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Abstract

Background—Attention-deficit/hyperactivity disorder (ADHD) is often comorbid with cocaine

abuse. Controversy exists regarding long-term consequences of ADHD medications on cocaine

abuse liability. Whereas childhood methylphenidate treatment may be preventative,

methylphenidate in teens appears to further increase later cocaine abuse risk. In rodents,

adolescent methylphenidate treatment further increases adult cocaine self-administration in the

Spontaneously Hypertensive Rat (SHR) model of ADHD, whereas adolescent atomoxetine

treatment does not. Effects of ADHD medications on cocaine cue reactivity, a critical component

of addiction, are unknown.

Methods—To investigate this, SHR, Wistar-Kyoto (inbred control) and Wistar (outbred control)

rats received therapeutically relevant doses of methylphenidate (1.5 mg/kg, oral) and atomoxetine

(0.3 mg/kg, intraperitoneal), or respective vehicles from post-natal day 28–55. Cocaine seeking,

reflecting cue reactivity, was measured in adulthood during self-administration maintenance and

cue-induced reinstatement tests conducted under a second-order schedule.

Results—Compared to control strains, SHR earned more cocaine infusions, emitted more

cocaine-seeking responses during maintenance and reinstatement testing, and required more

*Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:…
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sessions to reach the extinction criterion. Compared to vehicle, adolescent methylphenidate, but

not atomoxetine, further increased cocaine intake during maintenance testing in SHR. Adolescent

atomoxetine, but not methylphenidate, decreased cocaine seeking during reinstatement testing in

SHR. Neither medication had effects on cocaine intake or cue reactivity in control strains.

Conclusions—The SHR successfully model ADHD and cocaine abuse comorbidity and show

differential effects of adolescent ADHD medications on cocaine intake and cue reactivity during

adulthood. Thus, SHR have heuristic value for assessing neurobiology underlying the ADHD

phenotype and for evaluating pharmacotherapeutics for ADHD.
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1. INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental

condition. Diagnoses have risen 41% over the past decade, with rates escalating fastest in

boys aged 14–17 (Visser et al., 2010; Schwarz and Cohen, 2013). ADHD is highly comorbid

with substance abuse, including cocaine (van Emmerik-van Oortmerssen et al., 2012).

Children with ADHD are 2–3 times more likely to abuse cocaine in adulthood compared to

children without an ADHD diagnosis (Lee et al., 2011).

Controversy exists regarding long-term consequences of ADHD medications on cocaine

abuse liability. Approximately two-thirds of U.S. children and adolescents diagnosed with

ADHD are prescribed a stimulant medication, such as methylphenidate (Schwarz and

Cohen, 2013). Methylphenidate, like cocaine, inhibits dopamine and norepinephrine

transporters (DAT and NET, respectively). Because adolescence represents a period of

elevated plasticity in the mesocorticolimbic dopamine system, stimulant exposure during

this period may have unique long-term effects on reward responsivity (Andersen, 2005).

Whereas childhood methylphenidate treatment is protective against an increase in later

cocaine abuse (Wilens et al., 2003; Humphreys et al., 2013), adolescent methylphenidate

treatment can increase later abuse of cocaine and other drugs (Lambert and Hartsough,

1998; Mannuzza et al., 2008, Dalsgaard et al., 2014). Although some studies reported

protective effects of adolescent stimulant treatment (e.g., Biederman et al., 1999), these

studies often fail to distinguish actively medicated participants from those who discontinued

treatment at assessment. As cocaine use may be a form of self-medication for untreated

ADHD (Gudjonsson et al., 2012), ongoing methylphenidate treatment may compromise

detecting increased cocaine abuse, as suggested by animal studies (Schenk and Izenwasser,

2002). Further, many clinical studies employ a limited follow-up period into adulthood.

Because cocaine abuse generally develops later than abuse of other substances (Degenhardt

et al., 2008), participants evaluated in their late teens and early twenties may not have

surpassed the risk period for initiating cocaine use.

Preclinical models can address clinically relevant questions concerning ADHD. Typically

used is the Spontaneously Hypertensive Rat (SHR), whose behavioral and cognitive deficits
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model the ADHD combined subtype and are unrelated to hypertension (Wyss et al., 2003;

Sagvolden et al., 2005; Russell et al., 2005; Kantak et al., 2008). Furthermore, SHR exhibit

elevated cocaine self-administration compared to Wistar-Kyoto (WKY; inbred progenitor of

SHR) or Wistar (WIS; outbred common ancestor to SHR and WKY) control strains (Harvey

et al., 2011; Somkuwar/Jordan et al., 2013). Using a therapeutically relevant dose

(Kuczenski and Segal, 2002), we demonstrated that adolescent treatment with 1.5 mg/kg

oral methylphenidate further enhanced the speed to acquire cocaine self-administration and

the efficacy and motivating influence of cocaine reinforcement in adult SHR, but not in

adult WKY or WIS (Harvey et al., 2011).

Atomoxetine, a non-stimulant ADHD medication, is a viable alternative to methylphenidate

for adolescents with ADHD in whom drug abuse is a concern (Kratochvil et al., 2002). At

therapeutic doses, atomoxetine selectively inhibits NET to increase extracellular

norepinephrine and dopamine in prefrontal cortex (PFC; Bymaster et al., 2002). We recently

demonstrated that adolescent treatment with 0.3 mg/kg atomoxetine did not further enhance

the speed to acquire cocaine self-administration or the efficacy and motivating influence of

cocaine reinforcement in adult SHR or WIS, but did facilitate acquisition of cocaine self-

administration in adult WKY (Somkuwar/Jordan et al., 2013).

Environmental cues associated with cocaine use play a major role in compulsive drug

seeking and relapse, and are linked to changes in dopamine-mediated neurotransmission in

cortical sites such as medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC)

(Ciccocioppo et al., 2001; Di Pietro et al., 2008). DAT function in mPFC and OFC also is

affected by adolescent ADHD medications (Somkuwar/Jordan et al., 2013; Somkuwar et al.,

2013). Unknown is whether ADHD influences reactivity to cocaine-related cues, and if

medications prescribed for teens with ADHD alter cue reactivity in adulthood after

treatment discontinuation. Cocaine cue reactivity is a fundamentally different issue than

those addressed in our previous studies, which focused instead on the efficacy and

motivating influence of cocaine reinforcement through the use of fixed-ratio (FR) and

progressive-ratio (PR) schedules of cocaine delivery (Harvey et al., 2011; Somkuwar/Jordan

et al., 2013). To address these new clinically relevant questions, we assessed strain

differences in cocaine cue reactivity among SHR, WKY and WIS rats, and determined

whether adolescent methylphenidate or atomoxetine influenced cocaine cue reactivity during

adulthood after adolescent treatment was discontinued. A second-order schedule of cocaine

delivery and cue presentation was used so that cocaine seeking, reflecting cue reactivity,

could be measured when cocaine was (maintenance) and was not (reinstatement) available

for self-administration (Kantak et al., 2002).

2. MATERIALS AND METHODS

2.1 Subjects

Male WKY/Cr, WIS/Cr, and SHR/Cr rats (Charles River Laboratories, USA) arrived on

postnatal day 25 (P25). Rats had free access to water. Food was restricted to ~90% of a

growth-adjusted free-feeding body weight until P55 to mimic conditions of past comparator

studies (Harvey et al., 2011, 2013; Somkuwar/Jordan et al., 2013; Somkuwar et al., 2013).

Rats in Experiment 1 were utilized previously to measure strategy set shifting performance
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during adolescence (Harvey et al., 2013), whereas rats in Experiment 2 were experimentally

naïve to behavioral testing. Procedures were approved by the Institutional Animal Care and

Use Committee at Boston University and performed in accordance with the National

Institutes of Health Guide for the Care and Use of Laboratory Animals.

2.2 Drugs

To mimic clinical practice of medication-free holidays on weekends (Martins et al., 2004),

(±)-methylphenidate hydrochloride (Sigma-Aldrich; St. Louis, MO) and atomoxetine

hydrochloride (Tocris Biosciences; Ellisville, MO) treatments were administered during the

light phase Monday–Friday from P28–P55, constituting the rat adolescent period (Spear,

2000). The chosen dose (1.5 mg/kg) and oral route of methylphenidate administration

produces therapeutically relevant plasma drug levels that mimic clinical oral dosing

(Kuczenski and Segal, 2002). The chosen dose (0.3 mg/kg) and intraperitoneal (i.p.) route of

atomoxetine administration selectively increases extracellular norepinephrine and dopamine

in PFC (Bymaster et al., 2002). Atomoxetine was injected i.p. due to poor oral

bioavailability in rats (Mattiuz et al., 2003). Methylphenidate was dissolved in water (1.5

mg/ml). To attain a dose of 1.5 mg/kg, 1 ml/kg was injected into an oyster cracker for oral

consumption. Oyster crackers injected with water (1 ml/kg) were used for vehicle control.

Atomoxetine was dissolved in 0.9% sterile saline (0.15 mg/ml) and injected intraperitoneally

(i.p.) in a volume of 2 ml/kg to attain a dose of 0.3 mg/kg. Injections of 0.9% sterile saline

(2 ml/kg) were used for vehicle control. Cocaine hydrochloride (NIDA, Bethesda, MD) was

mixed in 0.9% sterile saline containing 3 IU of heparin/ml and was self-administered at a

dose of 0.3 mg/kg via catheters implanted into the right femoral vein on P67. A 0.8 mg/ml

solution of cocaine was infused at a rate of 1.8 ml/min. The infusion duration was adjusted

for each animal’s daily body weight (1.2 s/100 g) to attain a dose of 0.3 mg/kg. Details for

surgery and the testing environment are described in Supplementary Materials1. The number

of animals that survived surgery and completed all phases of testing with intact catheters is

indicated below.

2.3 Experiment 1: Effects of adolescent methylphenidate on adult behavior

2.3.1. Maintenance testing—On P77, vehicle- and methylphenidate-treated WKY (n=10

and 7, respectively), vehicle- and methylphenidate-treated WIS (n=10 and 10, respectively),

and vehicle- and methylphenidate-treated SHR (n=9 and 7, respectively) began cocaine self-

administration training for delivery of 0.3 mg/kg cocaine under an FR 1 schedule. Testing

was conducted during the light phase at the same time each day throughout all phases of the

experiments. Illumination of the house light signaled the onset of each session. Drug

delivery coincided with onset of the cue light and accompanying pump sound. Infusions

were followed by a 20-sec timeout for which the cue light remained illuminated while the

house light was extinguished. The house light was re-illuminated following the 20-sec

timeout period. Rats were trained incrementally to a terminal fixed-interval (FI)-based

second-order schedule designated FI 5-min [FR5:S]. The cue light (S) was presented under

an FR 5 contingency and was illuminated for 2-sec upon completion of each FR 5 during the

FI 5-min. The house light was not extinguished during 2-sec cue light presentations. After

1Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:…
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the FI elapsed, cocaine was delivered upon completion of an FR 5, and coincided with 20-

sec cue light presentation and termination of the house light. After the 20-sec timeout, the

house light was re-illuminated and the FI component was again in effect. Self-administration

sessions were conducted once daily, Monday–Friday during the light phase for 2-hr.

Training continued until rats achieved stable levels of responding (≤15% variation in active

lever responding, and ≤33% of total responses on the inactive lever) for a minimum of 5

sessions, designated as the maintenance baseline. A dose of 0.3 mg/kg cocaine was selected

because it produces the highest rate of responding under an FI 5-min [FR5:S] schedule of

cocaine delivery in rats (Kantak et al., 2009).

2.3.2. Extinction training—Following maintenance testing, rats underwent response

extinction training. Sessions were conducted once daily, Monday–Friday, for 2-hr durations.

Rats received a minimum of 10 extinction sessions; criterion was defined as active lever

responding ≤10% of the maintenance baseline for 3 consecutive days. A maximum of 21

extinction sessions was employed if criterion was not met.

2.3.3. Reinstatement testing—During reinstatement, discrete and contextual sound and

light cues were presented under second-order schedule contingencies. Experimental

conditions were identical to maintenance testing, except cocaine was not delivered. Animals

underwent seven 1-hr daily sessions of reinstatement testing.

2.4 Experiment 2: Effects of adolescent atomoxetine on adult behavior

On P77, vehicle- and atomoxetine-treated WKY (n=8 and 8, respectively), vehicle- and

atomoxetine-treated WIS (n=9 and 8, respectively), and vehicle- and atomoxetine-treated

SHR (n=8 and 8, respectively) began cocaine self-administration training for delivery of 0.3

mg/kg cocaine under an FR 1 schedule, followed by second-order schedule training. All rats

received maintenance testing, extinction training, and reinstatement testing as described in

Experiment 1.

2.5 Data analysis

Dependent measures were number of cocaine infusions, active and inactive lever responses,

and number of sessions to reach the extinction criterion. Measures were analyzed using

separate two-factor (strain × treatment) or three-factor (strain × treatment × phase)

ANOVAs, with repeated measures for phase. Tukey tests were used for post-hoc

comparisons following significant main effects and interactions. Based on prior work,

corrected Bonferroni t-tests were used for planned comparisons examining differences

between vehicle and drug treatments. Both multiple-comparison procedures control for

type-1 error.

3. RESULTS

3.1 Experiment 1: Effects of adolescent methylphenidate on adult behavior

3.1.1. Maintenance testing—Cocaine intake during maintenance testing under the

second-order schedule is shown in Fig. 1a. Strains differed in number of cocaine infusions

[F(2,47) = 11.3; p ≤ 0.001], with adult SHR earning more infusions than WKY and WIS (p ≤
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0.001 and 0.01, respectively). Main and interaction effects of treatment were not significant,

but Bonferroni analysis revealed treatment differences in adult SHR, with more cocaine

infusions earned after adolescent methylphenidate than vehicle treatment (p ≤ 0.014). In

adult WKY or WIS, adolescent methylphenidate did not significantly alter cocaine intake

compared to vehicle treatment during maintenance testing.

Active lever responses during maintenance testing and for the first drug-free interval of the

final maintenance testing session are shown in Fig. 1b–c. This interval represents the period

prior to delivery of the first cocaine infusion of the session when responding is maintained

exclusively by cocaine-paired cues. Strains differed during maintenance testing [F(2,47) = 16;

p ≤ 0.001] and for the first drug-free interval [F(2,47) = 20.3; p ≤ 0.001], with adult SHR

making more active lever responses than WKY and WIS in each analysis (p ≤ 0.001).

Analysis of inactive lever responses also revealed strain differences [F(2,47) = 17.3; p ≤

0.001], with SHR making more inactive lever responses (62±7) than WKY (11±7) and WIS

(19±6) strains (p ≤ 0.001). Adolescent methylphenidate did not significantly alter active or

inactive lever responses compared to vehicle treatment in any strain during maintenance

testing or the first drug-free interval.

3.1.2. Extinction training—The number of sessions to reach the extinction criterion is

shown in Fig. 2a. Strains differed in number of sessions [F(2,47) = 4.7; p ≤ 0.01], with adult

WIS requiring fewer sessions than SHR (p ≤ 0.01), but not WKY. SHR and WKY did not

differ. Analysis of the extinction baseline (averaged over the last three sessions and

expressed as the percentage of the self-administration maintenance baseline) revealed that

the relative degree of extinguished responding was not significantly different between

treatments and across strains (Fig. 2b). Inactive lever responses differed by strain [F(2,47) =

13.7; p ≤ 0.001], with SHR making more inactive lever responses (22±2) than WKY (9±2)

and WIS (7±2) strains (p ≤ 0.001). Adolescent methylphenidate did not significantly alter

extinction behavior in any strain compared to vehicle treatment during extinction training.

3.1.3. Reinstatement testing—The number of active lever responses during

reinstatement testing and, for comparison, the first hour of the extinction baseline is shown

in Fig. 3. Three-factor ANOVA revealed main effects of phase [F(1,47) = 99.8; p ≤ 0.001]

and strain [F(2,47) = 30.1; p ≤ 0.001], and a strain × phase interaction [F(2,47) = 20.4; p ≤

0.001]. Post-hoc testing of the interaction indicated that cue re-exposure during the

reinstatement phase reinstated cocaine-seeking responses above extinction levels in each

group (p ≤ 0.02) and that adult SHR reinstated more cocaine-seeking responses and emitted

more responses during the first hr of the extinction baseline than WKY or WIS (p ≤ 0.001).

Main and interaction effects of treatment were not significant, and Bonferroni analysis

confirmed that adolescent methylphenidate did not significantly alter cocaine-seeking

responses compared to vehicle treatment in any strain during reinstatement testing. Inactive

lever responses differed by strain during reinstatement testing [F(2,47) = 26.1; p ≤ 0.001],

with SHR making more inactive lever responses (19±1) than WKY (7±1) and WIS (7±1)

strains (p ≤ 0.001).
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3.2 Experiment 2: Effects of adolescent atomoxetine on adult behavior

3.2.1. Maintenance testing—Cocaine intake during maintenance testing under the

second-order schedule is shown in Fig. 4a. Consistent with Experiment 1, strains differed in

number of cocaine infusions [F(2,42) = 16; p ≤ 0.001], with adult SHR earning more

infusions than WKY and WIS (p ≤ 0.001). Main and interaction effects of treatment were

not significant, and Bonferroni analysis confirmed that adolescent atomoxetine did not

significantly alter cocaine intake compared to vehicle treatment in any strain during

maintenance testing.

Active lever responses during maintenance testing and for the first drug-free interval of the

final maintenance testing session are shown in Fig. 4b–c. During maintenance testing,

strains differed [F(2,42) = 29.6; p ≤ 0.001], with adult SHR making more active lever

responses than WKY and WIS (p ≤ 0.001). Adolescent atomoxetine treatment did not

significantly alter active lever responses during 1-hr maintenance tests in any strain.

However, during the first drug-free interval there was a main effect of strain [F(2,42) = 31.4;

p ≤ 0.001] and a strain × treatment interaction [F(2,42) = 4.1; p ≤ 0.02]. Overall, adult SHR

made more active lever responses than WKY and WIS during the first drug-free interval (p

≤ 0.001). Post-hoc testing of the interaction revealed that adolescent atomoxetine reduced

active lever responses compared to vehicle treatment in SHR during the first drug-free

interval (p ≤ 0.005). In contrast, adolescent atomoxetine did not significantly alter active

lever responses compared to vehicle treatment during the first drug-free interval in WKY or

WIS. There were no significant strain or treatment differences in inactive lever responding

during maintenance testing (SHR 85±34, WKY 39±15, WIS 69±28).

3.2.2. Extinction training—The number of sessions to reach the extinction criterion is

shown in Fig. 5a. There were strain differences in number of sessions [F(2,42) = 6.1; p ≤

0.005], with adult WIS requiring fewer sessions than SHR and WKY (p ≤ 0.005 and p ≤

0.04, respectively). SHR and WKY did not differ. A strain × treatment interaction also was

found [F(2,42) = 3.9; p ≤ 0.02] and post-hoc testing revealed that SHR receiving adolescent

atomoxetine required more sessions to reach the extinction criterion than SHR receiving

vehicle (p ≤ 0.006). Treatments did not significantly differ in WKY and WIS. Analysis of

the extinction baseline revealed that the relative degree of extinguished responding (values

expressed as percentage of the maintenance baseline) was not different between treatments

and across strains (Fig. 5b). Inactive lever responses differed by strain [F(2,42) = 3.7; p ≤

0.03], with SHR making more inactive lever responses (24±5) than WIS (11±3; p ≤ 0.02),

but not WKY (15±4).

3.2.3. Reinstatement testing—The number of active lever responses during

reinstatement testing and, for comparison, the first hour of the extinction baseline is shown

in Fig. 6. Three-factor ANOVA revealed main effects of phase [F(1,42) = 213.9; p ≤ 0.001]

and strain [F(2,42) = 77.1; p ≤ 0.001], and a strain × treatment × phase interaction [F(2,42) =

3.1; p ≤ 0.05]. Post-hoc testing of the interaction indicated that cue re-exposure during the

reinstatement phase reinstated cocaine-seeking responses above extinction levels in each

group (p ≤ 0.002) and that adult SHR reinstated more cocaine-seeking responses and emitted

more responses during the first hr of the extinction baseline than WKY or WIS (p ≤ 0.001).
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During reinstatement testing, adolescent atomoxetine treatment attenuated cocaine-seeking

responses compared to vehicle only in SHR (p ≤ 0.032). Inactive lever responses did not

significantly differ between treatments and across strains during reinstatement testing (SHR

16±3, WKY 12±2, WIS 10±2).

4. DISCUSSION

4.1 Strain differences in cocaine-seeking and cocaine-taking behavior

The current study replicates and extends previous research suggesting that SHR are an

excellent model of comorbid ADHD and cocaine abuse (Harvey et al., 2011; Somkuwar/

Jordan et al., 2013). Consistent with prior studies, cocaine intake was greater in SHR than

WKY or WIS. The current study also revealed that SHR extinguish responding to criterion

levels within the same timeframe as WKY, but more slowly than WIS, and that SHR emit

more cocaine-seeking responses than WKY or WIS. High levels of cocaine seeking by SHR

when cocaine was (maintenance testing) and was not (reinstatement testing) available for

self-administration, as well as during the first drug-free interval of maintenance testing,

suggest SHR exhibit heightened cocaine cue reactivity compared to WKY or WIS. The

observation that SHR exhibit similar rates of extinction compared to WKY suggests that

extinction learning is not impaired in SHR, but rather may be faster in WIS. High levels of

cocaine seeking by SHR during reinstatement testing are therefore not likely due to impaired

extinction learning, but rather further reflect heightened cocaine cue reactivity in this strain.

SHR also often made more inactive lever responses than WKY and WIS, which may relate

to hyperactivity in SHR when reinforcers are infrequent (Sagvolden et al., 2005).

Nonetheless, SHR remained goal-directed, as active lever responding was substantially

greater than inactive lever responding throughout maintenance and reinstatement testing.

Although both vehicle- and drug-treated rats of each strain exhibited an approximately 2-

fold higher rate of active lever responding in Experiment 2 compared to Experiment 1, the

same relative magnitude of differences between WKY and WIS vs. SHR was maintained in

both experiments. Differences in the absolute number of responses across experiments may

be due to prior experimental history of rats in Experiment 1, or potentially to subjects in

Experiments 1 and 2 being tested by different investigators, as experimenter identity has a

strong effect on variance in rodent behavior (Chesler et al., 2002).

Sign tracking, a Pavlovian conditioned approach behavior associated with drug abuse

(Tomie et al., 2008; for review), may contribute to heightened incentive salience of cocaine-

associated cues in animals especially vulnerable to cocaine addiction (Yager and Robinson,

2013). Whereas goal tracking involves approach to an unconditioned stimulus, sign tracking

involves compulsive approach to reward-related cues. Although Pavlovian conditioned

approach behavior has not been evaluated directly in SHR, ADHD-related characteristics

such as impulsivity and poor sustained attention are observed in SHR as well as in sign

tracking rats (Sagvolden et al., 2005; Tomie et al., 2008; Wooters and Bardo, 2011). Thus, it

is possible that SHR also have a sign tracking phenotype, given their high degree of cocaine

cue reactivity. If the current findings are translational, substance-dependent individuals with

ADHD may therefore uniquely benefit from cue-exposure therapy (Mitchell et al., 2014),

which is most effective in individuals with initially high cue reactivity (Unrod et al., 2013).
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Research on animal models of pharmacotherapy-assisted cue-exposure therapy for

enhancing extinction of cocaine-seeking behavior (e.g., Achat-Mendes et al., 2012) may

therefore have relevance to ADHD treatment.

4.2 Effects of adolescent methylphenidate

In adult SHR, cocaine intake under the second-order schedule was increased by adolescent

methylphenidate, extending our earlier observations under FR and PR schedules (Harvey et

al., 2011). These findings are consistent with clinical studies demonstrating that

methylphenidate treatment in teens with ADHD is associated with increased cocaine abuse

risk during adulthood, a relationship that may (Barkley et al., 2003; Mannuzza et al., 2008)

or may not (Lambert and Hartsough, 1998) be linked to comorbid conduct disorder.

The long-term effects of adolescent methylphenidate treatment on DAT may help explain

increased cocaine intake in adult SHR. The same adolescent methylphenidate treatment

regimen used herein selectively increased DAT function (Vmax for [3H]dopamine uptake at

DAT) in mPFC of adult SHR (Somkuwar et al., 2013), inferring faster clearance of

dopamine. Faster clearance leads to lower basal dopamine tone in mesocortical neurons

(Zahnisher and Sorkin, 2004), resulting in greater post-synaptic responses to phasically

released dopamine (Grace, 2001), such as when cocaine is self-administered. We propose

this mechanism contributes to the further increase in cocaine intake in adult SHR. In adult

WKY and WIS, adolescent methylphenidate did not further increase cocaine self-

administration (present findings; Harvey et al., 2011) and did not increase DAT function in

mPFC (Somkuwar et al., 2013).

In contrast to effects on cocaine intake, adolescent methylphenidate did not alter cocaine

seeking during maintenance or reinstatement testing, or the number of sessions required to

reach the extinction criterion in SHR. Because adolescent methylphenidate further increased

cocaine intake in SHR, it might be expected that cue reactivity also would be further

increased. However, our results are consistent with prior findings in outbred rats showing

that acute administration of methylphenidate did not alter cocaine seeking under a second-

order schedule (Economidou et al., 2011). Notably, in outbred rats, NET plays an important

role in regulating saliency of drug-associated cues (Economidou et al., 2011; Janak et al.,

2012), and therefore be a critical regulator of cue reactivity in SHR.

4.3 Effects of adolescent atomoxetine

Adolescent atomoxetine treatment did not further increase cocaine intake or cocaine seeking

during maintenance testing under a second-order schedule in adult SHR or control strains.

These findings are consistent with studies showing that adolescent atomoxetine in SHR,

WKY and WIS did not further increase cocaine intake or lever responding under FR or PR

schedules (Somkuwar/Jordan et al., 2013). Although a previous study reported attenuated

cocaine seeking during second-order maintenance testing in an outbred rat strain following

acute atomoxetine administration (Economidou et al., 2011), these effects of atomoxetine

were only observed with acute doses that were 3- to 10-fold higher (1 or 3 mg/kg) than the

therapeutically relevant 0.3 mg/kg dose administered chronically in the present study. We

previously reported that 0.3 mg/kg atomoxetine administered during adolescence did not
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affect DAT function and cell surface distribution in mPFC of adult SHR, WKY, or WIS rats,

and decreased DAT function and cell surface distribution in OFC of adult SHR (Somkuwar/

Jordan et al., 2013). The failure to increase DAT function in mPFC may explain why

adolescent atomoxetine, unlike methylphenidate, did not increase cocaine intake in adult

SHR. Further, although not tested directly in the current study, the previously observed

decrease in DAT function and cell surface distribution in OFC following an identical

adolescent atomoxetine treatment regimen may contribute to the reduced cocaine seeking

observed in atomoxetine-treated SHR in the present work.

It is unclear why adolescent atomoxetine increased the number of sessions to reach the

extinction criterion in adult SHR. However, this action did not translate into increased

cocaine abuse risk, as atomoxetine attenuated the heightened cocaine seeking in SHR

observed during reinstatement testing as well as during the first drug-free interval of

maintenance testing, which occurred prior to extinction training. This suggests that

atomoxetine reduces cocaine cue reactivity in SHR when cocaine is not available. Effects of

atomoxetine on NET function and expression in OFC may help explain these findings. A

past study demonstrated that daily atomoxetine (1 mg/kg) during late adolescence (P40–54)

increased NET mRNA in OFC of adult outbred rats, without affecting NET mRNA in mPFC

or nucleus accumbens (Sun et al., 2012). This treatment regimen also decreased synaptic

plasticity markers in OFC, inferring an inhibitory effect of low basal NE tone on OFC

signaling. While it remains to be determined if adolescent treatment with 0.3 mg/kg

atomoxetine increases NET function or expression in OFC of adult SHR, this mechanism

could contribute to the decrease in cocaine cue reactivity observed in adult SHR. OFC

activation is necessary for cocaine seeking under a second-order schedule in rats (Kantak et

al., 2009). In non-human primates, association of a visual cue with intravenous cocaine

infusions led to activation of the ventral OFC (Nelissen et al., 2012), supporting a role for

OFC in cocaine cue reactivity. More broadly, the OFC is thought to be involved in the

integration of multimodal sensory input, processing of reinforcer value and punishment,

regulation of motivation and goal-directed behavior, and response inhibition or reversal

learning (see Kringelbach, 2005, for review; Ghods-Sharifi et al., 2008). Abnormal OFC

function has been observed both in cocaine-dependent individuals (Bolla et al., 2003) as

well as in individuals with conduct disorder (Rubia et al., 2009), a condition that is often

comorbid with ADHD and is associated with increased risk for substance use disorders

(Wilens et al., 2011).

4.4 Conclusions

There are limitations to every animal model of human disease. Nonetheless, SHR exhibit

behavioral and cognitive deficits (Wyss et al., 2003; Sagvolden et al., 2005; Russell et al.,

2005; Kantak et al., 2008) as well as neurochemical and genetic differences (Mill et al.,

2005; Roessner et al., 2010) reflecting those observed in ADHD. Thus, SHR have heuristic

value for assessing the neurobiology underlying the ADHD phenotype and for evaluating

pharmacotherapeutics for ADHD. Questions regarding illegal substances of abuse are

difficult to approach systematically in minors, and our work may provide important leads for

targeted research in teens with ADHD. The current findings suggest that initiation of

methylphenidate treatment in adolescence may increase cocaine abuse risk if treatment is
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discontinued before adulthood. This finding is of particular importance given a recent

epidemiological study from the U.K. reporting that up to 57% of ADHD patients who began

treatment as teenagers discontinued their ADHD medication by early adulthood (McCarthy

et al., 2012). Our work further suggests that atomoxetine may represent a viable alternative

to methylphenidate for teenagers who are first beginning treatment, as atomoxetine does not

appear to increase cocaine abuse risk and may even be protective against increased cocaine

cue reactivity, a trait which can increase the risk of relapse.

Implications of our research become more critical in light of the recent Centers for Disease

Control report showing that 1 in 5 teenage boys is currently diagnosed with ADHD

(Schwarz and Cohen, 2013). This report raises several important questions that remain

unanswered, such as: Are all these teenage boys accurately diagnosed? When and what

medication was initiated in this cohort? What are the long-term consequences of taking

ADHD medications during the teenage years in terms of cocaine abuse outcomes and

neurobiological changes? The SHR model of ADHD has begun to help address these

questions comprehensively and more appropriately than studies using only outbred rats.

Supplementary Material
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Fig. 1.
Effects of adolescent methylphenidate treatment during maintenance testing under a second-

order schedule. (a) Cocaine intake averaged across a five-day baseline; (b) Active lever

responses averaged across a five-day baseline; (c) Active lever responses during the first

drug-free interval of the final maintenance testing session. Experiments were conducted in

adult Wistar-Kyoto (WKY), Wistar (WIS), and Spontaneously Hypertensive (SHR) rats

after adolescent methylphenidate (MPH) or vehicle (VEH) treatment was discontinued (n =
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7–10 per strain and treatment). Values are presented as mean ± SEM. *p ≤ 0.01 compared to

WKY and WIS (main effect of strain). § p ≤ 0.014 compared to vehicle-treated SHR.
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Fig. 2.
Effects of adolescent methylphenidate treatment during extinction training. (a) Number of

sessions to reach extinction criterion; (b) Active lever responding averaged across the last

three sessions of extinction and expressed as the percentage of the self-administration

maintenance baseline. Experiments were conducted in adult Wistar-Kyoto (WKY), Wistar

(WIS), and Spontaneously Hypertensive (SHR) rats after adolescent methylphenidate

(MPH) or vehicle (VEH) treatment was discontinued (n = 7–10 per strain and treatment).

Values are presented as mean ± SEM. # p ≤ 0.01 compared to SHR (main effect of strain).
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Fig. 3.
Effects of adolescent methylphenidate treatment during reinstatement testing. Active lever

responses during reinstatement testing were averaged across the seven 1-hr sessions. For

comparison, active lever responses during the first hour of extinction training were averaged

across the last three sessions of extinction training and are depicted by the gray bars.

Experiments were conducted in adult Wistar-Kyoto (WKY), Wistar (WIS), and

Spontaneously Hypertensive (SHR) rats after adolescent methylphenidate (MPH) or vehicle

(VEH) treatment was discontinued (n = 7–10 per strain and treatment). Values are presented

as mean ± SEM. *p ≤ 0.001 compared to WKY and WIS (main effect of strain). ^p ≤ 0.023

compared to reinstatement responses.

Jordan et al. Page 18

Drug Alcohol Depend. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Effects of adolescent atomoxetine treatment during maintenance testing under a second-

order schedule. (a) Cocaine intake averaged across a five-day baseline; (b) Active lever

responses averaged across a five-day baseline; (c) Active lever responses during the first

drug-free interval of the final maintenance testing session. Experiments were conducted in

adult Wistar-Kyoto (WKY), Wistar (WIS), and Spontaneously Hypertensive (SHR) rats

after adolescent atomoxetine (ATO) or vehicle (VEH) treatment was discontinued (n = 7–9
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per strain and treatment). Values are presented as mean ± SEM. * p ≤ 0.001 compared to

WKY and WIS (main effect of strain). § p ≤ 0.005 compared to vehicle-treated SHR.
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Fig. 5.
Effects of adolescent atomoxetine treatment during extinction training. (a) Number of

sessions to reach extinction criterion; (b) Active lever responding averaged across the last

three sessions of extinction and expressed as the percentage of the self-administration

maintenance baseline. Experiments were conducted in adult Wistar-Kyoto (WKY), Wistar

(WIS), and Spontaneously Hypertensive (SHR) rats after adolescent atomoxetine (ATO) or

vehicle (VEH) treatment was discontinued (n = 7–9 per strain and treatment). Values are

presented as mean ± SEM. + p ≤ 0.04 compared to SHR and WKY (main effect of strain). §

p ≤ 0.006 compared to vehicle-treated SHR.
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Fig. 6.
Effects of adolescent atomoxetine treatment during reinstatement testing. Active lever

responses during reinstatement testing were averaged across the seven 1-hr sessions. For

comparison, active lever responses during the first hour of extinction training were averaged

across the last three sessions of extinction training and are depicted by the gray bars.

Experiments were conducted in adult Wistar-Kyoto (WKY), Wistar (WIS), and

Spontaneously Hypertensive (SHR) rats after adolescent atomoxetine (ATO) or vehicle

(VEH) treatment was discontinued (n = 7–9 per strain and treatment). Values are presented

as mean ± SEM. *p ≤ 0.001 compared to WKY and WIS (main effect of strain). ^p ≤ 0.002

compared to reinstatement responding. § p ≤ 0.032 compared to vehicle-treated SHR.
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