
Development of Heart and Respiratory Rate Percentile
Curves for Hospitalized Children

WHAT’S KNOWN ON THIS SUBJECT: Accurately identifying ill
hospitalized children with vital signs concerning for clinical
deterioration is fundamental to inpatient pediatrics. Normal vital
sign ranges for healthy children are useful for outpatient practice
but have limited application to detecting deterioration in the
hospital setting.

WHAT THIS STUDY ADDS: Percentile curves for heart and
respiratory rate in hospitalized children were developed and
validated. The distributions differed from existing reference
ranges and early warning scores. They may be useful to identify
vital signs deviating from ranges expected among hospitalized
children.

abstract
OBJECTIVE: To develop and validate heart and respiratory rate per-
centile curves for hospitalized children and compare their vital sign
distributions to textbook reference ranges and pediatric early warn-
ing score (EWS) parameters.

METHODS: For this cross-sectional study, we used 6 months of nurse-
documented heart and respiratory rates from the electronic records
of 14 014 children on general medical and surgical wards at 2
tertiary-care children’s hospitals. We developed percentile curves
using generalized additive models for location, scale, and shape
with 67% of the patients and validated the curves with the
remaining 33%. We then determined the proportion of observations
that deviated from textbook reference ranges and EWS parameters.

RESULTS: We used 116 383 heart rate and 116 383 respiratory rate
values to develop and validate the percentile curves. Up to 54% of
heart rate observations and up to 40% of respiratory rate observa-
tions in our sample were outside textbook reference ranges. Up to
38% of heart rate observations and up to 30% of respiratory rate
observations in our sample would have resulted in increased EWSs.

CONCLUSIONS: A high proportion of vital signs among hospitalized
children would be considered out of range according to existing ref-
erence ranges and pediatric EWSs. The percentiles we derived may
serve as useful references for clinicians and could be used to inform
the development of evidence-based vital sign parameters for
physiologic monitor alarms, inpatient electronic health record vital
sign alerts, medical emergency team calling criteria, and EWSs.
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The widespread implementation of
rapid response systems (RRSs) over
the past decade has called attention to
the importance of recognizing and
responding to early signs of clinical
deterioration.1 RRSs aim to reduce
mortality, cardiac arrest, and re-
spiratory arrest outside of ICUs and in-
clude afferent and efferent limbs.2 The
afferent limb of RRSs includes tools to
aid clinicians in detecting patients
exhibiting early signs of clinical de-
terioration.3 The efferent limb consists
of medical emergency teams (METs)4–9

that can be urgently summoned to the
bedside to assist in management.

Accurately interpreting vital signs is
critical to the success of RRSs.3 To fa-
cilitate the recognition of vital signs
consistent with clinical deterioration,
clinicians may rely on several afferent
tools, including monitor alarms, elec-
tronic health record (EHR) vital sign
alerts, MET calling criteria, and early
warning scores (EWSs) that assign
point values to vital signs outside of
age-based ranges.10–17

Limited data are available to inform
the development of evidence-based
parameters for monitor alarms, EHR
alerts, MET calling criteria, and EWSs.
Currently available sources to inform
the configuration of these parameters
include textbook reference ranges and
existing EWSs with parameters de-
veloped using consensus opinion. No
previous studies have described the
actual distributions of heart rate (HR)
or respiratory rate (RR), 2 vital signs
critical to ongoing surveillance for de-
terioration, among hospitalized chil-
dren. In this study, we sought to develop
and validate HR and RR percentile
curves for pediatric inpatients. We
aimed to determine the proportion of
vital signs in our cohort that fell outside
textbook18–21 reference ranges and
those that would be assigned points
using existing EWSs.16,17 Finally, we
aimed to directly compare our HR and

RR percentile cut points to those from
a recent meta-analysis of vital sign
distributions in well children.22

METHODS

Data Sources

We performed this cross-sectional
study among children ,18 years of
age hospitalized on general medical
and surgical wards in 2 tertiary-care
children’s hospitals: Cincinnati Child-
ren’s Hospital Medical Center (CCHMC)
and The Children’s Hospital of Phila-
delphia (CHOP). In both settings, nurses
or nursing assistants entered vital signs
into discrete fields on EHR flowsheets;
CCHMC used the Integrating Clinical In-
formation System (Siemens Medical
Solutions, Malvern, PA) and CHOP used
Epic Systems (Verona, WI) during the
study periods. Theminimum frequency
of vital sign assessment was de-
termined by physicians’ orders. The
procedures used to measure HR and
RR were neither standardized across
patients nor documented in the record.

We extracted vital signs, demographics,
and primary discharge diagnosis from
CCHMC between July 1, 2008, and De-
cember 31, 2008, and CHOP between
February 1, 2011, and July 30, 2011. The
useof distinct time periods allowedus to
create a merged data set including each
of the 4 seasons, as well as both geo-
graphic and temporal variation among
the included patients.

Data Quality

We implemented several data integrity
measures to ensure that the data were
of the highest quality possible. We
excluded admissions in which the
primary discharge diagnosis was
missing. We included only those
observations in which the HR and RR
were entered simultaneously. We ex-
cluded observations in which the RR
exceeded the HR or the HR or RR in-
cluded a decimal. In addition, we ex-
cluded observations in which either

vital sign met criteria for physiologic
implausibility, defined by consensus of
the investigators as being more likely
to represent keystroke errors than
actual observations (HR.300 or,30,
and RR .120 or ,5).

Sampling Strategy

To minimize ascertainment bias from
vital signs collected frequently over
short periods of time, we first divided
eachadmission into 6-hour intervals.We
then randomly selected 1 HR and 1 RR
from within each interval. To reduce
ascertainment bias from single indi-
viduals with lengthy hospitalizations, we
included a maximum of 10 intervals per
admission.Wethenrandomlydividedthe
data into a curve development set made
up of 67% of the patients and a curve
validation set made up of 33%.

Data Analysis

Before developing the curves, we log-
transformed the highly skewed RR
data to more closely approximate a
normal distribution. We also noted ev-
idence of digit preference.23 For exam-
ple, among those aged.15 years, 73%
of RRs were accounted for by the val-
ues 16, 18, and 20. We therefore added
uniformly distributed random noise to
the RR data before developing the curves
to facilitate identifying the underlying
distribution of RR in older children.
Adding random noise, or “jitter,” can be
used to identify the underlying distribu-
tion in data that have been subject to
rounding or digit preference.24

We then developed percentile curves
with the vital sign on the y-axis and
the patient age at the time the vital sign
was measured on the x-axis using
the Box-Cox power exponential (BCPE)
distribution in the generalized additive
models for location, scale, and shape
(GAMLSS) package for R software.25–28

The use of GAMLSS models with the
BCPE distribution in the development
of percentile curves for growth
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has been demonstrated25,29–31; GAMLSS
models can readily be applied to vital
sign curves. BCPE is an appropriate dis-
tribution because it is useful for data
exhibiting both skewness and kurtosis,
and it allows for determination of z-
scores at any point in the distribution.
This second feature facilitates future
development of EWSs that use z-scores to
standardize the assignment of point
values to vital signs across age groups.

Next, we determined the stability of the
first and 99th percentiles by creating
curves using 3 bootstrapped samples
for both HR and RR and comparing the
differencesbetweenthe3bootstrapped
samples.

To validate the curves, we divided the
validation set into 5 age groups and
determined theproportionof vital signs
below the fifth and above the 95th
percentiles for each age group. It would
be expected that 5% of the values in the
validation set would be below the fifth
percentile and 5% would be above the
95th percentile derived using the de-
velopment set.

To evaluate the impact of respiratory
disease on the RR and HR curves, we
performed a sensitivity analysis. We
identified all admissions with a pri-
mary discharge diagnosis of a Disease
of the Respiratory System as defined
by the International Classification of
Diseases, Ninth Revision, Clinical Modi-
fication, codes 460 through 519. We then
excluded those admissions from the
data set. We compared the curves ex-
cluding respiratory disease to the
curves without disease exclusions.

To evaluate the clinical relevance of our
findings to the care of hospitalized
children,wedetermined theproportion
of observations deviating from refer-
ence ranges that hospitals may use to
identify vital signs consistent with de-
terioration, set monitor alarm param-
eters, or configure EHR vital sign alerts.
We included 3 commonly used pediatric
references: Nelson Textbook of Pediat-

rics,18 The Harriet Lane Handbook,19,20

and the American Heart Association
Pediatric Advanced Life Support Pro-
viderManual.21 We also determined the
proportion of observations that would
have resulted in increased pediatric
EWSs by using 2 published scores that
are sufficiently described to permit ret-
rospective scoring: Parshuram’s Bedside
Pediatric Early Warning System Score17

and Akre’s Pediatric Early Warning
Score.16 Of note, Akre’s score was modi-
fied fromascore previously described by
Monaghan10 and Tucker15; however, nei-
ther Monaghan nor Tucker’s published
description included vital sign ranges.

To facilitate the clinical use of our
percentile curve data, we defined cut
points at the first, fifth, 10th, 50th, 90th,
95th, and 99thpercentiles for HRandRR
by calculating the mean vital sign value
within each of 13 age groups. We used
the same age groups used in a recent
meta-analysis of HR and RR normal
ranges to enable direct comparison
with that study.22

Becauseweused adeidentifieddata set
for the analysis, this project was
granted exemptions from the CHOP and
CCHMC Institutional Review Boards.

RESULTS

We extracted data from 11 028 admis-
sions among 8894 patients aged ,18
years at CHOP and 6271 admissions
among 5208 patients aged ,18 years
at CCHMC. Before implementing the
sampling strategy described earlier,
scatterplots of the data showed nu-
merous “spikes” in the HR and RR dis-
tributions, many of which represented
clusters of extreme values in individual
patients with repeated measurement
over short time periods, extreme val-
ues in individual patientswith repeated
measurement across lengthy admis-
sions, or both. We minimized the pres-
ence of these spikes by applying the
aforementioned sampling strategy, af-
ter which 116 383 HR values and 116

383 RR values from 14 014 patients
across 17 153 admissions remained
(3139, or 18% were repeat admissions).
This sample represented 23% of the
observations across 99% of the patients
in the original data set. Demographics
are shown in Tables 1 and 2.

We then used the 77 825 HR and 77 825
RR values in the development set to
generate HR and RR percentile curves,
shown in Fig 1. Tables 3 and 4 show our
suggested clinical cut points at the
first, fifth, 10th, 50th, 90th, 95th, and
99th percentiles for HR and RR, re-
spectively, among the 13 age groups. In
evaluating the stability of the first and
99th percentiles, we found that the

TABLE 1 Patient Characteristics

Characteristic Patients, n (%)

Race/ethnicitya

White 7558 (53.9)
African American 4206 (30.0)
Hispanic 604 (4.3)
Asian/Pacific Islander 305 (2.2)
American Indian/Alaska Native 15 (0.1)
Multiracial 1 (,0.1)
Other 1311 (9.4)
Unknown 14 (0.1)
Total 14 014

Gender
Male 7539 (53.8)
Female 6474 (46.2)
Unknown 1 (,0.1)
Total 14 014

a Self-reported by patient or family and categorized according
to the options available in the electronic health record.

TABLE 2 Observations by Age Groups

Age Groupa Observations, n (%)

0–,3 mo 9872 (8.5)
3–,6 mo 5604 (4.8)
6–,9 mo 4248 (3.7)
9–,12 mo 3761 (3.2)
12–,18 mo 6582 (5.7)
18–,24 mo 4937 (4.2)
2–,3 y 8924 (7.7)
3–,4 y 6595 (5.7)
4–,6 y 10 896 (9.4)
6–,8 y 8815 (7.6)
8–,12 y 15 428 (13.3)
12–,15 y 14 477 (12.4)
15–,18 y 16 244 (14.0)
Total 116 383
a Because age at time of vital sign measurement changes
during the course of the hospitalization, these data are
presented in terms of the number of observations.
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bootstrapped samples resulted in
amaximum change in the first and 99th
percentiles of 1 beat per minute for HR
and 1 breath per minute for RR.

In validating the curves using the
remaining 38 558 observations for each
vital sign, we found that the proportion
of vital signs below the fifth and above
the 95th percentile lines for each age
group in the validation set was within
0.9% of the expected 5% for the HR data
at all ages. However, the proportion of
RR observations in the validation set
below the fifth and above the 95th per-
centile differed from the expected 5%
by up to 4.7%; the proportion of RRs
below the fifth percentile for RR was
9.7% among 12- to ,18-year-olds. Be-
cause the majority of RRs in older chil-

dren are accounted for by a small
numberof unique values, any distribution
would likely result in some clustering at
the most common values, precluding
a truly normal distribution of RR.

We then evaluated the impact of our
introduction of uniformly distributed
randomnoise to the RRdata as ameans
of overcoming digit preference. Using
the validation data set, we analyzed the
distribution with and without random
noise added. We found that adding
random noise caused minimal change
in the distribution of the data (z-scores
hadameanof 0.00andSDof0.93 for the
data set without random noise, and
ameanof 0.01 andSDof 0.98 for the data
set with random noise) while improving
the fit of the curves at the outer per-

centiles (theproportionofRRsbelowthe
fifth and above the 95th percentile lines
for each age group in the validation set
was within 1.4% of the expected pro-
portion of 5%.).

In the sensitivity analysis (shown as
dashed lines in Fig 1), we excluded 3713
(21.6%) admissions with primary di-
agnoses of “diseases of the respiratory
system,” leaving 91 763 HR and 91 763
RR values. We found the impact of ex-
cluding respiratory disease to be most
pronounced at the 99th percentile lines.
For HR, excluding resulted in a reduction
in the 99th percentile by up to 8 beats per
minute, occurring between 5 and 6 years
of age. For RR, excluding resulted in
a reduction in the 99th percentile by up
to 7 breaths per minute, occurring be-
tween 4 and 5 years of age.

For each of the reference ranges and
EWSs described, we determined the
proportion of observations that either
deviated from the reference range or
earnedpoints in the EWS.We found that
12% to54%ofHRobservationsand32%
to 40% of RR observations deviated
from textbook ranges (Fig 2). In addi-
tion, 14% to 38% of HR observations
and 15% to 30% of RR observations
would have resulted in increased total
EWSs (Fig 3). Compared with the data
from a recent meta-analysis of HR and
RR among well children,22 the curves we
developed by using hospitalized chil-
dren had a wider span from first to 99th
percentile, primarily because of higher
HR and RR at the 99th percentile in all
age groups (Supplemental Fig 1).

DISCUSSION

Our percentile curves, developed by
using a large multicenter sample, pro-
vide the first evidence-based reference
ranges for HR and RR among hospital-
izedchildren.Theserangesdifferedfrom
textbook reference ranges, EWS para-
meters created by using expert con-
sensus, and distributions of vital signs
from well children.

FIGURE 1
Percentile curves for HR and RR in hospitalized children. Dotted lines represent sensitivity analysis
excluding diseases of the respiratory system. The solid vertical line at 1 year of age represents a change
in scale of the x-axis.
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The ranges we developed represent
thedistributionsofHRandRRamong ill
children hospitalized outside of ICU
settings. By using these data, we found
that up to 54% of vital sign values
among patients in this study were
abnormal according to textbook ref-
erence ranges, and up to 38%would be
assigned points using EWSs with
parameters developed based on the
consensus of experts. Our results pro-
vide themost useful evidence to date for
helping clinicians determine the degree
to which vital signs deviate from the
values expected of hospitalized children.
These findings may serve as useful
clinical references and can inform the
development of evidence-based vital
signparameters forphysiologicmonitor
alarms, EHR vital sign alerts, MET calling
criteria, and EWSs.

A recent meta-analysis reviewed 69
studies with HR data for 143 346 chil-
dren and RR data for 3881 well chil-
dren in nonhospital settings and used
the summary statistics from each
study to derive percentile curves.22

While the meta-analysis provides the
best available data to inform out-
patient vital sign reference ranges,
the uppermost percentiles for HR and
RR in our study were higher than in
the meta-analysis, raising questions
about the application of vital sign
distributions from well patients to in-
form deterioration surveillance in the
hospital.

Developing valid vital sign-based tools
to detect early signs of clinical de-
terioration with high sensitivity and
low false-positive rates (high speci-
ficity) is challenging. Because children

have vital sign ranges that vary by age,
tool development in pediatrics is partic-
ularly complex. Several pediatric EWSs
have been described10–17 with parame-
ters developed using the consensus of
experts. Parshuram’s Bedside Pediatric
Early Warning System Score11,14,17 and
Akre’s Pediatric Early Warning Score16

(adapted fromMonaghan’s10 and similar
to Tucker’s15) are the 2 most rigorously
studied. Parshuram’s score had a sensi-
tivity of 64% and a specificity of 94% in
a validation study.17 Akre’s score had
a sensitivity of 86%; its specificity was
not reported.16 Neither has been
evaluated in a clinical trial. The ref-
erence ranges for hospitalized chil-
dren in our study provide an opportunity
to take a data-driven approach to opti-
mizing EWS parameters with the goal
of increasing the sensitivity and speci-
ficity of these tools. The z-scores derived
from the vital sign data could be used
to assign EWS point values based on
the degree to which the HR or RR
deviates from the expected value for
age.

In addition to EWSs, the percentiles de-
rived in this study have potential appli-
cation to configuring physiologic
monitor alarm parameters and EHR
vital sign alerts. Age-based monitor
alarm thresholds based on clinical data
from hospitalized children may help
minimize alarm fatigue32 by safely re-
ducing the frequency of false alarms
that do not identify meaningful depar-
tures from expected vital signs in the
hospital. For example, upon hospital
admission, HR alarm thresholds could
be set at the fifth and 95th percentiles
for age. Similarly, inpatient EHR alerts,
which may range from highlighting
the text of an out-of-range vital sign
entry in an electronic flowsheet to
generating an alert if a vital sign
exceeds an extreme threshold, could
be set based on the percentiles.

Our study has several limitations. First,
we derived these curves by using data

TABLE 3 Suggested HR Cut Points Based on Average Predicted Value Within Each Age Group and
Percentile

Age group 1st 5th 10th 50th 90th 95th 99th

0–,3 mo 103 113 119 140 164 171 186
3–,6 mo 98 108 114 135 159 167 182
6–,9 mo 94 104 110 131 156 163 178
9–,12 mo 91 101 107 128 153 160 176
12–,18 mo 87 97 103 124 149 157 173
18–,24 mo 82 92 98 120 146 154 170
2–,3 y 77 87 93 115 142 150 167
3–,4 y 71 82 88 111 138 146 164
4–,6 y 66 77 83 106 134 142 161
6–,8 y 61 71 77 100 128 137 155
8–,12 y 56 66 72 94 120 129 147
12–,15 y 51 61 66 87 112 121 138
15–,18 y 48 57 62 82 107 115 132

TABLE 4 Suggested RR Cut Points Based on Average Predicted Value Within Each Age Group and
Percentile

Age group 1st 5th 10th 50th 90th 95th 99th

0–,3 mo 22 27 30 41 56 62 76
3–,6 mo 21 25 28 38 52 58 71
6–,9 mo 20 23 26 35 49 54 67
9–,12 mo 19 22 24 33 46 51 63
12–,18 mo 18 21 23 31 43 48 60
18–,24 mo 16 20 21 29 40 45 57
2–,3 y 16 18 20 27 37 42 54
3–,4 y 15 18 19 25 35 40 52
4–,6 y 14 17 18 24 33 37 50
6–,8 y 13 16 17 23 31 35 46
8–,12 y 13 15 16 21 28 31 41
12–,15 y 11 13 15 19 25 28 35
15–,18 y 11 13 14 18 23 26 32
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from 2 tertiary-care children’s hospi-
tals. The vital sign distributions from
patients in community hospitals may
differ, limiting the generalizability of
our reference ranges to those settings.
Second, developing percentile-based
EWSs and alarm thresholds assumes
that the patients at highest risk of de-
terioration are those with the most
statistically abnormal vital signs, which
is likely an oversimplification.33,34 Clin-
ical trials are needed to determine
whether percentile-based EWSs have
a role in identifying critical but re-

versible disease states and improving
patient outcomes. Third, although we
noted that developing EWSs based on
normal vital signs from healthy chil-
dren may result in tools with low
specificity and high false-positive
rates, developing EWSs based on vi-
tal signs from ill childrenmay result in
tools with low sensitivity and high
false-negative rates. Fourth, we used
vital sign data that was manually en-
tered in the course of clinical care.
This introduced the issue of digit
preference. This issue could likely be

overcome either by using research
staff to measure vital signs by count-
ing HR and RR for at least 1 full minute
or by using physiologic monitor data.
We chose observations documented in
the course of clinical care because
our curves will be referenced in clin-
ical settings, and we aimed for our
distributions to be representative of
that context. We chose manually en-
tered data over data from monitors
because only a fraction of inpatients
at these hospitals are monitored, thus
using monitor data would introduce

FIGURE 2
Scatterplotarrayshowing thedistributionofHRandRR in thestudysamplecomparedwith textbookreferenceranges. Eachpointon thescatterplot represents1
vital sign observation. For each reference range, observations that would be considered normal are colored black, and observations that would be considered
abnormal are colored red. We found that 12% to 54% of HR observations and 32% to 40% of RR observations in our study sample deviated from the ranges
provided.
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selection bias. Fifth, just as within-
subject changes in height, weight,
and head circumference over time
are critical to identifying abnormal
growth, we suspect that within-subject
changes in vital signs over time may
be equally if not more important than
exceeding absolute percentiles. To
address this issue, the z-scores de-
rived from these curves could be used
to standardize the degree of within-
subject change across age groups in
an EWS.

CONCLUSIONS

In summary, we developedand validated
the first evidence-based percentile
curves for HR and RR among children
hospitalized on general wards at
tertiary-care pediatric hospitals. Their
vital sign distributions differed from
existing reference ranges and EWS
parameters. Inpatient clinicians may
find value in using these curves and
percentile cut points to identify patients
with vital signs that deviate from the
ranges observed in this sample of

hospitalized children. These new find-
ings also invite new research to validate
the use of vital sign percentiles in the
development of evidence-based para-
meters for physiologic monitor alarms,
inpatient EHR vital sign alerts, MET
calling criteria, and EWSs.
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