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Abstract

Alterations and injury to glomerular podocytes play a key role in the initiation and early

progression of diabetic kidney disease. Multiple factors in the diabetic milieu cause abnormalities

in podocyte signaling that lead to podocyte foot process effacement, hypertrophy, detachment, loss

and death. Alterations in insulin action and mTOR activation have been well documented to lead

to pathology. For example, reduced insulin action directly leads to albuminuria, increased

glomerular matrix accumulation, thickening of the glomerular basement membrane, podocyte

apoptosis and glomerulosclerosis. In addition, the podocyte generates factors that alter signaling in

other glomerular cells. Prominent among these is VEGF-A which plays a complex role in

maintaining glomerular endothelium viability but causes endothelial cell pathology when

generated at too high a level. Finally, circulating vascular factors, such as activated protein C have

a profound effect on podocyte stability and survival. This cytoprotective factor is critical for

podocyte health and its deficiency promotes podocyte injury and apoptosis. Thus, the podocyte

sits in the center of a network of paracrine and hormonal signaling systems that in health keep the

podocyte adaptable and viable, but in diabetes can lead to pathologic changes, detachment and

death. This podocyte injury is a critical determinant of the progression of diabetic kidney disease.
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Alterations and injury to glomerular podocytes play a key role in the initiation and early

progression of diabetic kidney disease. While the development and progression of diabetic

changes in the renal glomerulus clearly involve all resident cells as well as several passers-

by such as macrophages, podocyte abnormalities are among the first manifestations to be

detected morphologically in humans and animal models with diabetic kidney disease
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(DKD)1-3. In humans, reduction in podocyte number predicts future progression of

nephropathy1,4 and in animal models podocyte loss can directly lead to glomerulosclerosis5,

one of the hallmarks of DKD. In addition, the damaged podocyte may contribute to

nephropathy via alterations in its expression of paracrine factors that impact other

glomerular cells. Therefore, it is imperative to understand the metabolic and vascular

factors, as well as, the signaling abnormalities that lead to podocyte dysfunction, damage

and loss in early DKD in order to be able to develop effective treatments or preventive

strategies that could forestall this process and thereby prevent progression of nephropathy.

Podocyte injury in diabetes is manifested morphologically by foot process effacement,

hypertrophy, detachment, loss and death (not necessarily in that order)1,3,6,7. Studies suggest

that diabetic podocytes become less stably anchored to the underlying glomerular capillary

basement membrane and therefore can be more easily dislodged into the urinary space, in

part due to reduction in alpha3beta1 integrin expression resulting from hemodynamic-

induced stretch and TGF-β signaling8. In addition, podocyte loss may occur via apoptotic

cell death as has also been demonstrated in several animal models of diabetes9,10.

The podocyte acts as a signaling pericyte11 to the glomerular endothelium and elsewhere in

the glomerulus. Pericytes are contractile cells that support and wrap themselves around

capillaries; they are widely distributed throughout the body and have different actions

depending on their location. The podocyte receives signals from the endothelium and from

circulating vascular factors12. It is now clear that there are a number of signaling pathways,

some of which are interrelated in the podocyte that may be important and relevant in DKD.

Potential molecular causes of the various alterations that lead to podocyte loss will be

examined in the remainder of this review.

Podocyte Signaling Pathways in DKD

Insulin signaling in the podocyte

Insulin is a small 6 KD molecule that is freely accessible to the podocyte when released into

the circulation from the pancreas. Insulin can rapidly signal to the podocyte13 after a meal to

trigger a number of potentially beneficial homeostatic responses. These include the rapid

absorption of glucose through translocation of glucose transporters to the plasma membrane

of the cell, remodelling of its actin cytoskeleton13, and incorporation of potassium14 and

calcium channels15 into the plasma membrane. Together these responses allow the cell a

readily accessible energy source (glucose) and the ability to contract and remodel the

cytoskeleton. These varied responses may allow podocytes to physiologically respond to the

increased glomerular pressure and filtration that occurs after a meal.

There is accumulating evidence that glomerular and renal function is impaired when the

podocyte is rendered insulin resistant. Specific deletion of the insulin receptor (IR) from the

podocyte transgenically causes a number of features of DKD including albuminuria,

increased glomerular matrix accumulation, thickening of the glomerular basement

membrane, podocyte apoptosis and glomerulosclerosis, all occurring in a completely

normoglycemic environment16. This suggests that a loss of podocyte insulin sensitivity

could have an important effect on the development of DKD. Data from diabetic rodents
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support a loss of podocyte and glomerular insulin signaling in the early stages of DKD17.

Indeed Mima, et al.18 have shown in models of both type 1 and type 2 diabetes that

glomerular insulin signaling is lost early in disease progression. Conversely, insulin

signaling in the tubular compartment, which controls ion reabsorption from the filtrate, as

well as blood pressure and systemic glucose control19 are not affected. Compelling evidence

from human studies shows that systemic insulin resistance is associated with proteinuric

kidney disease in non-diabetic patients20 and that, in the setting of diabetes, insulin

resistance predicts those patients who will develop nephropathy in both type 121-23 and type

2 diabetes24.

A number of other systemic changes that occur in early type 1 and type 2 diabetes can

directly inhibit insulin signaling in the podocyte. These include exposure of podocytes to

high glucose, which directly abrogates insulin signaling by increasing the molecule Src

homology-2 domain-containing phosphatase-1 (SHP-1) which binds to the IR and prevents

downstream signaling25. There is also evidence that insulin receptor substrate I (IRS-I)

protein is ubiquinated more rapidly in the presence of high glucose in the glomerulus which

leads to increased proteosomal degradation of this important downstream signaling molecule

and therefore insulin resistance18. Activated innate immune responses and inflammation

also may disrupt podocyte signaling in early DKD26. It has recently been shown that early

glomerular inflammation, activation of the innate immune system and podocyte insulin

resistance in diabetes are linked. The innate immune system is controlled by pattern

recognition receptors which bind pathogen-associated molecules. Nucleotide-binding

oligomerization domain containing 2 (NOD2) is an intracellular pattern recognition receptor

that is responsible for immune activation following recognition of the bacterial cell wall

component muramyl dipeptide (MDP). In a set of elegant experiments Du, et al.27 have

shown that NOD2 is increased in animal models and in humans with DKD. Their studies

have further shown that the MDP-NOD2 complex within podocytes abrogates insulin

signaling. Moreover, mice with deletion of NOD2 are protected from DKD27. Finally, free

fatty acids such as palmitate that are elevated in early diabetes and the metabolic syndrome

also can directly impair podocyte insulin responsiveness28. In summary there is

accumulating evidence that a number of systemic changes which occur early in diabetes can

impair podocyte insulin sensitivity and signaling which in turn contributes to the

development of DKD (Fig 1).

Insulin like growth factors (IGFs) in the podocyte

IGFs are structurally related to insulin and can signal through the same family of receptors

as insulin via the IR, the IGF-I receptor (IGF-IR), and hybrid IR/IGF-IR receptors. IGFs

have an increased affinity for the IGF-IR, whereas insulin has an increased affinity for the

IR. Podocytes are the only glomerular cells that clearly produce IGF-I and IGF-II and both

of these podocyte hormones signal in an autocrine manner. IGF stimulation of the podocyte

causes different biological effects when compared to those resulting from insulin action

even though they stimulate the same signaling pathways29. The IGF system appears to be

more important for cell survival, whereas insulin stimulates glucose uptake and rapid actin

remodeling.16,29 In contrast to insulin that is released into the circulation and rapidly and

directly binds with its receptors, the IGFs are regulated in a much more complicated manner.
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These hormones are produced by the liver and also other tissues in the body and bind to a

network of regulating proteins including the insulin like growth factor binding proteins

(IGFBP), which control their delivery to the surrounding cell types29. In the setting of

diabetes there is evidence that systemic IGF production decreases30,31 but that renal

production may increase32. There are also a variety of alterations in the renal IGFBP system

in diabetes33. It is therefore unclear how local delivery of biologically active IGF to the

podocyte changes in diabetes34 and if this is important in modulating disease progression.

However, the survival properties of these hormones on the podocyte would intuitively seem

to be beneficial in this setting.

Adipokine signaling may modulate insulin action in the podocyte

Reduction in the adipokines and adiponectin, has also been shown to inhibit insulin

signaling and podocyte function in DKD. Levels of adiponectin are decreased in obesity and

linked to cellular insulin resistance35 and albuminuria36. The adiponectin knockout mouse

model develops albuminuria with pathologic changes that are focused in the podocyte37.

Specifically, these mice develop increased albuminuria and fusion of podocyte foot

processes. When treated with adiponectin, the mice show reduced albuminuria, diminished

podocyte foot process effacement, enhanced glomerular AMP kinase activation, and reduced

urinary and glomerular markers of oxidant stress suggesting that maintenance of normal

levels of adiponectin in obesity and diabetes could in turn help maintain normal signaling

and normal podocyte function. However, it is unclear which, if any, of these adiponectin

effects are due to maintenance of normal insulin signaling.

Mammalian target of rapamycin (mTOR) signaling and the podocyte

The mTOR pathway is important for cellular sensing of nutrient and growth factor levels, as

well as cellular stress. In response to these inputs, mTOR signaling coordinates an array of

cellular responses including increased protein synthesis, removal of intracellular organelle

debris (autophagy), growth and survival. mTOR participates in two distinct complexes,

mTORC1 and mTORC2. mTORC1 has several downstream effects but its primary role is to

enhance protein synthesis via phosphorylation of two important downstream regulators, S6

kinase and 4-Elongation Factor Binding Protein-1. mTORC2 on the other hand, primarily

enhances Akt activity by phosphorylating serine 47338. The importance of the mTOR

pathway in the podocyte has been clearly demonstrated through the development of a

number of sophisticated transgenic mouse models that have examined different aspects of

this pathway39-41. Activation of mTORC1 specifically in podocytes by genetic deletion of

an upstream negative regulator leads to many changes of DKD including albuminuria,

glomerular basement membrane widening, podocyte loss, mesangial expansion and

glomerular mesangial accumulation of fibronectin and collagen IV. All of these alterations

can be at least partly prevented by treatment with the mTORC1 inhibitor, rapamycin, as well

as by a podocyte-specific reduction in mTORC1 expression via heterozygous deletion of

raptor, a specific component of mTORC1. Rapamycin treatment also reduces glomerular

disease in the type 2 diabetic db/db model of DKD39. Although these studies indicate that

targeting mTORC1 for therapy of DKD is attractive, the necessity of maintaining mTOR

activity at a normal level was underlined by the finding that elimination of raptor expression

in podocytes resulted in significant proteinuria41. These studies have clearly shown that
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modulation of mTOR activity in the podocyte in either direction can result in pathogenic

changes.

The insulin/IGF and mTOR pathways are closely associated. Insulin/IGF activates mTORC1

through AKT signaling and conversely mTORC2 inhibits insulin signaling. The close

relationship of these pathways may explain why overexpressing or depleting specific insulin

regulatable glucose transporters in the podocyte42,43 do not result in glucose toxicity or

glucose debt effects in the podocyte as they seem to in other glomerular cells such as the

mesangial cell44. Indeed, podocyte-specific overexpression of the glucose transporter,

GLUT1, in podocytes leads to reduced nephropathy in animal models of diabetes42 while

conversely deletion of GLUT4 from podocytes also reduces nephropathy even though it

stimulates podocyte hypertrophy via an mTOR-independent mechanism43. While the

complexities of the interactions between insulin signaling, mTOR activation and glucose

uptake and glucose transporter expression remain to be elucidated, it seems likely that a

balance of nutrient and growth factor stimulation of this cell is critical for its function. This

is perhaps not surprising as the podocyte needs biological strategies to survive for a

prolonged time in vivo as a terminally differentiated cell.

A recent study found that Akt2 which functions in the PI3K signaling pathway is critically

important for podocyte, glomerular and renal survival in a number of rodent and human

models of chronic kidney disease (CKD)45. This molecule is activated by both insulin and

also the mTOR2 complex45. In low GFR glomerular stress situations it is up-regulated in the

podocyte and when mTOR is inhibited genetically or pharmacologically with rapamycin it

accelerates kidney damage. Assessing Akt2 in the setting of DKD will be critical especially

in light of the evidence that mTOR in the podocyte is activated in a detrimental way in

diabetes and that treatment with an mTOR inhibitor may be beneficial39. These recent

findings indicate that such treatment could also be detrimental since mTORC2, as well as

mTORC1, can be inhibited by long-term rapamycin treatment and the kidney protective

effect of Akt2 could be eliminated.

Vitamin D signaling in the podocyte

There is strong evidence that the vitamin D receptor is highly expressed in podocytes in

culture and in vivo46. It also appears that vitamin D treatment protects podocytes from

injury in non-diabetic47 and diabetic animal models46,48,49 and may work synergistically

with renin-angiotensin-aldosterone system (RAAS) blockade to further reduce injury in

diabetes. The VITAL study, a randomized controlled clinical trial, showed that vitamin D

therapy modestly reduced proteinuria in type 2 diabetic patients on RAAS blockade with

progressive nephropathy50. A more recent mouse study found that podocyte-specific

expression of a human vitamin D receptor reduced albuminuria, podocyte loss and other

signs of nephropathy in streptozotocin diabetes and, importantly, rescued the nephropathic

phenotype found in vitamin D receptor knockout mice51. Although the signaling

mechanisms responsible for the podocyte protective effects are not completely clear there is

evidence that vitamin D treatment may prevent podocyte apoptosis by inhibition of p38

MAP kinsase signaling, PI3 kinase, Akt51, as well as, RAAS signaling52.
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Estrogen mediated signaling and the diabetic podocyte

There is relatively convincing evidence that female gender, at least in premenopausal

women, protects against progression of non-diabetic glomerular diseases53. However, there

is less evidence that female gender is protective in DKD54. Nonetheless, a number of reports

suggest that podocyte estrogen receptor signaling may be protective in DKD. Estrogen

effects are mediated by two distinct estrogen receptor subtypes, ERá and ERâ and both

receptors are present in podocytes54. Estradiol has been shown to stimulate ERá protein

expression as well as to reduce podocyte apopotosis after puromycin aminonucleoside

exposure55. There is less compelling evidence that ER signaling is protective in diabetic

models or humans. However it has recently been reported that a genetic variant found in the

FinnDiane cohort is associated with ESRD in type 1 diabetic females56. This is located on

2q31.1 and is potentially a variant in SP3 which is a transcription factor that interacts with

the estogen receptor alpha. Furthermore a recent rodent study suggests that estradiol

administration prevents podocyte apoptosis in a diabetic mouse model57 possibly by Rac1-

mediated stabilization of F-actin58. However, because the studies were performed in an

inadequate model of diabetic nephropathy, the C57BL/6 db/db mouse, these results will

need to be verified in other more robust models and in humans with DKD.

Vascular factors, the podocyte and DKD

Vascular endothelial growth factor-A (VEGF-A)

The podocyte both generates and responds to a number of angiogenic growth factors. The

best known is vascular endothelial growth factor A (VEGF-A). This molecule is produced in

great quantities by the podocyte in the glomerulus. It does not cause neovascularization as it

does in the eye59 or in neoplastic tissue60 but is important for maintaining the integrity of

the glomerular filtration barrier as well as a survival factor for the podocyte61. It does this by

signaling through the VEGF-Receptor-2 (VEGFR2) which is most abundantly expressed in

the glomerular endothelium. Podocyte specific VEGF-A excess or deficiency in

development62 or maturity63 causes glomerular damage. Too much VEGF-A induces

endothelial growth and swelling, a condition known as endotheliosis, whereas inadequate

VEGF-A release results in endothelial damage and apoptosis leading to

glomerulosclerosis64. As is the case for mTOR, VEGF-A levels and signaling need to be

regulated closely to maintain healthy glomerular structure and function. In diabetes there is

evidence that glomerular VEGF-A levels can be both elevated65,66 or reduced67 and this

may be related to the duration of the disease. The human data suggest that VEGF-A

expression may be elevated early in DKD and then probably goes down below normal levels

as the disease progresses. Therapeutic strategies to elevate68 and suppress local VEGF-A

expression69 have both been shown to be beneficial depending on experimental conditions.

Going forward it will be interesting if we can delineate how to regulate this signaling

pathway in a beneficial manner in DKD. Recently there has also been a link made between

the production of VEGF-A and the insulin signaling pathway in the podocyte70. Similar to

retinal pigment epithelial cells in the eye, insulin is able to control the release of VEGF-A. It

is possible that VEGF-A production may be at least partially governed by insulin sensitivity

of the podocyte.
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An interesting development in this field is the proposition that as well as pro-angiogenic

VEGF isoforms there are complementary antagonistic anti-angiogenic forms that have been

generated through splicing variants of the VEGF mRNA causing the final 6 amino acids of

the molecule to be altered. These are called VEGFxxb isoforms71. This is currently a

controversial field and it is unclear if these forms exist in all species72,73. However, if these

isoforms are present they could represent another method of manipulating this system in the

setting of diabetes.

Angiopoietins and the podocyte

Another class of angiogenic growth factors in the glomerulus are the angiopoietins, Ang-1

and Ang-2. Manipulating these molecules has shown some therapeutic promise in DKD.

Ang-1 is produced by the podocyte and signals through the Tie-2 receptor which is found on

the glomerular endothelium. Ang-2 is released from endothelial cells and acts as an

autocrine competitive inhibitor of Tie-274. Encouragingly, there are several reports that

demonstrate that Ang-1 production either by podocytes74,75 or mesangial cells74, or via

exogenous administration76 can slow DKD in rodent models. Moreover, altering the Ang-1/

Ang-2 ratio in favor of Ang-2 has been shown to be detrimental in DKD77 suggesting this

pathway is important.

Activated protein C

In addition to producing angiogenic factors the podocyte is responsive to circulating factors

that are altered by endothelial dysfunction in diabetes. The vascular factor that most clearly

affects podocyte behaviour in diabetes is the anti-thrombotic agent, activated protein C

(APC). The circulating zymogen, protein C, binds endothelial thrombomodulin and is

activated by thrombin to APC. APC is a serine protease that proteolytically inactivates

coagulation Factors V and VIII; however, it has several effects independent of its

coagulation regulatory role. It has been shown to be cytoprotective, anti-apoptotic and have

anti-inflammatory effects78,79. Glomerular APC formation, which is regulated by

endothelial thrombomodulin, is reduced in diabetic mice and APC deficiency promotes

podocyte injury and apoptosis at least in part via reduced activation of its receptors, PAR1

and 378, and downstream signaling via the pro-oxidant factor, p66Shc80_ENREF_79.

Restoration of APC levels in diabetic mice reverses enhanced oxidative stress as well as

podocyte loss, both hallmarks of early DKD.

In summary, the podocyte is an important source of a number of angiogenic growth factors

that signal to the glomerular endothelium. These factors change in diabetes and may be able

to be therapeutically modifiable (Fig 2). The podocyte also responds to circulating factors,

such as APC, insulin and adipokines and very likely to yet unknown factors from the

endothelium. All of these factors may impact podocyte signaling and how podocytes

respond to metabolic stress thus heightening podocyte susceptibility to injury.
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Clinical Summary

• Podocyte pathology is central to the progression of diabetic kidney disease.

• Signaling abnormalities within the podocyte (e.g., changes insulin action and

mTOR signaling) are central to the development of podocyte pathology.

• The podocyte secretes paracrine factors, such as VEGF-A, that alter endothelial

cell function and morphology in diabetes.

• Cytoprotective vascular factors such as activated protein C are reduced in

diabetes which promote podocyte injury and death.
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Figure 1.
Insulin/mTOR signaling pathway and also the extrinsic modifiers that are present in

diabetes.
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Figure 2.
Podocyte and VEGF/angiopoietins and regulation in diabetes
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