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Abstract

Synesthesia is a perceptual condition in which sensory stimulation triggers anomalous sensory

experiences. In colored sequence synesthesia (CSS), color experiences are triggered by sequences

such as letters or numbers. We performed a family based linkage analysis to identify genetic loci

responsible for the increased neural crosstalk underlying CSS. Our results implicate a 23 MB

region at 16q12.2-23.1, providing the first step in understanding the molecular basis of CSS.
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1. Introduction

In synesthesia, ordinary stimuli elicit anomalous perceptual experiences [1–3]. For example,

in a form we term colored sequence synesthesia (CSS), the visual experience of a specific

color is triggered by the viewing of a letter, digit, weekday or month (Fig. 1A) [1,4]. These

associations are thought to result from amplified crosstalk between brain areas, such that

activity in one area kindles activity in another (Fig. 1B). Although there are several forms of
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synesthesia, this work will focus exclusively on understanding CSS due to its clustering

within families and its straightforward phenotyping, as described below.

Altered levels of crosstalk between brain regions have been found in various disease states,

including autism [5,6], Alzheimer's disease [7], and schizophrenia [8,9]. Unfortunately,

these studies are merely descriptive, not prescriptive, and give no information about the

etiology or modifiability of abnormal patterns. Synesthesia is an ideal model for studying

hyperconnectivity at the simplest level because synesthetes are healthy, the condition is easy

to phenotype reliably, and it runs in families. The aim of this work is to use genetics to

understand how neural crosstalk arises in a healthy brain, in the hopes of ultimately

understanding how this mechanism might be modified in a disease state.

One hypothesis of the origin of synesthetic crosstalk suggests that excess connections in the

newborn brain are insufficiently pruned during development [10–12], while a second

hypothesis posits that synesthesia results from reduced functioning of inhibitory neural

networks, either within or across brain regions [1,13,14]. These two hypotheses are

indistinguishable by behavior [12,15] and neuroimaging [16,17], both of which demonstrate

functional cross-activation but cannot explain the mechanism for the hyperconnectivity. The

aim of our genetic study is to find the gene(s) underlying the functional crosstalk. A genetic

finding hopes to reveal which of the above hypotheses is correct, and will represent the first

genetic mechanism directly linked to increased neural crosstalk.

It has long been noted that synesthesia appears to run in families [18]. Analyses of pedigrees

are consistent with the hypothesis of heritability and suggest that the genetic component(s)

may be inherited in a dominant fashion with incomplete penetrance [19,20]. Unfortunately,

those studies involved no DNA collection.

Asher et al. [29] published the first attempt to link the perceptual traits of a type of

synesthesia with a genetic basis by completing a whole-genome scan of synesthetic families.

Asher et al. reported linkage to several chromosomal regions, suggesting genetic

heterogeneity and several patterns of inheritance; however, it is important to clarify that

their study examined a different form of synesthesia (auditory–visual synesthesia) than we

examine here (colored weekdays, months, letters, and numbers). Data from our lab indicate

that different subtypes of synesthesia fall into clusters, suggesting the possibility that

different genetic mechanisms underlie different forms of synesthesia (Novich, Cheng,

Eagleman, in press). Thus, previous studies have opened an encouraging line of inquiry but

offer no specific genetic conclusions. Our study combines DNA linkage analysis with

rigorous phenotyping methods to set the foundation for understanding the genetic

mechanism of colored sequence synesthesia.

2. Materials and methods

In an attempt to identify the gene for colored sequence synesthesia, we have performed a

family linkage analysis. Although synesthesia has been reported in many forms (e.g., tasting

shapes, seeing sounds, etc.) [1], for our analysis we concentrated on the triggering of color

perception by letters, numbers, weekdays, or months (colored sequences). This decision was
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motivated by our analysis of 3194 verified colored sequence synesthetes, which indicated

that color synesthesia for one type of sequence (e.g., letters) gives a ~79% likelihood of

having color synesthesia for other types of sequences (e.g., weekdays, months or numbers),

but gives only chance likelihood of possessing another type of synesthesia (Novich, Cheng,

Eagleman, in press). This finding suggests that colored sequences may share a common

genetic mechanism, while other forms of synesthesia may have different bases (including

possibly non-genetic sources). Therefore, we only pursue the genetic etiology of colored

sequence synesthesia here.

For the purposes of rigorous phenotyping, we have previously developed the Synesthesia

Battery (www.synesthete.org), an online battery of tests that sensitively discriminates

synesthetes from non-synesthetes [21]. Participants are serially presented with a full set of

graphemes (A–Z, 0–9), three times each in a random order. For each grapheme, they are

asked to choose the best associated color from an online palette of 16.7 million colors. The

palette orientation and the slider bar are randomly rotated with each new grapheme

presentation to prevent memorization of a color's location (Fig. 2A). The color choices are

then analyzed for consistency within the session (e.g., determining whether the participant

chose a similar shade of green upon seeing the letter J). The color variation for each letter

(vj) is measured by

(1)

which represents the geometric distance in RGB (red, green, and blue) color space. The total

variation score for each participant is

(2)

where N is the total number of graphemes for which the participant experiences synesthetic

colors. Control subjects display low consistency when associating colors to graphemes over

108 trials, while synesthetes perform with high consistency (for a representative example,

see Fig. 2B); see Eagleman et al. (2007) for full details of the testing procedure [15,19,21–

23].

We recruited five families with four or more individuals with colored sequence synesthesia

(CSS) (Fig. 3A–E). Once we verified CSS in each proband, we phenotyped CSS in all other

members of the family using the tests on the Synesthesia Battery [21]. The pattern in the

pedigrees is consistent with an autosomal dominant mode of inheritance with reduced

penetrance.

2.1. Genotyping

After obtaining informed consent, DNA from 48 individuals in five families was obtained.

The saliva samples were collected using OraGene sample kits (OraGene, DNA Genotek;

[24]). The samples were purified according to Oragene DNA purification protocol and

quantified using PicoGreen (Invitrogen, Carlsbad, CA, USA). A single-nucleotide-
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polymorphism (SNP) array (Linkage-12 BeadChip, Illumina, Inc., San Diego, CA)

containing 6090 SNPs was used to genotype 24 affected and 24 unaffected individuals from

five large families [25]. The BeadStudio Version 3 genotyping software was used to provide

automatic cluster separation, genotype calling, and quality control.

2.2. Genetic linkage analysis

PEDCHECK [26] was used to identify Mendelian inconsistencies, and the MERLIN [27]

program was used to detect double recombination events over short genetic distances that

were probably due to genotyping errors. Parametric and non-parametric linkage analysis was

carried out using the ALLEGRO 1.2c [28] and MERLIN programs. A disease allele

frequency of 0.001 was used for the analysis. Allele frequencies for SNP marker loci were

obtained from the Hapmap data using the CEU (Caucasian) population. For the parametric

linkage analysis, an autosomal dominant mode of inheritance with moderately reduced

penetrance 0.8 [29] was used. HLOD scores were also calculated for the parametric linkage

analysis allowing for linkage admixture. For the non-parametric analysis, the “all” scoring

option was used for the allele sharing and the “exponential” model was used to calculate

LOD scores. The Rutgers combined linkage-physical map of the human genome build 36

[30] was used for the multipoint linkage analysis.

Additionally, the non-parametric linkage analysis was carried out since the mode of

inheritance of the CSS phenotype has not been established yet. It has been demonstrated that

densely distributed SNP marker loci can increase the type-1-error rate due to linkage

disequilibrium (LD) between marker loci [31]. Merlin software was used to remove the LD

regions, which can result in false positives using the LD cut-off criteria r2 > 0.3. Haplotypes

were reconstructed using ALLEGRO1.2c.

3. Results

An HLOD score of 2.2 (the proportion of linked families α = 0.36) was observed in the

16q12.2-23.1 region. A close examination of the region revealed that the families A and B

had LOD scores of 2.7 (Fig. 4) and 0.9, respectively. The allele sharing linkage analysis

provided similar results with the max LOD 2.4 and 0.9 for the families A and B, respectively

(Fig. 3). No other significant or suggestive linkages were observed except the 16q12.2-23.1

region from both parametric and allele-sharing linkage analysis.

The haplotype analysis revealed that families A and B have very similar haplotype structures

on the linked region on 16q12.2-23.1. The reconstructed haplotype of family A was used to

define the 23 MB critical interval. This haplotype was not found in families C-E, nor did

those families display a haplotype which segregated with the synesthesia phenotype in the

16q12.2-23.1 region, suggesting that families C-E are not linked to this region.

The genomic region between markers rs1543921 and rs1922604 contains 343 genes, many

of which are expressed in the brain. Among those genes, six candidate genes were selected

to fit the hypothesis of synesthesia (Fig. 4). The genes were: (1) GABARAPL2 (OMIM ID:

607452), a GABA(A) receptor-associated protein that promotes GABAA receptor clustering

and has been demonstrated to be an important receptor molecule in intercellular
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communication; (2) NDRG4, a member of the NDRG gene family that has been implicated

in brain development; (3) PLLP (OMIM ID: 600340), a gene involved in myelination and

ion transport. (4) KATNB1 (WD repeat containing, OMIM ID: 602703), which produces a

microtubule-severing enzyme that may impact neural pruning; (5) Cytokine-induced

apoptosis inhibitor 1 (CIAPIN1) (OMIM ID: 608943), a newly-identified anti-apoptotic

molecule that is ubiquitously expressed in normal human fetal and adult brains; (6) Guanine

nucleotide-binding regulatory protein Go-alpha (GNAO1)(OMIM ID: 139311), a protein

with significantly decreased expression in individuals with schizophrenia compared to

unaffected family controls.

These genes were sequenced in four synesthetes from families A and B, however none of

the sequence variants segregated with all four of the affected individuals, and no novel

polymorphisms were discovered. PCR-amplified DNA products were purified with

ExoSAP-IT (USB Corp., Cleveland, OH, USA). Sequencing was performed with the

BigDye Terminator v3.1 Cycle Sequencing Kit and Applied Biosystems 3730 DNA

Analyzer (Applied Biosystems Inc., Foster City, CA, USA). The DNA sequences were

assembled and analyzed using the Sequencher software (Gene Codes Corp., Ann Arbor, MI,

USA).

4. Discussion

The normal brain utilizes heavy crosstalk between the senses, as evidenced by anatomical

tracing [32–35], sensory substitution experiments [36], and cross-sensory illusions [37–40].

The difference between the synesthetic and non-synesthetic brain, therefore, appears to be

not whether there is crosstalk, but rather how much there is. The present research may shed

light on the way in which abnormal connectivity between brain regions arises.

Our genetic analyses suggest that colored sequence synesthesia is linked to a gene in the

16q12.2-23.1 region. Only two of the five families in this study show linkage to this region,

suggesting that CSS is a heterogeneous condition.

Consistent with previous linkage results in auditory–visual synesthesia [29], our data

suggest that CSS has locus heterogeneity. Additionally, the condition may be oligogenic and

have multiple modes of inheritance. Although we cannot pinpoint a single gene at this time,

our future studies include collecting more families to increase the power of the family

linkage analysis, and exome sequencing to compare synesthetic and control genomes on a

finer scale. These data represent the first in a line of steps to isolate the first gene for colored

sequence synesthesia, providing the groundwork for understanding a genetic mechanism for

neural hyperconnectivity.

The male–female ratio of synesthetes has been previously examined in several studies, but

with widely variable outcomes. Previously, the ratio of male–female synesthetes has been

reported between 1:1 [30] and 1:5.5 [41]. Our sample of five families includes nineteen

female synesthetes and only five male synesthetes, yielding a male–female ratio of 1:3.8

(even while there is no gender imbalance within the families), similar to a previously

reported ratio of 1:3.7 [20]. Larger sample sizes in the future will allow us to determine if
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the gender bias we find is due to undersampling or a biological factor. It has been previously

suggested from pedigree analysis that synesthesia may be X-linked [20], which could

possibly explain the gender bias; however, neither the genetic data presented here nor in

Asher et al. [29] appear to support the X-linkage hypothesis. Thus, the basis of the possible

gender imbalance remains unknown.

Abnormal crosstalk, whether from defects in pruning connections or imbalances in

inhibitory networks, is thought to underlie aspects of both autism [30,42–45] and

schizophrenia [46–53]. Synesthesia is an example of the same type of crosstalk in healthy

brains, and by studying it we hope to elucidate how this type of hyperconnectivity operates

in disease states. By finding the gene(s) responsible for this crosstalk, we hope to determine

whether the hyperconnectivity is caused by increased anatomical wiring or decreased

inhibition. Using synesthesia as a model, we hope to uncover the functional and genetic

mechanisms of neural hyper-connectivity.
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Fig. 1.
(A) In this model of synesthesia, neural populations coding for graphemes (right inferior

temporal gyrus, light blue) ramify on those coding for colors (area V4, dark blue). As a

result of these connections, activity triggered by a grapheme kindles V4 activity, and (B)

synesthetes experience an automatic color association, an example of which is shown here.
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Fig. 2.
(A) Participants are presented with randomly-ordered graphemes a total of three times each

(108 trials). Using a palette with 16 million colors, participants choose the precise color that

best matches their synesthetic percept for that grapheme. (B) Representative alphabets and

variability scores from one synesthete and one control.
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Fig. 3.
Five families with colored sequence synesthesia. Rectangles designate males, circles

designate females, and black designates a verified color sequence synesthete.

Tomson et al. Page 11

Behav Brain Res. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
LOD scores from families A and B along chromosome 16. Our data suggest linkage to a

23MB region between rs1543921 and rs1922604 (q12.2-q23.1).
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