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Abstract

How does the mammalian retina detect motion? This classic problem in visual neuroscience has 

remained unsolved for 50 years. In search of clues, we reconstructed Off-type starburst amacrine 

cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from 

EyeWire, an online community of “citizen neuroscientists.” Based on quantitative analyses of 

contact area and branch depth in the retina, we found evidence that one BC type prefers to wire 

with a SAC dendrite near the SAC soma, while another BC type prefers to wire far from the soma. 

The near type is known to lag the far type in time of visual response. A mathematical model shows 

how such “space-time wiring specificity” could endow SAC dendrites with receptive fields that 

are oriented in space-time and therefore respond selectively to stimuli that move in the outward 

direction from the soma.
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Compared to cognitive functions such as language, the visual detection of motion may seem 

trivial, yet the underlying neural mechanisms have remained elusive for half a century1,2. 

Some retinal outputs (ganglion cells) respond selectively to visual stimuli moving in 

particular directions, while retinal inputs (photoreceptors) lack direction selectivity (DS). 

How does DS emerge from the microcircuitry connecting inputs to outputs?

Research on this question has converged upon the starburst amacrine cell (SAC, Figs. 1a, b). 

A SAC dendrite is more activated by motion outward from the cell body to the tip of the 

dendrite, than by motion in the opposite direction3. Therefore a SAC dendrite exhibits DS, 

and outward motion is said to be its “preferred direction.” Note that it is incorrect to assign a 

single such direction to a SAC, because each of the cell's dendrites has its own preferred 

direction (Fig. 1a). DS persists after blocking inhibitory synaptic transmission4, when the 

only remaining inputs to SACs are bipolar cells (BCs), which are excitatory. Since the SAC 

exhibits DS, while its BC inputs do not5, we say that DS emerges from the BC-SAC circuit.

Mouse BCs have been classified into multiple types6, with different time lags in visual 

response7,8. Motion is a spatiotemporal phenomenon: an object at one location appears 

somewhere else after a time delay. Therefore we wondered whether DS might arise because 

different locations on the SAC dendrite are wired to BC types with different time lags. More 

specifically, we hypothesized that the proximal BCs (wired near the SAC soma) lag the 

distal BCs (wired far from the soma).

Such “space-time wiring specificity” could lead to DS as follows (Fig. 1c). Motion outward 

from the soma will activate the proximal BCs followed by the distal BCs. If the stimulus 

speed is appropriate for the time lag, signals from both BC groups will reach the SAC 

dendrite simultaneously, summing to produce a large depolarization. For motion inward 

towards the soma, BC signals will reach the SAC dendrite asynchronously, causing only 

small depolarizations. Therefore the dendrite will “prefer” outward motion, as observed 

experimentally3.

3D reconstruction by crowd and machine

We tested our hypothesis by reconstructing Off BC-SAC circuitry using e2198, an existing 

dataset of mouse retinal images from serial block-face scanning electron microscopy 

(SBEM)9. The e2198 dataset was oversegmented by an artificial intelligence (AI) into 

groups of neighboring voxels that were subsets of individual neurons. These “supervoxels” 

were assembled by humans into accurate 3D reconstructions of neurons. For this activity, we 

hired and trained a small number of workers in the lab, and also transformed work into play 

by mobilizing volunteers through EyeWire, a web site that turns 3D reconstruction of 

neurons into a game of coloring serial EM images.

Through EyeWire, we wanted to enable anyone, anywhere, to participate in our research. 

The approach is potentially scalable to extremely large numbers of “citizen scientists”10. 

More importantly, the 3D reconstruction of neurons requires highly developed visuospatial 

abilities, and we wondered whether a game could be more effective11 than traditional 

methods of recruiting and creating experts.

Kim et al. Page 2

Nature. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In gameplay mode, EyeWire shows a 2D slice through a “cube,” an e2198 subvolume of 

2563 grayscale voxels (Fig. 2a). Gameplay consists of two activities: coloring the image near 

some location, or searching for a new location to color. Coloring is done by clicking at any 

location in the 2D slice, which causes the supervoxel containing that location to turn blue. 

Searching is done by translating and orienting the slice within the cube, and interacting with 

a 3D rendering of the colored supervoxels.

When the player first receives a cube, it already comes with a “seed,” a contiguous set of 

colored supervoxels. The challenge is to color all the rest of the supervoxels that belong to 

the same neuron, and avoid coloring other neurons. Gameplay for a cube terminates when 

the player clicks “Submit,” receives a numerical score (Extended Data Fig. 1a), and 

proceeds to the next cube. Because our AI is sufficiently accurate, coloring supervoxels is 

faster than manually coloring voxels, an older approach to 3D reconstruction12.

The scoring system is designed to reward accurate coloring. This is nontrivial because 

EyeWire does not know the correct coloring. Each cube is assigned to multiple players 

(typically 5 to 10), and high scores are earned by players who color supervoxels that other 

players also color. In other words, the scoring system rewards agreement between players, 

which tends to be the same as rewarding accuracy.

Consensus is used not only to incentivize individual players, but also to enhance the 

accuracy of the entire system. Any player's coloring is equivalent to a set of supervoxels. 

Given the colorings of multiple players starting from the same seed in the same cube, a 

consensus can be computed by voting on each supervoxel. EyeWirer consensus was much 

more accurate than any individual EyeWirer (Fig. 2b,c).

Coloring a neuron is more challenging than it sounds. Images are corrupted by noise and 

other artifacts. Neurites take paths that are difficult to predict, and can branch without 

warning. Careless errors result from lapses in attention. Extensive practice is required to 

achieve accuracy. The most accurate EyeWirers (Fig. 2c, upper right corner) often had 

experience with thousands of cubes. Improvements in accuracy were observed over the 

course of hundreds of cubes, corresponding to tens of hours of practice (Fig. 2d). According 

to subjective reports of EyeWirers, learning continues for much longer than that. In contrast, 

previous successes at “crowdsourcing” image analysis involved tasks that did not require 

such extensive training10,13.

Reconstructing an entire neuron requires tracing its branches through thousands of cubes. 

This process is coordinated by an automatic spawner, which inspects each consensus cube 

for branches that exit the cube. Each exit generates a new cube and seed, which are added to 

a queue. EyeWirers are automatically assigned to cubes by an algorithm that attempts to 

balance the number of plays for each cube.

Over 100,000 registered EyeWirers have been recruited by news reports, social media, and 

the EyeWire blog. Players span a broad range of ages and educational levels, come from 

over 130 countries, and the great majority have no formal training in neuroscience 

(Extended Data Figs. 2 and 3; Supplementary Notes). These statistics show that EyeWire 

indeed widens participation in neuroscience research. At the same time, the most avid 
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players constitute an elite group with disproportionate achievements. For example, the top 

100 players have contributed about half of all cubes completed in EyeWire.

Lab workers also reconstructed neurons independently of EyeWire, with a more 

sophisticated version of the user interface (Methods). Their reconstructions were pooled 

with those of EyeWirers for the analyses reported below. Reconstruction error was 

quantified (Methods), and was treated like other kinds of experimental error when 

calculating confidence intervals from our data.

Contact analysis

We reconstructed 195 Off BC axons and 79 Off SACs from e2198 (Fig. 3b, Extended Data 

Fig. 4). The e2198 retina was stained in an unconventional way that did not mark 

intracellular structures such as neurotransmitter vesicles9, and reliable morphological criteria 

for identification of BC presynaptic terminals are unknown. As an indirect measure of 

connectivity, contact areas were computed for all BC-SAC pairs. The resulting “contact 

matrix” was analyzed through two subsequent steps.

In the first step, Off BC axons were classified into five cell types, following structural 

criteria14 established to correspond with previous molecular definitions6 (Methods, 

Extended Data Fig. 5). BC types stratify at characteristic depths in the inner plexiform layer 

(IPL), and vary in size (Fig. 4a). The BCs of each type formed a “mosaic,” meaning that 

cells were spaced roughly periodically (Extended Data Fig. 6a-e). This is generally accepted 

as an important defining property of a retinal cell type. Type densities (Extended Data Fig. 

6f) were roughly consistent with previous reports6. When the columns of the contact matrix 

were sorted by BC type (Fig. 4b), it became evident that BC2 and BC3a contact SACs more 

than other BC types.

In the second step, we averaged contact area over BC-SAC pairs of the same BC type and 

similar distance between the BC axon and the SAC soma in the plane tangential to the retina 

(Fig. 4c). These absolute areas were normalized to convert them into the percentage of SAC 

surface area covered by BCs of a given type (Methods). The resulting graphs show that BC2 

prefers to contact SAC dendrites close to the SAC soma, whereas BC3a prefers to contact 

far from the soma (Fig. 4d, Extended Data Fig. 7c).

Imaging of intracellular calcium in BC axons7 and extracellular glutamate around BC 

axons8 indicate that BC2 lags BC3a in visual responses by 50 to 100 ms. Therefore BC-SAC 

wiring appears to possess the space-time specificity appropriate for an outward preferred 

direction, as we hypothesized (Fig. 1c).

Co-stratification analysis

Off SACs stratify at a particular depth in the IPL (Fig. 1b). Why this depth and not some 

other? From Fig. 4a, it is obvious that this depth is appropriate for wiring with BC2 and 

BC3a, as required by our model of DS emergence. Following this logic one step further, we 

wondered whether the observed dependence of contact on distance from the SAC soma 

might be reflected in fine aspects of SAC morphology. We hypothesized that SAC dendrites 
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are “tilted,” moving deeper into the IPL with distance from the SAC soma. Such a change in 

depth would be compatible with more overlap with BC2 near the soma, and more overlap 

with BC3a far from the soma, since BC3a is deeper in the IPL than BC2 (Fig. 4a and 

Supplementary Video).

The hypothesized tilt turns out to exist (Fig. 5a). Very close to the SAC soma, the dendrites 

dive sharply into the IPL from the INL. Surprisingly, IPL depth continues to increase as 

distance from the SAC soma in the tangential plane ranges from 20 to 80 μm. The slight 

increase is not evident in a single dendrite (Fig. 1b), but emerges from statistical averaging.

Could dendritic tilt be the cause of the observed variation in BC-SAC contact with distance 

(Fig. 4d)? We cannot address causality based on our data, but we can test how well the tilt 

predicts contact variation. We computed the stratification profiles of BC types (Fig. 5a), 

defined as the one-dimensional density of BC surface area along the depth of the IPL. We 

also computed the stratification profile of SAC dendrites at various distances from the SAC 

soma (quartiles, Fig. 5a). Assuming that BC and SAC arbors are statistically independent of 

each other, we estimated contact from “co-stratification,” defined as the integral over IPL 

depth of the product of BC and SAC stratification profiles (Methods).

We found that actual BC2 contact depends more strongly on distance than predicted; the 

slight change in IPL depth after the initial plunge appears too small to account for the large 

change in actual BC2 contact. In other failures of contact prediction, BC3a, BC3b, and BC4 

stratify at the same IPL depths (Fig. 5a), yet BC3a makes much more contact than BC3b or 

BC4. Also, actual BC3a contact plummets near the tips of SAC dendrites (Fig. 4d), while 

predicted contact does not change at all because the IPL depth of SAC dendrites is constant 

in this region (Fig. 5b). Overall, the total contact from all BC types seems low in this region 

(Extended Data Fig. 7d), suggesting that BCs avoid making synaptic inputs to the most 

distal SAC dendrites. This runs counter to the conventional belief that input synapses are 

uniformly distributed over the entire length of SAC dendrites15. The unreliability of 

inferring contact from co-stratification is illustrated by numerous examples of SAC 

dendrites that pass through BC axonal arbors without making any contact at all (Extended 

Data Fig. 8).

Model of direction selectivity

Above we mentioned that BC2 lags BC3a in visual response. There is another important 

difference: BC3a responds more transiently to step changes in illumination, while BC2 

exhibits more sustained responses. The implications of the sustained-transient distinction for 

DS can be understood using a mathematical model. The activity of a retinal neuron is often 

approximated as a linear spatiotemporal filtering of the visual stimulus followed by a 

nonlinearity16,17. Such a “linear-nonlinear” model for the output O(t) of the SAC dendrite 

can be written as

(1)
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For simplicity, the dendrite and visual stimulus I(x,t) are restricted to a single spatial 

dimension x, and the nonlinearity is a half-wave rectification, [z]+=max{z,0}. We interpret 

the integral in Eq. (1) as the summed input from the BCs presynaptic to the SAC. The 

nonlinearity could arise from various biophysical mechanisms, such as synaptic transmission 

from SACs to other neurons. The spatiotemporal filter W(x,t) is a sum of two functions,

(2)

corresponding to contributions from BC2 and BC3a. The sustained temporal filter νs(t) is 

monophasic, while the transient filter νt(t) is biphasic (Fig. 6a). The spatial filter Us(x) 

represents the entire set of all BC2 inputs to the dendrite, and can be estimated from the BC2 

contact area graph in Figure 4d. Similarly, Ut(x) can be estimated from the BC3a contact 

area graph. The two spatial filters are displaced relative to each other (Fig. 6a), because 

BC3a tends to contact SAC dendrites at more distal locations than BC2.

It is well known that direction selectivity (DS) can be generated by a model like Eqs. (1) and 

(2), which is based on the sum of two space-time separable filters18,19. This is illustrated by 

Fig. 6 using the fact that the convolution in Eq. (1) is equivalent to “sliding” the 

spatiotemporal filter W in time over the stimulus I, and computing the overlap at each time. 

The filter W(x,t) is oriented in space-time (Fig. 6a), and so also is a moving stimulus I(x,t) 

(Fig. 6g,h). The overlap with a rightward-moving stimulus (Fig. 6h) is greater than for a 

leftward one (Fig. 6g), so the model is DS, and rightward is the preferred direction.

How is DS affected by the biphasic shape of the transient temporal filter, νt(t)? If we remove 

the negative lobe (Fig. 6c), then νt(t) will become monophasic like νs(t) and their relation 

closer to a simple time lag (Fig. 6d). We will refer to this model as a “Reichardt detector,” in 

honor of the pioneering researcher Werner Reichardt, although it more closely resembles a 

subunit of his model20. On the other hand, removing the positive lobe of νt(t) makes it 

monophasic but with inverted sign relative to the sustained filter (Fig. 6e). The result (Fig. 

6f) resembles a DS model originally proposed by Barlow and Levick21.

Both modified models (Figs. 6d,f) exhibit DS. In the Reichardt detector, the inputs from the 

two arms enhance each other for motion in the preferred direction. In the Barlow-Levick 

detector, the two inputs cancel each other for motion in the null direction. Since our 

sustained-transient model (Fig. 6b) employs both mechanisms, it should exhibit more DS 

than either detector. Our model is related to versions of the Reichardt detector with low-pass 

and high-pass filters on the two arms22.

In the original Barlow-Levick model, the negative filter corresponded to synaptic inhibition. 

Since BCs are believed to be excitatory, negative BC input in our model represents a 

reduction of excitation relative to the resting level, rather than true inhibition. Signaling by 

reduced excitation may be possible, at least for low contrast stimuli, as BC ribbon synapses 

may have a significant resting rate of transmitter release23.

The model of Eqs. (1) and (2) is a useful starting point for many theoretical investigations 

that are outside the scope of this article. For example, DS dependences on the spatial and 

temporal frequency of a sinusoidal traveling wave stimulus are calculated in the 
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Supplementary Equations, and DS dependence on stimulus speed is graphed in Extended 

Data Figure 9.

Discussion

In our DS model, SAC dendrites are wired to BC types with different time lags. A previous 

model did not distinguish between BC types, and instead relied on the time lag of signal 

conduction within the SAC dendrite itself24 (Fig. 1d). Like most other amacrine cells, SACs 

lack an axon; their output synapses are found in the distal zones of their dendrites15 (Fig. 1a, 

inset). Due to dendritic conduction delay, proximal BC inputs should take longer to reach 

the output synapses than distal BC inputs (Fig. 1d). Therefore this time lag is also consistent 

with the empirical finding of an outward preferred direction. To summarize the novelty of 

our hypothesis, we place the time lag before BC-SAC synapses, whereas the previous model 

places it after BC-SAC synapses.

The postsynaptic delay model has a major weakness. If dendritic conduction were the only 

source of time lag, the somatic voltage would exhibit DS with an inward preferred direction, 

but this is inconsistent with intracellular recordings3 (Fig. 1e). In contrast, the presynaptic 

delay model is compatible with approximating an SAC dendrite as isopotential (Fig. 1c), so 

preferred direction is predicted to be independent of the location of the voltage 

measurement, consistent with empirical data3. It may also be possible to make the 

postsynaptic delay model consistent with experiments by adding active dendritic 

conductances4.

The presynaptic and postsynaptic delay models are not mutually exclusive. If they work 

together, passive cable theory suggests that presynaptic delay dominates, because estimated 

postsynaptic delay is much shorter than the time lag between BC2 and BC3a 

(Supplementary Equations). Can we gauge the relative importance of the delays empirically 

rather than theoretically? One way would be intracellular recording at the SAC soma of 

responses to visual stimulation at various dendritic locations. If postsynaptic delay 

dominates, then response latency will grow with distance of the visual stimulus from the 

soma. If presynaptic delay dominates, then distal stimulation will evoke somatic responses 

with shorter latency than proximal stimulation. This prediction may seem counterintuitive, 

but is an obvious outcome of our model.

Many other models of DS emergence in SACs invoke inhibition as well as excitation25-28. 

We have focused on excitatory mechanisms, as blocking inhibition does not abolish DS3. 

However, inhibition may have the effect of enhancing DS, and its role should be 

investigated further.

This work focused on Off BC-SAC circuitry. An analogous sustained-transient distinction 

can also be made for On BC types7,8. It remains to be seen whether their connectivity with 

On SACs depends on distance from the soma. If this turns out to be the case, then the model 

of Figure 6 could serve as a general theory of motion detection by both On and Off SACs. 

The model filter of Figure 6a also resembles the spatiotemporal receptive field of the J type 

of ganglion cell (Fig. 3b of Ref. 29).
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Neural activity imaging30 and connectomic analysis31 have recently identified a plausible 

candidate for the site of DS emergence in the fly visual system. If our theory is correct, then 

the analogies between insect and mammalian motion detection1 are more far-reaching than 

previously suspected, with fly T4 and T5 cells corresponding to On and Off SAC dendrites 

in both connectivity and function.

A glimmer of space-time wiring specificity can even be seen in the structure of the SAC 

itself. Since BC types with different time lags arborize at different IPL depths, IPL depth can 

be regarded as a time axis. Therefore, the slight tilt of the SAC dendrites in the IPL (Fig. 5a) 

could be related to the orientation of the SAC receptive field in space-time (Fig. 6a). 

However, dendritic tilt alone is not sufficient to predict our model, as co-stratification 

sometimes fails to predict contact (Figs. 4d, 5b). For example, co-stratification predicts 

strong BC4 connectivity to distal SAC dendrites. This would favor an inward preferred 

direction, contrary to what is observed, because BC2 leads (not lags) BC4 in visual 

responses7.

The idea that contact (or connectivity) can be inferred from co-stratification is sometimes 

known as Peters’ Rule32, and has also been applied to estimate neocortical connectivity33-35. 

The present work shows that fairly subtle violations of Peters’ Rule may be important for 

visual function. Previous research suggests that On-Off direction selective ganglion cells 

(DSGCs) inherit their DS from SAC inputs due to a strong violation of Peters’ Rule9,36-38.

Our findings were made possible by using AI to reduce the amount of human effort required 

for 3D reconstruction of neurons. Even after the labor savings, our research required great 

human effort from a handful of paid workers in the lab and a large number of volunteers 

through EyeWire. Our experiences do not support claims that the “wisdom of the crowd” 

should replace experts39. Instead, EyeWire depends on cooperation between lab experts and 

online amateurs (Methods). Furthermore, some amateurs developed remarkable expertise 

and were promoted to increasingly sophisticated roles within the EyeWire community 

(Supplementary Notes). We believe that crowd wisdom requires amplifying the expert 

voices within the crowd, and also empowering individuals to become experts. Fortunately, 

such goals are well-matched to the game format.

The EyeWire AI was based on a deep convolutional network40,41. Similar networks have 

been successfully applied to serial EM images obtained using conventional staining 

techniques that mark intracellular organelles42. Extending EyeWire to such images, in which 

synapses are clearly visible, would enable a true connection analysis that goes beyond the 

contact and co-stratification analyses employed here.

Our work demonstrates that reconstructing a neural circuit can provide surprising insights 

into its function. Much more will be learned as reconstruction speed grows. The 

combination of crowd and artificial intelligence promises a continuous upward path of 

improvement, as human input from the crowd is not only useful for generating neuroscience 

discoveries, but also for making the AI more capable through machine learning.
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Methods

We worked with the e2198 dataset9 rather than the e2006 dataset14 because e2198 is large 

enough to encompass entire SAC dendrites (~150 μm). All dimensions are uncorrected for 

tissue shrinkage, which was previously estimated at 14% by comparison of two-photon and 

serial EM images14.

Machine learning

The boundaries between neurons in subvolumes of the e2198 and e2006 datasets were 

manually traced. Using this as ground truth, a convolutional network (CN) was trained to 

detect boundaries between neurons using the MALIS method40. The CN had the same 

architecture as one used previously14, and produced as output an affinity graph connecting 

nearest neighbor voxels41. Any subvolume of e2198 could be oversegmented by applying a 

modified watershed algorithm to the appropriate subgraph. The regions of the 

oversegmentation are called supervoxels.

Reconstruction by workers

A team of part-time workers, numbering about half a dozen at any given time, reconstructed 

neurons using a more sophisticated version of the EyeWire interface. Workers were hired 

based on an interview and a test of software use passed by 3/4 of the applicants. They were 

trained for 40 to 50 hours before generating reconstructions used for research. Their skills 

typically improved for months or even years after the initial training period, and were 

superior to those of professional neuroscientists without reconstruction experience.

As with EyeWire, the task of reconstructing an entire neuron was divided into subtasks, each 

of which involved reconstructing the neuron within a subvolume starting from a supervoxel 

“seed.” However, the subvolumes were roughly 100 times larger than EyeWire cubes, and 

only two workers were assigned to each subvolume.

In the first stage of error correction, disagreements were detected by computer, and resolved 

by one of the two workers, or a third worker. The third occasionally detected and corrected 

errors that were not disagreements between the first two. Most disagreements were the result 

of careless errors, and were easily resolved. More rarely, there were disagreements caused 

by fundamental ambiguities in the image. These locations were noted for later examination 

in a further stage of error correction.

This second stage relied on 3D reconstructions of entire neurons assembled from multiple 

subvolumes and inspected by one of the authors (J.S.K.). Suspicious branches or 

terminations, as well as overlaps between reconstructions of different neurons were detected. 

The original image was reexamined at these locations to check for errors. The process was 

repeated until no further errors could be detected.

The precision of our final reconstruction relative to the truth is probably comparable to the 

precision of the penultimate reconstruction relative to the final reconstruction, 0.99 for 

SACs and 0.96 for BCs. Recall is likely somewhat poorer, because missing branches are 

more difficult to detect than superfluous branches. Recall must be reasonably good for 
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SACs, as missing branches would be detected by deviations from the typical SAC shape and 

radius.

Reconstruction by EyeWirers

Some reconstruction errors slip past the consensus mechanism. These are detected through 

visual inspection of an “overview” mode, which displays 3D renderings of entire neurons 

currently under reconstruction (Extended Data Fig. 1b). False branches become obvious 

once they are long enough, and are reported by EyeWirers through chat or email. They are 

chopped off by GrimReaper, a special EyeWirer played by lab experts endowed with the 

superpower of overruling the consensus. GrimReaper also extends branches that have 

terminated prematurely. Correction by GrimReaper is similar to the second stage of error 

correction described above, so the final reconstruction presumably has similar accuracy.

SAC reconstructions are extremely difficult for two reasons: (1) SAC dendrites are very thin 

and may falsely appear to terminate, due to limited spatial resolution and imperfect staining, 

and (2) the interiors of many SAC boutons contained irregular darkenings, which could 

falsely appear like cellular boundaries. (The reason for the darkening is unclear, as the 

extracellular staining procedure was not intended to mark intracellular structures.)

Novices tend to prematurely terminate SAC dendrites. Experts know that most cubes do not 

contain termination points, and therefore try harder to find continuations, employing a 

variety of sophisticated search strategies. GrimReaper is also allowed to view how the cube 

fits into the entire reconstructed neuron. This additional spatial context can be used to 

disambiguate difficult cubes, given knowledge of the typical appearance of a SAC.

Before learning in normal gameplay (Fig. 2d), all EyeWirers are required to go through a 

training session immediately after registering for the site. This consists of a sequence of 

tutorial cubes, each of which was previously colored by an expert (Extended Data Fig. 1c). 

Each cube teaches through instructions and per-click feedback about accuracy based on 

comparing the EyeWirer's selections with those of the expert. After submitting a tutorial 

cube, the EyeWirer is given a chance to view mistakes.

Accuracy is monitored on a weekly basis by computing the precision and recall of each 

EyeWirer with respect to the truth, defined as neuron reconstructions based on EyeWire 

consensus followed by GrimReaper corrections. Less accurate EyeWirers are given less 

weight in the vote.

Players’ daily, weekly, and monthly scores are publicly displayed on a leaderboard 

(Extended Data Fig. 1b, right), motivating players to excel through competition. Players 

communicate with each other through online “chat” (Extended Data Fig. 1b, left) and 

discussion forums.

A “beta test” version of EyeWire was deployed in February 2012, and attracted a small 

group of users, who helped guide software development. EyeWire officially launched in 

December 2012.
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Reconstruction of Off SACs

Off SACs were recognized by their somata in the INL, narrow IPL stratification at roughly 

one third of the depth from the INL to the ganglion cell layer (GCL), and characteristic 

“starburst” appearance (Fig. 1a).

Off SACs were reconstructed by (1) forward tracing from the soma to dendritic tips and (2) 

backward tracing from varicosities on candidate SAC dendrites to the soma. In the forward 

method, a candidate SAC soma was identified as a supervoxel with a characteristic pattern 

of dendritic stubs bearing spiny protrusions. By the time reconstruction progressed to 

approximately half of the average SAC radius, an Off SAC could be conclusively 

recognized by its starburst shape and narrow stratification at the appropriate IPL depth. 

More than 90% of candidates turned out to be SACs.

In the backward method, we located a thin dendrite with varicosities at the appropriate IPL 

depth. This was reconstructed back to the soma, and then the rest of the dendrites were 

reconstructed from the soma to the tips. The cell could be discarded at any point during this 

process, if its dendrites escaped from the appropriate IPL depth or failed to exhibit the 

proper morphological characteristics. Less than 25% of initial candidates ended up 

confirmed as SACs.

In total, 79 Off SACs were reconstructed, 39 by forward tracing and 52 by backward 

tracing. This is more than half the entire population in e2198, judging from the published 

density44. After candidates were identified by one of the authors (J.S.K.), reconstructions 

were performed by lab workers (59 cells) or by EyeWirers (29 cells). Overlapping numbers 

(12 for forward/backward, 9 for workers/EyeWirers) mean the combination of the two.

In March 2012, lab workers began reconstruction of SACs. In March 2013, EyeWirers were 

invited to the “Starburst Challenge,” a sequence of tutorial cubes drawn from SACs. Those 

who passed with sufficient accuracy were an elite group allowed to reconstruct SACs 

(Supplementary Information). EyeWirers eventually shouldered most of the burden of SAC 

reconstruction, with only 8% of SAC cubes needing correction by GrimReaper. This 

enabled lab workers to shift their focus to BCs, as described below.

Reconstruction of Off BCs

The somata of Off BCs were generally outside e2198, which extended only partially into the 

INL (Fig. 1 of Ref. 9). The trunks of candidate BC axons were located in the interstices of 

the INL, and followed into the IPL. If the axons arborized in the Off region of the INL, they 

were fully reconstructed. Cells that violated known BC structures were identified as 

amacrine cells and discarded14.

BC axons were difficult to reconstruct due to poor staining, and their highly irregular 

shapes. They could not be accurately reconstructed (either by online volunteers or lab 

experts) within the 2563 cubes of EyeWire, which were too small to provide sufficient 

spatial context. Therefore BCs were reconstructed only by lab workers using the large 

subvolumes mentioned above.
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Coordinate system

For more precise quantification of structural properties, a new coordinate system was 

defined by applying a nonlinear transformation to neurons so as to flatten the IPL and make 

it perpendicular to one of the coordinate axes. The nonlinear transformation was found by 

the following steps. First a global planar approximation to the Off SAC surface was 

computed. Then the centroid of all the SACs was projected onto this global plane to define 

the origin of the coordinate system. The projection was along the coordinate axis of the 

e2198 volume closest in direction to the light axis.

To correct for curvature, an azimuthal equidistant projection45 of the Off SAC surface onto 

the global plane was made about the origin. Then local planar approximations to the SAC 

surface were computed in the neighborhoods of every node in a triangular lattice. At each 

point in a triangle, the SAC surface was approximated by computing the mean of the planar 

approximations (as quaternions with yaw constrained to be zero) for the triangle's vertices, 

weighted by distance of the point from the vertices.

The Off SACs were defined as 32% IPL depth. We also reconstructed a few On SACs, and 

defined them as 62%. These choices placed the edge of the INL at 0%. Structural properties 

of all cells were computed based on the locations of their surface voxels after transformation 

into the new coordinates.

Classification of Off bipolar cells

BC stratification profiles were computed by dividing surface voxels into 100 bins spanning 

0 to 100% IPL depth. Classification into cell types was done by using methods similar to 

those described previously14. The BCs were split into shallow (BC1/2) and deep (BC3/4) 

clusters using the 75th percentile depth of the stratification profile. The BC1/2 cluster was 

further subdivided into two clusters by stratification width, defined as the difference 

between 75th and 25th percentile depths. Based on cells per square millimeter (Extended 

Data Fig. 6f), we inferred that the wider cluster was BC2 and the narrower cluster was BC1. 

These two types were originally defined by molecular criteria6, and our inferred 

correspondence with structural definitions is transposed relative to a previous report14. The 

BC3/4 cluster was subdivided into BC4 and BC3 by the 10th percentile depth, because the 

molecularly defined BC4 stratifies closer to the INL6. Finally, BC3 was subdivided into 

BC3a and BC3b based on axonal arbor volume, with BC3a having the larger axonal volume. 

Each of the above subdivision steps was based on a feature with a roughly bimodal 

histogram (Extended Data Fig. 5).

The result still contained a small number of classification errors, detected when adjacent 

BCs of the same type overlapped enough to violate the mosaic property. Corrections were 

made by an automatic algorithm that greedily swapped cells from one cluster to another 

such that the total overlap between convex hulls of cells of a given type was minimized. 

Two swaps were vetoed by an expert (J.S.K) on the basis of morphological features. In all, 

six cells were swapped within BC1/2 and 13 within BC3/4. In the final classification, 41, 56, 

29, 35, and 34 BCs were identified as types 1, 2, 3a, 3b, and 4, respectively (Extended Data 
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Fig. 6). Cells that violated the mosaic of all types (7) or had irregular stratification profiles 

(9) were discarded as possible reconstruction errors or amacrine cells.

Contact analysis

Edges of the affinity graph connecting BC with SAC voxels were defined as BC-SAC 

contact edges. For each pair, the sum of the edges yielded an estimate of contact area. The 

Euclidean distance separating each BC-SAC pair was computed after projecting their centers 

onto the SAC plane. Centers of SAC somata were manually annotated, and centers of BC 

arbors were computed as the centroids of their surface voxels. The pairs were binned by 

distance of the BC from the SAC soma. For every pair in a bin, the fraction of SAC surface 

area devoted to BC-SAC contact within the convex hull of the BC was computed as the ratio 

of BC-SAC contact edges to SAC surface edges within the convex hull. The latter was 

estimated by the number of SAC surface voxels multiplied by a geometric conversion factor 

of 1.4 SAC surface edges per surface voxel. (This factor was estimated by dividing the total 

number of SAC surface edges by the total number of SAC surface voxels in the volume.) 

BC-SAC pairs with fewer than 10,000 SAC surface voxels inside the hull were excluded 

from the computation to reduce the effect of fluctuations. The ratios for BCs of the same 

type were averaged for each distance bin and multiplied by a mosaic overlap factor to yield 

the values in Figure 4d. The mosaic overlap factor represents the extent to which 

neighboring convex hulls overlap one another, which varies by cell type. This factor was 

computed by dividing the sum of the hull areas for each cell by the area of the union of hulls 

for each cell type. For absolute rather than fractional areas, edges in the affinity graph were 

converted to area in μm2, using the conversion factor of 291.5 μm2 per edge. This factor 

averages over the different edge orientations and compensates for voxelization effects. A 

result very similar to Figure 4d can also be obtained by an alternative method that is simpler 

but does not yield error bars (Extended Data Figure 7c).

Co-stratification analysis

All SAC surface voxels were binned by distance from the soma center in the SAC plane. 

Within each bin, the stratification profile was computed as for the BCs. The quartiles 

(median and 25th and 75th percentiles) are graphed in Figure 5a. The prediction of contact 

from co-stratification is based on the following formalism.

We define the arbor density ρa(r) as the surface area per unit volume at location r of a type a 

cell with soma centered at the origin. Its integral  is the total surface area of 

the arbor. We assume that the contact density received by one cell of type a from all cells of 

type b is equal to

(3)

The sum over the b mosaic can be approximated by a function that is independent of x and y,

(4)
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where σb is the number of type b neurons per retinal area and

(5)

is the stratification profile of a cell of type b. The SAC arbor density is assumed radially 

symmetric, , where ρSAC(r) can be regarded (up to 

normalization) as the SAC stratification profile as a function of distance  from 

the SAC soma. Integrating the contact density (3) and normalizing yields the fraction ϕb(r) 

of SAC area contacted by cell type b as a function of r,

(6)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Starburst amacrine cell and its direction selectivity
Off SAC (red) viewed opposite (a) and perpendicular (b) to the light axis. GCL, IPL, INL 

are ganglion cell, inner plexiform, inner nuclear layers. Grayscale images from the e2198 

dataset9. Swellings of distal dendrites are presynaptic boutons (inset). Scale bar is 50 μm. c, 

We hypothesize that a SAC dendrite is wired to pathways with different time lags of visual 

response. d, A previous model invoked the time lag due to signal conduction in a passive 

dendrite24. e, The previous model predicts an inward preferred direction for the somatic 

voltage, contrary to empirical observations3.
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Figure 2. EyeWire combines crowd and artificial intelligence
a, 3D and 2D views in the neuron reconstruction game. b, Precision and recall are two 

measures of accuracy. c, Accuracy of artificial intelligence (AI), 5881 EyeWirers, and 

EyeWirer consensus on reconstruction of a ganglion cell. d, EyeWirer precision and recall 

increase with number of cubes submitted. Solid lines are median values across 208 

EyeWirers who submitted at least 500 cubes, and shaded regions indicate 25th to 75th 

percentile.
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Figure 3. 3D reconstructions of Off BCs and SACs
Cells viewed opposite the light axis. a, BCs alone. b, BCs with SACs. Scale bar is 50 μm.
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Figure 4. BC-SAC contact
a, Off BCs were divided into five types6,14, based on IPL depth and size. Scale bar is 10 μm. 

b, Contact areas of BC-SAC pairs, sorted by BC types. c, Pairs were further sorted by the 

distance of the BC axon from the SAC soma, as measured in the tangential plane. Scale bar 

is 50 μm. d, Average BC-SAC contact vs. distance, normalized to percentage of SAC 

surface area at that distance (Extended Data Fig. 3b). Standard error is based on the number 

of pairs for each BC type and distance.
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Figure 5. BC-SAC co-stratification
a, SAC dendrites move deeper into the IPL (median depth, red line) with increasing distance 

from the SAC soma in the tangential plane. Stratification profiles of BC types, defined as 

density of surface area over the depth of the IPL. b, Co-stratification predictions of BC-SAC 

contact area vs. distance from the SAC soma. The curves are normalized by SAC area at 

each distance, and are therefore directly comparable with those of Figure 4d.
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Figure 6. Mathematical model of the BC-SAC circuit
a, Spatiotemporal filter of Eq. (2). Green is positive, red is negative, and gray is zero. b, The 

transient pathway effectively combines a positive channel that leads the sustained pathway 

by τ and a negative channel that lags by τ. c, Removing the negative channel yields a 

Reichardt detector (d). e, Removing the positive channel yields a Barlow-Levick detector 

(f). A moving visual stimulus I(x,t) is oriented in space-time (g, h), and so are the 

spatiotemporal filters (a, c, e).
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Extended Data Figure 1. EyeWire screenshots
a, Numerical score after gameplay of a cube, with leaderboard below. b, Overview mode 

with neuron under reconstruction (center), global chat (bottom left), progress bar for neuron 

(upper left), leaderboard (right), settings and help (bottom right). c, Tutorial play.
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Extended Data Figure 2. 
Questionnaire administered to EyeWirers.

Kim et al. Page 24

Nature. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 3. EyeWire demographics
Data based on 729 responses to the questionnaire in Extended Data Fig. 2. Age distribution 

of (a) all respondents and (b) those among the top 100 players ranked by number of cubes 

submitted. c, Gender distribution of all respondents and those among the top 100 players. d, 

Distribution of educational levels.

Kim et al. Page 25

Nature. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 4. Entirety of reconstructed SACs
Only the central region of this plexus of SAC dendrites is portrayed in Figure 3b. Scale bar 

is 50 μm.

Kim et al. Page 26

Nature. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 5. Clustering procedure for BCs
a, Cells were divided by the 75th percentile of their stratification profiles. b, The shallow 

cluster BC1/2 was separated into BC1 and BC2 using stratification width, defined as the 

difference between 75th and 25th percentiles. c, The deep cluster BC3/4 was divided by 

10th percentile into BC4 and BC3. d, BC3 was divided by axonal volume to yield BC3a and 

BC3b. Scatter plots of the (e) BC1/2 and (f) BC3/4 divisions show swaps made to eliminate 

mosaic violations. No swaps between BC1/2 and BC3/4 were needed.
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Extended Data Figure 6. Mosaics of Off BC types
Reconstructed BCs of types 1, 2, 3a, 3b, and 4 (a through e, respectively). BC1/2 mosaics 

appear complete. BC3/4 mosaics show some gaps, probably because some thin axons were 

missed in the INL (Methods). Scale bar is 50 μm. f, Statistics of BC types. Means and 

standard deviation of the hull area (area of the convex hull around the cell) are in μm2. Type 

densities are the number of cells (n) divided by the area of the union of hulls of that cell 

type, and are in cells/mm2 without compensation for tissue shrinkage (Methods). Our 
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densities resemble those of Wassle et al. (2009), who found 2233, 3212, 1866, 3254, and 

3005 cells/mm2.
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Extended Data Figure 7. Alternative contact analysis
Analysis based on summing over BC-SAC pairs rather than averaging as in main text. a, 
Total BC-SAC contact vs. distance from the SAC soma. b, Total SAC area within the union 

of convex hulls of each BC type versus distance. The peak at 80 μm is the location of 

maximum dendritic branching. The sharp decrease at larger distances is due to thinning and 

termination of branches. The graphs differ across BC types, which in our sample do not 

cover exactly the same retinal areas. c, Fraction of SAC area in contact with BC types, 

estimated by dividing contact area (a) by SAC area (b). This estimate is similar to that of 
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Figure 4d, but lacks error bars. d, Fraction of SAC area contacted by all BC types, the sum 

of the contact fractions in (c). Also plotted is the contact predicted by co-stratification, the 

sum of the curves from Figure 5b.
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Extended Data Figure 8. Proximity versus contact
Neurons that intermingle may or may not contact each other. a, b. Type 2 and 3a BCs 

(respectively) contacting SACs. The cells are roughly 24 and 21 μm wide. c, d. Other SACs 

are well within the arbors of the same two BCs, yet make no contact at all.
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Extended Data Figure 9. Model direction selectivity index (DSI) versus stimulus speed
The graphs are for traveling sine waves of various wavelengths λ (units of Δx). Speed is in 

units of Δx/τ. The preferred speed (horizontal location of each peak) is λ/(2π). Note that 

responses are cut off at high speeds by the temporal filters of the model, but the DSI can 

decay more slowly.
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