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The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in
an ionic solution.This approach is often used in computational structural biology to estimate the electrostatic energetic component
of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological
macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software
tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel
implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational
power: up to 10 TFLOPS on a single machine equipped withmultiple CPUs and accelerators such as Intel Xeon Phi or GPU devices.
The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software
on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference
scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great
speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

1. Introduction

The Poisson-Boltzmann equation (PBE) describes the elec-
trostatic behavior of a polarizable solute containing fixed
charges immersed in an ionic and polarizable solution. It is
a popular and effective model adopted in the computational
structural biology and biophysics communities, where the
estimate of the electrostatic energy of molecular systems
is used, for instance, to study stability, binding affinity,
desolvation penalty, acid constants, and so forth [1, 2]. The
last decades witnessed a remarkable increase of the available
structural data concerning biomolecules. Concurrently, web
servers and databases started accumulating annotations and
derived/simulated quantities related to the original experi-
mental structures. A similar thing has also been done as far as
the electrostatic potential generated by entries of the Protein
Data Bank is concerned [3, 4]. Nowadays, the amount of data

is still increasing and it is complemented by the availability
of molecular dynamics simulation outcomes, resulting in a
further explosion of the number of structures. Moreover,
researchers started using the same approaches once devised
for small sized proteins to more complex and larger scale
systems, such as multimeric receptors in cell membrane,
virus capsids, and ribosomes [5]. This is instrumental to the
creation of databases of paired experimental and simulated
data necessary to a better comprehension of biological and
medical data.

The need to analyze larger number of bigger and more
complex systems translates into the need for faster algo-
rithms.The parallelization of algorithms has becomemanda-
tory to take advantage of modern computational architec-
tures. In recent years, the evolution and growth of the
techniques and platforms commonly used for high perfor-
mance computing (HPC) have been truly astonishing [6].
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Multicore processors are now ubiquitous; the famous Moore
Law [7], stating that the number of transistors on integrated
circuits doubles approximately every year, readjusted every
two years (http://news.cnet.com/2100-1001-984051.html), can
still be considered valid, but with a major change: every
new generation of CPUs is more powerful than the previous
one mostly because it provides more cores. Furthermore,
the last generation CPUs can also access powerful spe-
cialized hardware, as general-purpose graphics processing
units (GPGPUs, shortly, GPUs) and field-programmable gate
arrays (FPGAs) [8]. These emerging heterogeneous HPC
architectures provide significant computational power, in the
order of TFLOPS. However, this raw potential can become
practically available only through a massive exploitation of
parallelism, which requires a tailored approach for each
architecture. For this aim, several different paradigms and
libraries have been designed [9].

In this context, we present an implementation of a
full PBE solver based on a finite-difference (FD) scheme
using different parallelization schemes and in particular
a combined MPI-CUDA implementation. We follow the
approach of the DelPhi PBE solver [10, 11], which exploits the
checkerboard structure of the finite difference discretization
of the Laplace differential operator and adopts a successive
overrelaxation (SOR) scheme to converge to the solution.
Our implementation exploits two levels of parallelism; thus
it makes it possible to exploit multicore CPUs and clusters
of CPUs as well as (multi-)GPUs and clusters of GPUs.
The paper is organized as follows. First, a basic description
of the PBE and a sequential solution scheme are given.
Then, existing paradigms and libraries for parallelization on
heterogeneous architectures are introduced. Sections 4, 5,
and 6 describe the parallel implementations proposed to
solve PBE using GPUs, clusters of CPUs using MPI, and
the combined use of MPI and CUDA. Section 7 details the
combined use of MPI and OpenMP. Section 8 presents and
discusses the experimental results achieved, while Section 9
concludes the paper.

2. Sequential Solution of
the Poisson-Boltzmann Equation

The PBE combines the continuum electrostatics description
of fixed charges in a dielectric medium with the Boltzmann
prescription formobile ions in aqueous solvent at the thermal
equilibriumwith a reservoir [12]. In its linearized form,which
is valid for low ionic concentrations, the PBE reads

∇ ⋅ [𝜖 (x) ∇Φ (x)] +
𝜌
fixed

𝜖
0

=
𝜖solv
𝜆2
Φ (x) , (1)

where Φ is the electrostatic potential, 𝜖(x) the space-varying
relative dielectric constant, 𝜖solv that of solvent, 𝜖

0
the

permittivity of vacuum, 𝜌fixed the fixed charge density on
the solute, and 𝜆 the Debye length of the ionic solution,
a quantity describing the electrostatic screening induced
by the ionic cloud in the solution. The right hand side
of (1) is present only if x is located in the ionic solu-
tion. The sequential implementation described here follows

the approach described in [10]. The PBE discretized on a
uniform grid takes the following form:
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where Φ
𝑗
refers to the electrostatic potential at the node 𝑗,

where a net charge 𝑞
𝑗
is mapped. The term containing 𝜆 is

present only if the node 𝑗 belongs to the solvent and 𝜖
𝑖
is the

relative dielectric constant at one of the midpoints between
the node 𝑗 and its six nearest neighbors on the grid; ℎ is the
grid spacing. This discretized relationship leads to a linear
system of equations 𝐴Φ = 𝑏 where a suitable mapping
converting three-dimensional to one-dimensional indexes
has to be adopted. The matrix 𝐴 can then be decomposed
into 𝐴 = 𝐷 + 𝐿 + 𝑈, where 𝐷 is the diagonal of 𝐴 and
𝑈 and 𝐿 are the strict upper and lower triangular parts of
𝐴, respectively. According to the successive overrelaxation
method, the iterative equation is given by

Φ
(𝑛+1)

= (𝐷 + 𝜔𝐿)
−1
{𝜔𝑏 − [𝜔𝑈 + (𝜔 − 1)𝐷]Φ

(𝑛)
} , (3)

where 𝜔 is the overrelaxation factor and bracketed super-
scripts indicate iteration number.The term (𝐷 + 𝜔𝐿)−1 can be
calculated using forward substitution since𝐷+𝜔𝐿 is a lower
triangular matrix implying that the iterative scheme must
be consistent with the previously described mapping, which
makes parallelization difficult. The iteration stencil becomes
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The best overrelaxation factor can be obtained from the
highest eigenvalue of the iteration matrix [13], which in turn
can be calculated using the connected-moments expansion
[10].This stencil was first used in [2] and a revision of its uses
(at the time of writing) can be found in [14]. Later, the stencil
has been parallelized using MPI in [15] and using CUDA but
with different kernels in [16, 17].

In order to obtain awell-defined solution, suitable bound-
ary conditionsmust be ensured; the interested reader can find
some details on different available alternatives in the work of
Rocchia, which focuses on biological applications [18].

2.1. Solving the Nonlinear PBE. To solve the nonlinear PBE,
the nonlinearity is treated as a perturbation to the linear
counterpart:

∇ ⋅ [𝜖 (x) ∇Φ (x)] − 𝜖solv𝜅
2
(x) Φ (x)

= −
𝜌
fixed
(x)

𝜖
0

+ 𝜖solv𝜅
2
(x) [sinh (Φ) − Φ] .

(5)

This allows making a minor adaptation of the linear solver
by gradually introducing the nonlinearity. The stencil for the
nonlinear solver thus reads
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where 𝜉 accounts for the nonlinearity. This procedure is
currently employed in the sequential DelPhi software and it
is better described in [11].

2.2. Exploiting the Structure of the System. The following
observations help significantly to improve the efficiency of
the algorithm. First, if the number of grid points in the
first two dimensions is odd, the discretized FD scheme is
endowed with the so-called checkerboard structure. All even
grid points depend only on their neighboring grid points,
which are odd, and vice versa.This allows iterating alternately
on grid points of different parity until convergence. Due
to this property, one can break the dependence imposed
by formula (3) and apply the parallelism inside each of the
even/odd steps. Second, it is worth pointing out that on most
grid points no charges are mapped and also are located in a
uniform dielectric region, where 𝜖

𝑖
is constant. In most of the

cases, indeed, 𝜖 varies only around themolecular surface. Due
to these observations, the stencil can be simplified as follows:

Φ
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=
∑
6
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6 + 𝜅
2

𝑗

, (7)

where

𝜅
𝑗
=
{

{

{

(
ℎ

𝜆
) if 𝑗 is inside the ionic solution,

0 otherwise,
(8)

allowing a faster parallelization. After each run of this
uniform stencil, corrections have to be made at the points
where charges are present andwhere 𝜖

𝑖
changes.This solution

is therefore faster than using the full nonuniform stencil on
the whole grid.

2.2.1. Contiguous Memory Mapping. Instead of making the
numerical computations and moving the memory access
along a three-dimensional parallelepiped and updating the
odd and even points, the solutionwas calculated using two 1D
pointers: one for the even and one for the odd grid points,Φ
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andΦ
𝑜
, respectively. Every grid point𝑝
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so that the update of each pointer depends only on the
one with opposite parity. The offset of the indexing of the
neighboring points in this case can be seen in Table 1.
In Figure 1, we show a 3D graphical representation of the
checkerboard structure and its relationship with the arrays
used for the continuous memory mapping.

2.3. Sequential Algorithm. Due to the corrections that have
to be made after the uniform stencil is applied, namely, on
the regions where the dielectric constant is not uniform

Physical grid

x

yz

Logical grids

ith

ith

Figure 1: Checkerboard structure used to build the continuous
memory mapping.

Table 1: Neighbor offsets for even and odd points.

Neighbor Offset when 𝑝
𝑜
is even Offset when 𝑝

𝑜
is odd

Left (−𝑋) −1 +1

Right (+𝑋) 0 0

Back (−𝑌) −
(𝑛
𝑥
+ 1)

2
−
(𝑛
𝑥
− 1)

2

Front (+𝑌) +
(𝑛
𝑥
− 1)

2
+
(𝑛
𝑥
+ 1)

2

Bottom (−𝑍) −
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𝑥
𝑛
𝑦
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2
−

(𝑛
𝑥
𝑛
𝑦
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2

Top (+𝑍) +

(𝑛
𝑥
𝑛
𝑦
− 1)

2
+

(𝑛
𝑥
𝑛
𝑦
+ 1)

2

and where charges are present, a preprocessing stage is
needed to identify the pointers corresponding to the grid
points located in these regions. These steps are as follows.

(i) Determine inside/outside: Determine which grid
points are on the solute or in the solvent; this involves
the calculation of the molecular surface of the solute
(see [19] for a summary of the different possibilities).
If there is salt in the solution, we also calculate the 𝜅
factor.

(ii) Find dielectric boundaries and prepare the boundaries
correction: Look for the midpoints in which 𝜖

𝑖
varies

and calculate the correction to be applied after the
stencil operation

(iii) Set boundary conditions: Set up the boundary con-
ditions to be used; see [18] for a description of the
possibilities.

(iv) Prepare charges correction: Calculate the correction to
be applied to the grid points where charges have been
assigned.

After that, the main iteration then applies the uni-
form Laplace stencil to the grid points of one parity, and,
afterwards, it corrects it where needed. Then, the opposite
parity points are updated, with the corresponding correction.
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The convergence of the iterative scheme is evaluated using
the maximum difference of the potential on the grid every
10 iterations. The steps of the main loop are the following.

(1) Save dielectric boundaries: Save the state of the dielec-
tric boundary points considering a temporary vector
for convergence test at the end.

(2) Run Poisson or Poisson-Boltzmann. This is the main
calculation block that implements the stencil given by
(7) and is executed on every grid point.

(3) Adjust dielectric boundaries: Update the potential
value of the grid points located at the dielectric
boundary; this is done at the end of each iteration.

(4) Add charges: Add the charge terms to the grid points
that were predefined as charged.

(5) Calculate potential difference at the dielectric bound-
ary: Calculate the absolute differences between the
current potential values at the dielectric boundary
with the one saved previously on a temporary data
structure. This is done since the boundary is the
region where the convergence is expected to be
slower.

(6) Check convergence:Themaximum absolute difference
between the potential at two subsequent iterations is
compared to the threshold to test the convergence and
to decide whether to stop the iterative procedure.

In the rest of the paper, for each parallel implementation
of the full Poisson-Boltzmann solver, we refer to this list to
explain the adopted approach.

3. Heterogeneous Computing Systems and
Parallel Programming Libraries

As previously highlighted, in a modern complex comput-
ing system, the computational cores, memory banks, and
communication bandwidth can be extremely heterogeneous.
To get the expected level of performance, it is mandatory
to manage effectively such intrinsic architectural complexity.
For this reason, the actual barrier posed by heterogeneous
HPC resources is the difficulty in the development and/or the
performance efficient porting of software on such complex
architectures [9, 20]. The traditional HPC solutions offer
widely used programming models and tools, since such par-
allel computing systems have now achieved certain maturity
thanks to high-level libraries, for example, ScaLAPACK [21],
or runtime libraries as MPI [22], while new heterogeneous
architectures require an effort in the development of cus-
tomized solutions. In fact, the efficient exploitation of hierar-
chical and heterogeneous architectures requires an increased
effort in software development and presents challenges also
in terms of the scalability of applications.

The view of heterogeneous computational systems corre-
sponds to different types of parallel cooperation among par-
allel processes: distributed memory for cooperation among
nodes, shared memory for core cooperation, and SIMD
(single instruction multiple data) parallelism inside CPUs

and accelerators (GPUs).The challenge is the development of
parallel applications able to exploit in an effective way these
different levels of parallelism; in particular, in this work we
use MPI, OpenMP, and CUDA.

MPI (message passing interface) is a language-
independent communication library used to program
parallel computers. It supports explicit communication
among processes that constitute a parallel program running
on a distributed memory system. Communications can
be both point-to-point and collective. MPI goals are
high performance, scalability, and portability. MPI
implementation can be smart enough to realize that it
runs on a shared memory environment and consequently to
optimize its behavior accordingly. Designing programs that
adopt the MPI model (contrary to explicit shared memory
models) may have advantages over nonuniform memory
access (NUMA) architectures sinceMPI encouragesmemory
locality.

The Open specifications for Multi-Processing (OpenMP)
define a set of compiler directives, library routines, and
environment variables that can be used to specify shared
memory parallelism in Fortran and C/C++ programs. It is
based on compiler directives and it offers a simple and elegant
paradigm for supporting core-level and CPU-level paral-
lelism. Transition from sequential to parallel is extremely
easy and smooth, since it supports a unified code for both
sequential and parallel applications: OpenMP constructs are
treated as comments when sequential compilers are used.
One drawback of OpenMP is that it currently runs efficiently
only on shared-memory multiprocessor platforms; thus the
main option for clusters remains MPI. It is to underline that
with the proper policy OpenMP could also fix the NUMA
issues [23].

The compute unified device architecture (CUDA) is
a parallel computing platform and programming model
created by NVIDIA that gives developers access to the
instruction set and memory of the parallel computational
elements in NVIDIA GPUs. CUDA is accessible to software
developers through CUDA-accelerated libraries, compiler
directives, and extensions to programming languages such as
C/C++, Fortran, and other interfaces. CUDA acts at a lower
architectural level comparedwith the previous tools, and thus
it requires higher programming skills.

4. CUDA Implementation

The CUDA implementation was developed to speed up the
computation of (7) exploiting GPU. GPUs are highly parallel
programmable microprocessors, originally born to support
graphics elaboration; they are used in combination with CPU
as a coprocessor to speed up numerically intensive parts of
code by the means of a massive fine grained parallelism. The
parts of the code that exhibit a rich amount of data parallelism
are performed on the GPU in a SIMD mode; data have to be
transferred to the GPU memory; this transfer represents the
actual bottleneck of the computation, and programs(kernels)
directly targeting GPUs have to be written. Using CUDA,
a kernel is executed on threads organized in blocks; each
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Figure 2: Tartan distribution of the blocks of threads in CUDA.

thread is responsible for a portion of data, and each block of
threads shares a local memory (called shared).

In the CUDA implementation of the solver, we followed
the algorithm described in [16, 24], where CUDA was used
to parallelize the main iteration, while the preprocessing
was calculated in the sequential part of the code. Memory
transfers in the main loop occur every several iterations
(typically 10) to test the convergence. We used the GPU
shared memory that is faster than the global memory. The
limiting factor on the use of this optimizedmemory is mainly
the size, that is, 16KB in architectures before Fermi GPU or
48KB on Fermi architectures and onwards; however, it was
sufficient for our aim.

In [25], authors explore stencil computations to optimize
the Jacobi method for solving Laplace’s differential equa-
tion using different programming models and in particular
CUDA. One of the solutions proposed exploiting CUDA is
quite close to ours at least in terms of thread organization and
in the use of shared memory. However, authors improve the
level of the discussion deeply exploring further optimization
policies, just to name a few: the use of internal register
(instead of the shared memory) thus avoiding synchroniza-
tion barriers among threads in the same block and the
application of tiling strategies. We moved instead to the
combined use with the MPI implementation.

The points of the grid can be accessed through their
coordinates: 𝑋, 𝑌, and 𝑍 are the global coordinates on
the whole volume, that is, the same used in the sequential
algorithm. Each thread is associated with a set of points with
fixed 𝑋 and 𝑌 coordinates, moving along the 𝑍 coordinate
and skipping the points of opposite parity. A bidimensional
distribution of threads and blocks has been implemented;
in Figure 2, we can see this distribution for each value of

𝑍 coordinate. The points of the grid inside the continuous
lines are actually updated, while the dotted lines mark the
neighborhood points required in the computation. The size
of the blocks is 𝐵𝑥 and 𝐵𝑦; in our implementation, a block
size of 16 × 16 was empirically found to provide the best
results. 𝑋

𝑠
and 𝑌

𝑠
correspond to the local coordinates of the

grid point inside the blocks; these are used during the CUDA
computation by the thread to relate to the actual grid points.
The coordinates of the points are calculated in the following
way, as for the local ones𝑋

𝑠
and 𝑌

𝑠
,

𝑋
𝑠
= 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥

𝑌
𝑠
= 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑦,

(10)

while the global𝑋 and 𝑌

𝑋 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥 ⋅ (𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 − 2)

𝑌 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑦 ⋅ (𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦 − 2) ,

(11)

where (following the CUDA notation) 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 are the 2D
coordinates of the thread inside the block, 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 are the
2D coordinates of the block inside the grid, and 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚 is
the dimension of the block. From the three coordinates𝑋, 𝑌,
and𝑍, one can derive the index in the linear buffer where the
potential is stored, as shown in (12). This relationship is the
same for even and odd points:

index = ⌊
𝑋 + 𝑌 ⋅ 𝑛

𝑥
+ 𝑍 ⋅ 𝑛

𝑥
⋅ 𝑛
𝑦

2
⌋ . (12)

Each thread, including those that are in the border area,
copies the value of the grid point with opposite parity that
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for each color/parity do
Load the potential Φ with opposite color/parity into a texture in the GPU.
for all 𝑖 ∈ [1, 𝑛𝑧 − 1] do
Given a trace with given 𝑡𝑟𝑎𝑐𝑒𝐼𝑑.𝑥 and 𝑡𝑟𝑎𝑐𝑒𝐼𝑑.𝑦, calculate𝑋,𝑌 and set 𝑍 = 𝑖:
Fetch Φ

(𝑋,𝑌,𝑍)
from the texture and put in shared memory.

if 𝑖 = 1 then
Fetch Φ

(𝑋,𝑌,0)
from the texture.

else
Φ
(𝑋,𝑌,𝑍−1)

= Φ
(𝑋,𝑌,𝑍+1)

.
end if
Fetch Φ

(𝑋,𝑌,𝑍+1)
from the texture.

Calculate Laplace stencil and update the potential for the current color/parity.
end for

end for

Algorithm 1: Algorithm for the stencil on a GPU.

has the same index to the shared memory. After that, all
the threads of the same block synchronize to be sure that
the shared memory is updated for all of them. Then, the
interior points update their values according to the Laplace
rule. The 1D coordinates of the six neighbors are obtained
properly manipulating values presented in Table 1. While
applying the Laplace stencil, the Left, Right, Back, and Front
points are already in the shared memory, so we use the
corresponding offset in the shared space. However, Bottom
and Top points are missing, so we have to read them from the
global memory using the offset in the global representation.
Since we are iterating in the 𝑍 coordinate, we can reuse the
Top information since it corresponds to the Bottom point of
the next 𝑍 coordinate. So, in each iteration, we rewrite the
Bottom point with the previous Top point and we read a new
value with the indicated offset. In Algorithm 1, we schematize
the approach we adopted.

As we can see in Figure 2 the grid (shaded in gray) could
be smaller than the blocks of threads. This is because the
blocks have the same dimension and it is not always possible
to fit them into the grid dimension. The threads in charge of
such data will be idle for a while.

The described CUDA implementation has been
linked to the DelPhi software and is downloaded from
http://www.electrostaticszone.eu.

5. MPI Implementation

The implementation described in this section was developed
to enable the run of the numerical solver on distributed
memory architectures such as cluster of (multicore) CPUs.
This kind of architectures can be exploited using well-known
SPMD (single program multiple data) programming model
on distributedmemory resources; the standard de facto in this
context is MPI.

The approach adopted considers a data parallelism;
that is, the global data set is subdivided in partial data
sets elaborated in parallel. The volume storing input data
was subdivided in smaller parallelepipeds; the number of

the subdomains relies on the number of MPI processes
spawned for the computation; in fact, each subdomain is
assigned to a MPI parallel process that is in charge of its
elaboration. The volume subdivision among the parallel pro-
cesses was implemented using the parallel I/O functionalities
provided by MPI (version 2 and onwards). The exploitation
of this feature enabled the speedup of data distribution; in
fact, we avoided the master-slave approach; that is, only one
process (the master) accesses the data set and distributes data
among the other processes (the slaves), that results in a more
time consuming phase. Furthermore, the use of the MPI2
parallel I/O ensures optimized parallel accesses the data set
thus reducing data contention.

In the checkerboard structure used to solve the Laplace
equation, there is the need to consider for each point of the
grid its 6 neighbors of opposite parity.Therefore, subdomains
have to take into account overlapping areas to properly
manage this requirement, and MPI data communications
were introduced to exchange the neighbor points at the
border of each subdomain. This marks a different approach
from the one taken at [15], where authors used the direct
remote memory access (DRMA) to manage the neighbor
points.

The domain was divided along the most external dimen-
sion, that is, 𝑍. Therefore, the dimensions of the subdomain
elaborated by the MPI processes are parallelepipeds with
the same 𝑋 and 𝑌 dimensions but with a lower number of
layers on 𝑍. For each subdomain, also charges, dielectric
boundaries, and the value of 𝜅 were assigned. Note that
the communications involve even and odd grid points, so
particular care is devoted to enforce the consistency of the
parity of the points. In fact, since each subdomain acts as an
independent solver, all subdomains assume that the first grid
point is even.This has to be ensured during the subdivision of
the domain.This problem was solved by dividing the domain
so that each subdomain starts with an even grid point and a
consequent management in the whole data set.

Defining𝑁
𝑧
as the total number of levels/layers on the 𝑧-

axis of thewhole domain, 𝑛𝑝𝑟𝑜𝑐 the number ofMPI processes
spawn, and 𝑖 the process identifier, the algorithm employed
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for all 𝑖 ∈ [0, 𝑛𝑝𝑟𝑜𝑐 − 1] do
𝑛
𝑖

𝑧
= 𝑓𝑙𝑜𝑜𝑟(𝑁

𝑧
/𝑛𝑝𝑟𝑜𝑐𝑠)

if 𝑚𝑜𝑑𝑢𝑙𝑜(𝑛𝑖
𝑧
, 2) ̸= 0 then

𝑛
𝑖

𝑧
= 𝑛
𝑖

𝑧
− 1

end if
𝑟𝑒𝑠1 = 𝑁

𝑧
− 𝑛
𝑖

𝑧
⋅ 𝑛𝑝𝑟𝑜𝑐

𝑛𝑟𝑒𝑠 = 𝑟𝑒𝑠1/2

𝑟𝑒𝑠2 = 𝑚𝑜𝑑𝑢𝑙𝑒(𝑟𝑒𝑠1, 2)

if 𝑖 = 0 then
𝑛
𝑖

𝑧
= 𝑛
𝑖

𝑧
− 1

if 𝑛𝑟𝑒𝑠 > 0 then
𝑛
𝑖

𝑧
= 𝑛
𝑖

𝑧
+ 2

end if
else if 𝑖 = 𝑛𝑝𝑟𝑜𝑐 − 1 then
𝑛
𝑖

𝑧
= 𝑛
𝑖

𝑧
+ 1

if 𝑟𝑒𝑠2! = 0 then
𝑛
𝑖

𝑧
+ = 𝑟𝑒𝑠2

end if
else if 𝑖 < 𝑛𝑟𝑒𝑠 then
𝑛
𝑖

𝑧
= 𝑛
𝑖

𝑧
+ 2

end if
end for

Algorithm 2: Algorithm for the division of the computation
domain.

to calculate the number of layers 𝑛𝑖
𝑧
on the subdomain 𝑖 is

described in Algorithm 2.
To understand how the algorithm works, note that many

conditions have to be imposed for the parity consistency and
to properly manage the boundary requirements; for example,
the first and the last 𝑍 levels on the whole volume have only
one border to consider, while the other levels have to allocate
two borders, one layer above and one below.

Once each subdomain is constructed, the solver acts in
each subdomain almost as the sequential version would,
and only minor modifications are needed. The boundary
conditions on the faces perpendicular to the 𝑥- and 𝑦-axes
are calculated as in the sequential case, and the boundary
on faces perpendicular to 𝑍 requires the values that have
to be exchanged exploiting MPI except for the first and last
subdomains, where one of the faces actually corresponds to
a boundary. A border is composed of 2 layers (one for each
overlapping subdomain); thus, for each iteration, 4 layers
have to be sent and 4 received. This is done after the update
of the potential for each parity. Since the data transferred
is needed right after the data communication occurs, only
blocking communications were used.

6. Combining the MPI and
CUDA Implementations

This implementation of the solver aims at exploiting the
computing power of clusters of GPUs, that is, clusters, where
nodes are equipped with one or more GPUs. This was inves-
tigated through a proper integration of the two independent
implementations based onCUDAandMPI.The idea is to add

a further level of parallelism to the previous implementations;
that is, MPI is used to distribute the computation and CUDA
as themain execution engine.This approach has been already
adopted in the scientific community to speed up compute
intensive tasks with successful results [26–28].

The integration of MPI and CUDA worked quite
smoothly thanks to the experiencematuredwith the previous
parallel implementations, and we can affirm that it was not
particularly intrusive.The original sequential part of theMPI
implementation was replaced with the CUDA parallel kernel
combining the related parallelization strategies. In particular,
the data communications among MPI processes have to be
carefully combined with CUDA data transfers from and to
GPU memory to ensure the elaboration of the most up-to-
date values and thus data consistency.

In more detail, the algorithm implements the MPI sub-
domain definition thus distributing data amongMPI parallel
processes. EachMPI process calls theGPU solver to elaborate
its own subdomain. This means that data are transferred to
the GPU and elaborated according to the CUDA implemen-
tation. As already outlined, MPI communications have to be
consistent with data transfers to/from GPU memory. Since
MPI blocking communication occurs at each iteration (4
layers have to be sent and 4 received), data transfer from/to
GPU memory has to be performed at each iteration as well.

The use of nonblocking communications represents an
interesting point to be considered. In fact, although the time
spent on data transfer was small when using InfiniBand,
thread synchronization was still needed because a blocking
MPI communicationmodel was used; therefore, nonblocking
MPI could improve the speedup of the algorithm even
further. In [29], a CUDA parallelization of the 3D finite
difference is presented together with the use of MPI to
enable the exploitation of multi-GPUs. In particular, wave
equations, that are of great interest in seismic computing, are
considered; of course, they pose different requirements to the
geometry of the data set that lead to a different approach
in the CUDA parallelization. MPI instead is used with a
strategy similar to the one proposed in this section. However,
authors obtain significant performance by overlapping data
exchange among GPUs with kernel execution. In [30], mixed
MPI-CUDA implementation is proposed along with the
investigation of different strategies to improve the efficiency
of incompressible flow computations. The data partition
applied is quite close to ours. However, they also consider
a strategy of overlapping computation between MPI and
CUDA. This is obtained by modification of the kernels
that have to be organized in such a way to enable (1)
the overlap of the CUDA computation with the GPU data
transfer/MPI communication and (2) the asynchronous exe-
cution of different kernels.The design of such a sophisticated
algorithm pays in terms of performance achieved. Starting
from these interesting experiences, we will investigate the use
of nonblocking communications as a future direction.

The described strategy works with several GPUs per
node, associating one MPI process for each GPU. With the
CUDA toolkit 5, the GPUDirect feature has been intro-
duced to achieve these goals easily and efficiently. Exploiting
the GPUDirect, it is possible to directly send data from
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the GPU memory to a network adapter without staging
through host memory; that is, MPI communications can
involve data directly stored on GPUs. This is commonly
known as CUDA-aware MPI. In the presented implementa-
tion, we did not have the possibility to test this feature and
evaluate the performance gained in this way; we plan this step
as a future investigation.

7. MPI versus OpenMP Implementations

In the case of one multicore node, that is, shared memory
cores, it is interesting to compare the performance achievable
using two different parallel libraries to exploit a shared
memory architecture, as MPI and OpenMP. For this reason,
we develop an OpenMP implementation of the solver.

The parallelization on multicore nodes using OpenMP
is the easiest approach to implement. Pragma clauses were
added at FD stencil, as it is by far the more computationally
expensive part of the code.This can be considered equivalent
to subdividing the volume containing the input dataset in
cuboids, as done in the MPI parallelization and described in
Section 5. Static scheduling was used, setting the chunk of
each thread manually so that they are evenly distributed.

As in the CUDA, we combined this implementation
with the one developed using MPI thus to exploit cluster of
multicore CPUs; again, the effort spent to integrate the codes
was actually affordable. The algorithm implements the MPI
subdomain definition, thus distributing data among MPI
parallel processes; on each data set, the OpenMP code is
executed, while the MPI process manages data communica-
tions among the nonshared memory nodes. In that way, MPI
controls the communication between nodes and OpenMP
the parallelization in each node.

8. Experimental Results

We had the possibility to test the implementations described
in this paper on several parallel resources corresponding to
different architectures. The configuration of each resource
can be seen in Table 2. Clusters 1 and 2 were used to test
the MPI implementation and resource 3 was used to test
the MPI-CUDA implementation. More information on the
results on the GPU parallelization is discussed in [16, 24].
All tests used the same molecule with the same parameters: a
fatty acid amide hydrolase molecule that, once ported to the
cubic grid, consisted of 29880 charges on 297 × 297 × 297
grid points. A salt concentration of 0.15mol/L and dipolar
boundary conditions were used. In the following subsections,
we discuss the different results obtained by adopting the
implementations previously presented.

8.1. MPI Performance. In Figures 3 and 4 we present the
results of Section 5 obtained on Cluster 1 and Cluster
2, respectively. Both refer to the linear PBE. In order to
appreciate the impact of the different parts of the algorithm,
we differentiate between the whole execution time, depicted
with a blue line, the time required for data distribution
and communication, indicated as MPI and depicted with
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Figure 3: MPI results on Cluster 1. The whole execution time is
depicted with a blue line; the time required for data communication
is indicated as MPI and depicted with a red line; the stencil part of
the solver is indicated as Boltzmann and depicted with a black line.

a red line, and the time used on the stencil, indicated as
Boltzmann and depicted with a brown line. The calculation
of the Boltzmann stencil was the most demanding one in
terms of execution time; the time spent on communications
instead depends on the resource. In fact, it is possible to notice
that, on Cluster 2, the absence of InfiniBand was heavily
affecting computation since more time was spent in data
transfer than iterating at the Boltzmann stencil, by far the
most computationally expensive part of the algorithm. To
make a fair comparison of the results obtained on the different
resources, the time spent in MPI communications was not
more reported.

In Figure 5, we present the execution time of a single
iteration of the linear Boltzmann stencil on Clusters 1 and 2.
In Figure 6, we present the execution time of a single iteration
of the nonlinear Boltzmann stencil on the same resources. An
impressive decrease of the execution time was obtained, as it
can be seen in Figures 5 and 6. However, the speedup values
for both equations, reported in Figures 7 and 8, are not linear.
This is to be expected since the problem we are solving is a
data intensive problem. Nevertheless, since the speedup for
both equations is similar, this is an improvement over the
results reported in [15].

8.2. CUDA and MPI Performance. Also, presenting the
results achieved with the CUDA implementation, to enable
a fair comparison of the results obtained on the differ-
ent clusters, we do not present the time spent in MPI
communications and we report the values achieved on the
single iteration of the solver. We consider Clusters 2 and 3,
respectively, equipped with 2 and 3 GPUs (see Table 2). In
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Table 2: Resources used for testing.

Resource Nodes Cores per node Network Chip GPU card GPUs per node
Cluster 1 8 8 InfiniBand Quad-Core AMD Opteron Processor 2352 — —
Cluster 2 2 12 1 Gigabit Ethernet Intel Xeon E5645 GeForce GTX 580 1
Cluster 3 1 24 — Intel Xeon X5650 Tesla C2075 3
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Figure 4: MPI results on Cluster 2. The whole execution time is
depicted with a blue line; the time required for data communication
is indicated as MPI and depicted with a red line; the stencil part
of the solver is indicated as Boltzmann and depicted with a black
line. When this figure is compared with Figure 3, InfiniBand proved
to be crucial. Its absence meant that more time was spent on data
communication rather than doing calculations.
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Figure 5: Execution time per iteration of the linear Boltzmann
stencil versus number of cores done on Clusters 1 and 2.
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Figure 6: Execution time per iteration of the nonlinear Boltzmann
stencil versus number of cores done on Clusters 1 and 2.
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Figure 7: Speedup of the execution time per iteration of the linear
Boltzmann stencil versus number of cores done on Clusters 1 and 2.

Figure 9, the execution time is depicted, while, in Figure 10,
the speedup values are depicted. As described in [19], the
GPU solver on its own achieves a speedup of about 6.5x when
solving the PBEwhen comparedwith the serial version.Using
3 cards on one node, an 18.9x speedup is possible. The use
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Figure 8: Speedup of the execution time per iteration of the
nonlinear Boltzmann stencil versus number of cores done on
Clusters 1 and 2.

10−2.2

10−2

10 −1.8

10−1.6

GPU cards
1 2 3

Ti
m

e (
s)

Cluster 2
Resource 3

Figure 9: Execution time per iteration of the linear stencil versus
number of GPU cards. Done on Cluster 2 and resource 3.

of multiple GPUs showed the greatest speedup, achieving a
slightly super linear speedup on a single nodewith threeGPU
cards. The slightly super linear speedup can be explained
by realizing that the number of blocks changes with the
change of the subdomain size for each GPU. It may be for
that particular grid size and molecule; the number of blocks
after the MPI domain subdivision performs better than the
original.

8.3. MPI and OpenMP Performance. It is interesting to
compare the results obtained using the MPI and OpenMP
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Figure 10: Speedup of the execution time per iteration of the linear
stencil versus number of GPU cards. Done onCluster 2 and resource
3.
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Figure 11: Comparison of the speedup on the stencil between MPI
and OpenMP on Cluster 3.

implementations on the same shared memory node, which
can be seen in Figure 11. To test theMPI and OpenMP imple-
mentation, we used the three nodes of Cluster 2, spawning
three MPI processes and 12 OpenMP threads. Results are
depicted in Figure 12. The number of cores was increased
equally on all nodes.Neither of the implementations achieved
good results. Since the stencil involves a lot of memory
access, in a shared memory environment, this could slow
down the performance. On the other hand, we have to stress
the easiness of the parallelization with OpenMP, definitively
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Figure 12: Execution time per iteration of the linear Boltzmann
stencil versus number of cores used through OpenMP and MPI
working together on Cluster 2.

muchmore significant thanMPI.TheMPI performance paid
the effort spent to develop that implementation.

9. Conclusions and Future Work

In this paper, we present and compare different parallel
implementations of a full PBE solver based on a finite-
difference scheme. As for the algorithm itself, we follow
the approach of the DelPhi PBE solver, which exploits the
checkerboard structure of the finite difference discretization
of the Laplace differential operator and adopts a succes-
sive overrelaxation scheme to converge to the solution. We
parallelize the algorithm using OpenMP, MPI, and CUDA
to exploit multicore CPUs, clusters of multicore CPUs, and
GPUs. A MPI-CUDA implementation was used to exploit
clusters of GPUs. The MPI implementation achieved good
speedup values, up to 30 times the serial code using 50 cores.
When compared with OpenMP or OpenMP and MPI used
together, MPI showed better performance.

Many different points can be investigated as future direc-
tions, as the use of nonblocking communication and the
features present in CUDA 5 (and onward).The algorithm can
also be improved looking for cache optimization, so that the
memory access on the Boltzmann stencil is done in a more
intelligent way.
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