORC2 promotes cell

proliferation and survival (1), it is mTORC1 that that is generally associated with cell

growth (1). mTORC1 is a 1 MDa (4) homodimer composed of the scaffolding subunit raptor

(5, 6); two endogenous kinase inhibitors referred to as DEPTOR (7) and PRAS40 (8); and

mLST8 (9) whose function remains cryptic. To stimulate cell growth, mTORC1 relies on its

downstream effectors to coordinately promote anabolic programs such as mRNA translation

(10) and repress catabolic programs such as autophagy (11), thereby avoiding a futile cycle

of uncoordinated synthesis and degradation.

mTORC1 is regulated by the small GTPase Rheb (12-14), which resides at the lysosomal

surface (15) where it functions as a potent stimulator of the mTORC1 kinase activity (8).

Rheb in turn is negatively controlled by the trimeric Tuberous-Sclerosis complex (TSC),

whose TSC2 component harbors GTPase activating protein (GAP) activity towards Rheb

(14, 16) –converting it from the active GTP bound state to the inactive GDP bound state.

The TSC complex, whose loss underlies a hamartomatous syndrome of the same name (17,

18), serves as a central hub for numerous extracellular and intracellular inputs including

mitogen and growth factor signaling (19-23), energy levels (24), oxygen availability (25, 26)

and genotoxic stress (27), which collectively exert their effects on the mTORC1 pathway by

modulating the activity of the TSC complex.

In addition to these inputs, it has long been appreciated that amino acid levels are also

critical for mTORC1 activation and represent one of the most conserved growth signals to

this pathway. Despite progress in deciphering the TSC complex-Rheb axis, we have only

begun to scratch the surface in uncovering how amino acids regulate mTORC1. Here, we

focus on the rapidly evolving field of amino acid sensing and review how deregulation of

this pathway contributes to human disease.

Amino acid signaling and mTORC1 localization

Early investigations revealed that amino acids were required to stimulate protein synthesis in

rat skeletal muscles, (28) a process now known to be under the control of mTORC1.

Subsequent studies in cultured mammalian cells confirmed that a mixture of all 20 amino

acids activated mTORC1 and that the combination of amino acid and growth factor

signaling was necessary for the phosphorylation of canonical mTORC1 substrates (29, 30).

Whether all amino acids, one particular amino acid or an amino acid byproduct is being

sensed remains unknown. Leucine and arginine are critical for mTORC1 activation but are

insufficient for its activation in cells deprived of the remaining 18 amino acids (29).

Dissecting the amino acid signal is further complicated by the fact that some plasma
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membrane amino acid transporters require additional amino acids to activate their

cotransport mechanism (31); blurring the line between cellular transport and sensing.

Although it was clear for over a decade that amino acids were vital for mTORC1 activation,

precisely how this signal functioned remained a mystery (32, 33). Careful cell biological

analysis of this question revealed that amino acids regulate the intracellular localization of

mTORC1 (34, 35). When cells are deprived of amino acids, mTORC1 is diffuse throughout

the cytoplasm. However, upon addition of amino acids, mTORC1 rapidly translocates to the

lysosomal surface where it is presumed to interact with the small GTPase Rheb (34). The

localization of mTORC1 to the lysosome is mediated by the raptor component of mTORC1

(see below). Attachment of a lysosomal targeting sequence to raptor constitutively places

mTORC1 on this surface (35), eliminating the need for the amino acid input to activate the

pathway. Thus, it appears that the main purpose of the amino acid signal is to co-localize

mTORC1 with its activator, Rheb (32, 36).

In budding yeast, TORC1 is localized to the vacuole, the equivalent of the mammalian

lysosome (37). Although TORC1 kinase activity is responsive to amino acids in this system,

it does not appear to shuttle in response to them (38). How amino acids actually activate

TORC1 in yeast remains an open question that will certainly be addressed in the years to

come.

The lysosome: key site of amino acid sensing

Extracellular amino acids must cross the plasma membrane to reactivate mTORC1 after

their depletion from cell culture media (31). Nevertheless, treating cells with cycloheximide,

a protein synthesis inhibitor, preserves sufficient intracellular pools of amino acids to rescue

mTORC1 signaling even in the absence of extracellular amino acids. This finding argues

that the sensing mechanism must occur within the cell and not at its periphery (34). The use

of a cell-free reconstitution assay suggested that the amino acid signal initiates from within

the lysosomal lumen (39). Depleting lysosomal amino acid stores by disrupting the

lysosomal membrane with detergents or ionophores inhibits amino acid-dependent

recruitment of mTORC1 to purified lysosomes. Amino acids accumulate in the lysosome

after their extracellular addition (39) further supporting luminal sensing in cells.

Furthermore, over-expression of PAT1, a lysosomal amino acid exporter, drains the

lysosomal lumen of amino acids (40), turning off mTORC1 signaling even in the presence

of amino acids. Intuitively, it makes sense for mTORC1 signaling to occur at the lysosome

because this organelle is the end point of many catabolic pathways including autophagy,

thus offering mTORC1 a window into the metabolic state of the cell.

The Rag GTPases mediate the amino acid signal to mTORC1

For a long time it was believed that the amino acid signal impinged on the TSC complex-

Rheb axis, however, the development of TSC2−/− mice suggested otherwise. mTORC1

signaling remained sensitive to a change in amino acid levels in MEFs obtained from these

animals (41, 42), implicating an alternative route for sensing. This alternative pathway,

identified by biochemical and genetic screens (34, 43), centers around the Rag GTPases

which lay the molecular foundation for amino acid signaling to mTORC1.
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Loss of function studies in mammalian, fly and yeast cells indicates the requirement of Rag

GTPases in communicating amino acid availability to mTORC1 (34, 38, 43). Rag GTPases

lie downstream of amino acids and in their absence, mTORC1 cannot translocate to the

lysosome. The Rag subfamily is unique among all small GTPase subfamilies because they

function as obligate heterodimers (34, 43-46). Mammalian systems contain four members of

the Rag subfamily: RagA and RagB (RagA/B) are functionally redundant and bind to the

highly similar RagC and RagD (RagC/D) (44-46), suggesting the existence of four possible

independent heterodimeric pairs. In yeast, only two Rag orthologs exist: GTR1 is the

equivalent of RagA/B (44) and binds to GTR2 the ortholog of RagC/D (45, 47).

Interestingly, the Rags also localize to the lysosomal surface where they recruit raptor in an

amino acid dependent manner (35), substantiating their role as a docking site for mTORC1

at this compartment (34). Linking amino acids to mTORC1 recruitment is dependent on the

nucleotide bound state of the Rags; RagA/B binds GDP during amino acid starvation and is

quickly exchanged for GTP after re-stimulation (34). The importance of GTP-bound

RagA/B was made clear in cells or animals expressing a GTP-locked RagA/B mutant, where

mTORC1 was found constitutively localized to the lysosome regardless of amino acid levels

(34, 36, 43).

Unlike other small GTPases, Rags do not contain lipid modifications commonly used for

intracellular protein targeting. Rather, they rely on a pentameric complex referred to as

Ragulator to function as its lysosomal tether (35, 48). Ragulator was identified as a Rag

interacting complex and its basic architecture consists of the central Lamtor1 component

that functions as a scaffold for two obligate heterodimers composed of Lamtor2-Lamtor3

and Lamtor4-Lamtor5. Myristoylation and palmitoylation on the N-terminus of Lamtor1

(49) promotes the localization of Ragulator and Rag GTPases to lipid rafts on lysosomal

surfaces. In cells lacking or depleted of Ragulator components, Rag GTPases no longer

attach to lysosomes, preventing mTORC1 shuttling to this surface, resulting in pathway

inactivation (35, 48). The functional ortholog of Ragulator in yeast is likely the

heterodimeric EGO1-3 complex that sits at the vacuolar surface, analogously localizing

GTRs and TORC1 to this membrane (38, 50, 51). Although EGO1-3 and Ragulator

members share no primary sequence identity, EGO3 adopts a nearly identical fold with

Lamtor2/3 and Lamtor4/5 (52, 53) (see Box 1).

Regulation of the Rag GTPases

The Rags are critical for proper amino acid sensing as their tight coordination with amino

acid levels prevents deregulation of mTORC1 signaling. This coordination depends on Rag

GTPase activators and inhibitors, which modulate their nucleotide bound state. The recent

identification of some of these regulators highlights a complex signaling network upstream

of the Rag GTPases (Figure 1).

Ragulator is a GEF for RagA and RagB

Dominant active mutations in the RagA/B proteins have led to the conclusion that a critical

step in the amino acid sensing pathway is their conversion from the inactive GDP-bound

state to the active GTP-bound state. In cells, GDP dissociation and GTP binding is mediated

by guanine nucleotide exchange factors (GEFs) (54). In vitro experiments with the Rag
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GTPases suggested that their rates of GDP dissociation were not physiologically relevant,

indicating the need for a GEF. Early experiments with Ragulator hinted at the auxiliary roles

of this complex: Ragulator preferentially bound to Rags in their inactive state, an interaction

that was driven by the nucleotide state of RagA/B (48). Clarifying the molecular nature of

this observation, in vitro and in vivo data demonstrated a strong preference for Ragulator

binding to Rags devoid of nucleotide, a characteristic of GEF-GTPase interactions. Using a

system that allowed for the preferential loading of one Rag GTPase with guanine nucleotide

in the context of the Rag heterodimer, it was revealed that Ragulator indeed functions as a

GEF for RagA/B; however, it did not display any activity towards RagC or an unrelated

GTPase (48). Moreover, the GEF activity of Ragulator appears to be shared across multiple

surfaces of the pentameric complex, evoking comparisons to the TRAPP1 complex, which

also requires multiple subunits for its GEF activity towards YPT1 (55, 56).

The v-ATPase controls Ragulator

Since the prominence of the lysosome for mTORC1 signaling is established, a limited RNAi

screen in Drosophila cells was undertaken (39) to determine if additional lysosomal proteins

partake in amino acid sensing. This screen led to the discovery that reducing the levels of

lysosomal v-ATPase components severely inhibits dTORC1 signaling. Complementing the

RNAi results, the use of v-ATPase specific chemical inhibitors in mammalian cells verified

the importance of this complex in mediating the amino acid signal to mTORC1. The v-

ATPase is composed of two multi-protein complexes termed V1 and V0 and is best

appreciated for its role in lysosomal lumen acidification (57). While this acidification

appears to be dispensable for mTORC1 signaling, the v-ATPase engages in extensive amino

acid dependent interactions with Ragulator (39). Interestingly, the interactions between the

two complexes during times of starvation are mimicked by pharmacological inhibition of the

v-ATPase, offering a model in which the GEF activity of Ragulator is blocked during amino

acid starvation but is fully reactivated after amino acids induce a conformational change

between the v-ATPase and Ragulator (39, 48). This model raises the question of whether the

v-ATPase is a direct amino acid sensor; an answer that will be forthcoming through the

application of advanced biophysical and in vitro reconstitution assays.

Folliculin: A tumor suppressor complex that regulates RagC and RagD

While the key importance of RagA/B in controlling mTORC1 is established, the functional

significance of RagC/D to this pathway has remained largely unanswered. Recently, studies

employing new Rag-raptor in vitro and in vivo binding assays, indicated that the nucleotide

state of RagC but not RagA governs the raptor-Rag GTPase interaction. Specifically, when

RagC is bound to GDP, the Rag heterodimer strongly interacts with raptor, whereas GTP

loading of RagC abolishes this interaction (58). These results raise the question of how GTP

binding to RagA/B activates the heterodimer and in turn mTORC1 (see Box 1).

While the function of RagC has greatly expanded, the positive and negative regulators of

RagC are only beginning to emerge. One such regulator is the tumor suppressor folliculin

(FLCN) that functions as a RagC/D GAP. FLCN is not a new member of the mTORC1

pathway; truncating mutations in the protein are known to underlie a hamartoma- like

syndrome referred to as Birt-Hogg-Dubé (BHD), which is characterized by aberrant
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mTORC1 activity (59, 60). Paradoxically, acute loss of FLCN, in human and fly cells,

inactivates this pathway (58, 61) suggesting that FLCN could function as either a GEF for

RagA/B or a GAP for RagC/D. In vitro studies established that FLCN along with its binding

partner FNIP1 function as a GAP for RagC and RagD but not as a GEF for RagA/B, thus

providing another avenue of control over mTORC1 translocation (58). In light of these new

studies, the mechanism by which the loss of FLCN in BHD triggers mTORC1 pathway

activation along with its control by amino acids must be revisited.

Other positive regulators: VAM6 and LRS

In addition to the role of Ragulator and FLCN in regulating mTORC1 activity via RagC/D,

other novel regulators of TORC1 activity in yeast have been identified including Vam6 (38).

While VAM6 has traditionally been recognized as part of the HOPS endosome/lysosome

maturation pathway and previously thought to be a GEF for the GTPase Ypt7 (62, 63), new

evidence suggests it also has GEF activity towards GTR1 (37). The GEF activity of VAM6

might only be conserved to lower eukaryotes, as its mammalian ortholog hVPS39 is neither

a RagA GEF or an interacting protein (48). However, it is important to consider that deletion

of VAM6 severely disrupts endosomal trafficking (38), a process known to be critical for

proper mTORC1 signaling (64), implying that TORC1 may be indirectly regulated by

VAM6. Resolving the differences in how Rag GTPases become activated in these two

systems will be critical for our understanding of this pathway.

Recently, two independent studies revealed another positive regulator of mTORC1 activity,

the tRNA charging enzyme, leucyl tRNA-synthetase (LRS), which was found to mediate the

leucine signal to mTORC1 (65, 66). In yeast, LRS was identified as a GTR1 interacting

protein that positively regulates TORC1 by blocking its inactivation by an unknown

negative regulator upon LRS binding to leucine (66). Meanwhile, in mammalian cells, LRS

may bind to RagD and function as a GAP for this GTPase in a leucine dependent manner

(66). While this study identifies a critical region in LRS analogous to GAP domains found in

Arf GAPs and eschew the widely held belief that GAP domains are highly divergent among

different GTPase families, the GAP activity of LRS towards RagD has not been reproduced

in a subsequent study (58). The alternative preferences of LRS for RagA/B or RagD in yeast

and mammalian cells, respectively, is a point of contention that must also be reconciled with

the function of other positive regulators of Rags

The GATOR complex is a GAP for RagA and RagB

While our understanding of how amino acid stimulation activates the Rags has evolved, the

identity of negative regulators of these GTPases has eluded the field. Recently, an octomeric

complex that interacts with the Rag GTPases and GTRs, called GATOR (GAP activity

towards Rags) (67) in humans and SEA (Seh1-associated) in yeast (68) has been identified.

GATOR is comprised of two distinct interacting subcomplexes known as GATOR1 and

GATOR2. While the GATOR orthologs in yeast are identifiable, they differ in their

hierarchical organization as they exist in stoichiometric ratios in SEA, forming one complex

as opposed to two (69). Consistent with the localization of Rags to the lysosome,

components from both GATOR subcomplexes have been found there via

immunofluorescence and organellar mass-spectrometry studies (67, 68, 70). However, only
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GATOR1 was found to directly interact with the Rags. Loss of function studies in both

species revealed a surprising bi-functional role for this complex: GATOR1 negatively

regulates mTORC1, conferring complete insensitivity to amino acid starvation when deleted

in cancer cell lines, whereas GATOR2 functions as a positive regulator. This bipartite

regulation was explained through epistasis analysis placing GATOR1 downstream of

GATOR2, emphasizing that the positive function of GATOR2 stems from its inhibition of

GATOR1. Confirming the strong genetic evidence for its negative role in this pathway,

GATOR1 was discovered to have GAP activity towards RagA/B similar to its yeast

counterpart towards GTR1, converting these G proteins to an inactive state incapable of

supporting mTORC1 signaling (67, 68). The exact GATOR1 subunit that confers GAP

activity remains to be determined. Mutations in GATOR1 components occur in human

tumors (67, 71) (see Box 2), suggesting that the ability to maintain mTORC1 activity in

tumor microenvironments, where reduced nutrient concentrations would otherwise not

support this type of signaling, may confer a selective advantage to cancer cells that have lost

these negative regulators (72).

SH3BP4 is a negative modulator of RagB

In addition to GATOR1, SH3BP4 (SH3 binding protein 4) was found to interact with the

Rags and reduce mTORC1 signaling by increasing both RagB GTP hydrolysis and

preventing RagB GDP dissociation; in short, this protein ensures that RagB is kept inactive

(73). In contrast to all previously identified regulators, SH3BP4 is not conserved to lower

eukaryotes, and its effect on mTORC1 signaling is more similar to that of a modulator.

Therefore, it will be interesting to understand how SH3BP4 fits into the existing amino acid

signaling pathway.

Spatial regulation of the TSC complex

A new rigorous study shows that that like mTORC1 the TSC complex translocates to and

from the lysosomal surface in response to insulin signaling, but not to amino acid levels

(74). Akt-dependent phosphorylation of TSC2, presumed by many to inhibit TSC complex

GAP activity is responsible for driving the TSC complex off the lysosomal surface, allowing

for mTORC1 activation by removing TSC from Rheb, the target of its GAP activity (74).

Given the number of signals upstream of mTORC1 that converge on TSC complex

phosphorylation, it is likely that other pathways, like the AMPK pathway, also affect TSC

shuttling to and from the lysosome (74).

Concluding Remarks

This is an exciting time to study how amino acids are sensed by mTORC1. With the

discovery of so many new pathway components, there remain many more questions than

answers. Clearly, understanding the interplay between positive and negative regulators and

the existence of additional human pathologies associated with these factors are of high

interest (see Box 3). With the use of a combination of bioinformatic and systems biology

approaches along with more traditional discovery platforms, the identity of the long sought

amino acid sensor finally seems within reach.
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Box 1

Structural studies of amino acid sensing machinery

Detailed structural studies of amino acid sensing components have provided a wealth of

mechanistic insights. Perhaps the most surprising result has been the prevalence of the

roadblock domain in this pathway, found in four out of five Ragulator proteins and all

four Rag GTPases (48, 75-77). At its most basic form, the roadblock domain adopts a

profilin-like fold after homo- or heterodimerization of two Roadblock containing

proteins. While the function of this domain is still poorly understood, it is often

associated with regulation of GTPases (78) as made evident by its presence on Ragulator

and the bacterial GAP MglB (79).

The crystal structure of the yeast GTRs has also offered clues into a potentially new area

of study, intra-Rag regulation. The GTRs are stitched together by their C-terminal

domains containing the aforementioned roadblock domain, with the N-terminus occupied

by rather dynamic nucleotide binding domains (75, 80). When both GTRs are bound to

GTP, the G domains face away from each other, however, when GTR2 becomes GDP

loaded, a dramatic rearrangement occurs, with the G domain of GTR2 swinging 28° to

face the G domain of GTR1 (80). The significance of this structural re-arrangement

remains to be determined, but given that heterodimeric GTPases such as the SRP-SRP

receptor are known to control the nucleotide state of each other (81), this large movement

raises the possibility that the Rag GTPases also partake in this form of self-regulation.
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Box 2

Deregulation of amino acid signaling in human pathologies

Since mTORC1 controls a variety of cellular processes, it is not surprising that

deregulation of this pathway underlies many human pathologies including

immunodeficiencies and various cancer types. Although diseases stemming from

mutation of the TSC complex-Rheb axis are well appreciated, emerging evidence

suggests mutations in components of the amino acid branch may also underlie several

human diseases as well.

A previously unknown primary immune disorder has been linked to a reduction in the

protein levels of the Ragulator component, Lamtor2 (p14). Although complete absence of

Lamtor2 results in embryonic lethality (82), its reduction in humans leads to a decrease in

the function of neutrophils, B cells, cytotoxic T cells and melanocytes (83). Consistent

with a positive regulation of organismal size by mTORC1, affected individuals also

display significant growth defects with growth profiles below the first percentile when

compared to healthy age-matched peers (83). Moreover, in cells isolated from patients,

mTORC1 activity was drastically reduced (35), making this disorder the first human

disease associated with a reduction in a positive component of mTORC1.

Growing evidence suggests metabolic pathways play a large role in regulating tumor

growth. The identification of GATOR1 as a novel negative regulator of mTORC1,

suggested tumor suppressors might exist in the amino acid sensing pathway. Indeed,

approximately 3% of glioblastoma and 2% of ovarian cancers analyzed contain

inactivating mutations in two GATOR1 components (DEPDC5 and NPRL2) and analysis

of NPRL3 still remains to be completed (67). Future large scale sequencing endeavors

are likely to uncover even more cancers with mutations in GATOR1 genes and those

cancers that over-express GATOR2 components, the negative regulator of GATOR1.

Intriguingly, GATOR1-null cells with hyperactive mTORC1 signaling are highly

sensitive to treatment with the mTORC1 inhibitor rapamycin (67), suggesting the use of

GATOR1 mutations as biomarkers to identify tumors in patients that might be sensitive

to mTORC1 inhibitors.

In the past several years, deregulation of the mTORC1 pathway has been appreciated to

be an important contributor to epilepsy (84), a notion underscored by the fact that a

majority of TSC patients suffer from at least one epileptic seizure during their lifetimes

(85). Connecting amino acid sensing to epilepsy, two independent studies reported that

mutations in the GATOR1 component DEPDC5 are responsible for many cases of

familial focal epilepsy with variable foci, an autosomal dominant form of epilepsy (86,

87). These new studies coupled with previous research on TSC patients suggest that

mTORC1 inhibitors may be beneficial for treating this disease.
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Box 3

Outstanding questions

The complexity of how amino acids are sensed by mTORC1 raises more questions than

answers. Below we list a few outstanding questions that will be increasingly important to

address in the years to come.

• What is the identity of the amino acid sensor? While there is evidence

suggesting that the v-ATPase may be an amino acid sensor, it remains to be

determined whether this is the sole sensing mechanism or if additional sensors

exist that modulate the activity of GATOR1 and GATOR2.

• How does GATOR2 regulate GATOR1? Studies in both yeast and mammalian

cells established a clear genetic and biochemical interaction between the two

complexes, yet at the molecular level it remains unclear how GATOR2

inactivates GATOR1, presumably doing so under conditions of amino acid

sufficiency.

• Is there cross-talk between different Rag regulators? In GATOR1-null cell lines,

mTORC1 is hyperactive and non-responsive to amino acid regulation.

Interestingly, pharmacological inhibition of the v-ATPase does not reduce

mTORC1 activity in these cell lines, formally suggesting that the v-ATPase/

Ragulator arm functions either upstream or in parallel to GATOR1 (67). How

these multi-component signaling complexes actually communicate with each

other represents a ripe area for future study.
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Figure 1. The mTORC1 amino acid sensing pathway
A. Under low amino acid conditions Ragulator is found in an inhibitory state with the v-

ATPase and GATOR1 exerts its GAP activity towards RagA, keeping this GTPase in the

inactive GDP-bound state that is not sufficient to recruit mTORC1. Insulin signaling inhibits

TSC complex translocation to the lysosomal surface where it functions as a GAP for Rheb,

inactivating this G protein. B. Upon amino acid stimulation, GATOR1 may be inhibited by

GATOR2 and Ragulator and v-ATPase undergo a conformational change unleashing the

GEF activity of Ragulator towards RagA, while the folliculin complex promotes RagC GTP

hydrolysis. The now active heterodimer, consisting of GTP-bound RagA and GDP-loaded

RagC, recruits mTORC1 to the lysosomal surface, where it interacts with and is activated by

Rheb.
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