
RhoGEFs in cell motility: Novel links between Rgnef and focal
adhesion kinase

Nichol L. G. Miller1, Elizabeth G. Kleinschmidt1,2, and David D. Schlaepfer1,*

1Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093

2Biomedical Sciences Graduate Program, UCSD La Jolla, CA 92093

Abstract

Rho guanine exchange factors (GEFs) are a large, diverse family of proteins defined by their

ability to catalyze the exchange of GDP for GTP on small GTPase proteins such as Rho family

members. GEFs act as integrators from varied intra- and extracellular sources to promote

spatiotemporal activity of Rho GTPases that control signaling pathways regulating cell

proliferation and movement. Here we review recent studies elucidating roles of RhoGEF proteins

in cell motility. Emphasis is placed on Dbl-family GEFs and connections to development, integrin

signaling to Rho GTPases regulating cell adhesion and movement, and how these signals may

enhance tumor progression. Moreover, RhoGEFs have additional domains that confer distinctive

functions or specificity. We will focus on a unique interaction between Rgnef (also termed

Arhgef28 or p190RhoGEF) and focal adhesion kinase (FAK), a non-receptor tyrosine kinase that

controls migration properties of normal and tumor cells. This Rgnef-FAK interaction activates

canonical GEF-dependent RhoA GTPase activity to govern contractility and also functions as a

scaffold in a GEF-independent manner to enhance FAK activation. Recent studies have also

brought to light the importance of specific regions within the Rgnef pleckstrin homology (PH)

domain for targeting the membrane. As revealed by ongoing Rgnef-FAK investigations, exploring

GEF roles in cancer will yield fundamental new information on the molecular mechanisms

promoting tumor spread and metastasis.
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INTRODUCTION

Cell motility is a complex process that involves cellular interactions with the environment

leading to intracellular changes that modulate protein function and gene expression [1, 2].

Communication between the outside and inside of cells is relayed from the extracellular

matrix (ECM) via integrins to the actin cytoskeleton [3, 4]. Signals initiated from inside
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cells can also alter integrin activation states to modulate cell adhesion to the ECM [5]. All of

these changes must be coordinated in time and space within cells in order to initiate and

maintain directional movement [6].

The Rho family of GTPases are small ubiquitous (~21 kDa) signaling G proteins (guanine

nucleotide-binding proteins) that bind to and hydrolyze guanosine triphosphate (GTP) to

guanosine diphosphate (GDP). Canonical members include RhoA, Rac1, and Cdc42 [7].

Rho-family GTPases act as switches; when they bind GTP, they are active, and, when they

bind GDP, they are inactive. When bound to GTP, Rho-family GTPases associate with a

variety of target proteins that regulate many aspects of intracellular actin dynamics needed

for cell movement [8]. Since basal nucleotide exchange and intrinsic hydrolysis are slow, the

Rho-family GTPase activation cycle is controlled in part by GTPase activating proteins

(GAPs) that stimulate GTP hydrolysis and guanine-nucleotide exchange factor (GEFs) that

promote the exchange of GDP for GTP [9]. The large number of GEFs and GAPs (>70

members each) far outnumber Rho GTPase targets and this likely reflects signaling diversity

in Rho GTPase regulation [10]. The molecular regulation of various GEFs or GAPs contains

both conserved and unique protein-specific elements. There have been recent reviews on

GAPs in signal termination [11] and in the regulation of membrane traffic [12]. Herein, we

will focus on GEFs.

There are two distinct GEF families for Rho proteins: those of the diffuse B-cell lymphoma

(Dbl) and dedicator of cytokinesis (Dock) families [10, 13, 14]. In the interest of space and

to provide a focused review, emphasis will be on the Dbl GEFs. The Dbl-homology (DH)

domain (~200 amino acids) comprises a region with GEF activity and there are more than 70

human DH-containing proteins (Table I) [15]. The DH domain may have considerable

amino acid divergence between GEFs, but it comprises a related three-dimensional structure

[16]. The majority of Dbl family proteins have a DH domain followed by a pleckstrin

homology (PH) domain (~100 amino acids) that binds phospholipids and other proteins [17,

18]. The conservation of the tandem DH-PH organization implies a conserved function

within GEFs, but the PH domain is also found in many other human proteins [19]. In a small

subset of Dbl members, the DH domain is followed by a BAR (Bin–Amphiphysin–Rvs)

domain that can promote either protein dimerization or membrane binding [15]. Outside of

the DH-PH region, GEFs encompass a diverse range of sequence motifs and domains that

can connect GEFs to various subcellular sites or signaling pathways. The fact that there are

greater numbers of GEFs than RhoGTPases suggests that signal integration and specificity

for Rho activation may be regulated by GEF activity. Many GEFs have distinct domains that

may allow for additional functional specificity. In the following discussion, we will

emphasize those GEFs that contribute to the complex process of cell migration. In particular,

we highlight Rgnef, a Dbl family RhoGEF that uniquely binds FAK, a well-known mediator

of cell motility.

RGNEF (p190RHOGEF/ARHGEF28) AND FAK

Rgnef (previously named p190RhoGEF for its 190 kDa molecular weight, gene name Rgnef

recently changed to Arhgef28) is a ubiquitously-expressed DH-PH-containing GEF [20] that

can activate RhoA and RhoC in cells [21, 22]. Rgnef is most highly related to p114
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(ARHGEF18), Lbc (ARHGEF13), and GEFH1 (ARHGEF2). Rgnef contains several

potential regulatory motifs (Fig. 1A), including an N-terminal leucine-rich region, a

cysteine-rich zinc finger domain. The large C-terminal region of Rgnef contains a potential

coiled-coil domain that can bind microtubules [21], the 3'-untranslated region of

neurofilament mRNA [23], and phosphorylation independent associations with 14-3-3 [24]

or c-Jun amino-terminal kinase interacting protein-1 [25]. The original sequencing of murine

Rgnef contained a frame shift error that altered the coding sequence for the last 36 amino

acids [20] (Protein: NP_036156, Nucleotide: NM_012026). This region is homologous to

human Rgnef (GeneID 64283, NM_001080479) and as noted in a prior review [26], Rgnef

contains a consensus PDZ-binding motif (IVYL) at the C-terminus, a feature shared by a

subset of other GEFs [27]. One unique feature of Rgnef is that it can bind directly to focal

adhesion kinase (FAK) and this interaction is dependent upon a short Rgnef peptide region

(1292–1301) near the coiled-coil domain [28, 29].

FAK is a cytoplasmic protein-tyrosine kinase that is recruited to and activated at cell

adhesion sites termed focal adhesions [30]. FAK acts downstream of various growth factor

and integrin receptors in the control of cell shape and cell-cell adhesion changes needed for

efficient cell movement [31]. Although a variety of FAK-associated signaling pathways

have been characterized through analysis of FAK knockout mice/cells [32], FAK kinase-

dead knockin mice/cells [33–35], and pharmacological FAK inhibition [36], the mechanisms

associated with FAK recruitment and activation at receptor sites remains unclear. The tightly

controlled process of cell migration involves many precise spatiotemporally regulated

molecules. Since both FAK and the Rgnef effector RhoA have been shown to play

significant roles in migration, the direct interaction of these two proteins likely confers an

additional layer of regulation. Thus, the interaction between Rgnef and FAK is important as

this provides a point of integration for the generation of contractile forces and activation of

signaling cascades regulating cell movement [29]. Moreover, emerging evidence supports

the importance of Rgnef-FAK interactions in promoting tumor progression [37]. In this

review, we will expand upon a novel concept that Rgnef also functions as a scaffold in a

GEF-independent manner to enhance FAK activation downstream of integrins [38] and how

this may impact tumor biology.

DEVELOPMENT: POTENTIAL COMPENSATION BETWEEN GEFS FROM

KNOCKOUT STUDIES

Regulated cell movement is a fundamental process during multicellular animal development.

From C. elegans to primates, tissue formation results from the orchestrated migration of

various cells during gastrulation, organogenesis, vasculogenesis, and neuronal pathfinding

[39, 40]. Rho GTPases are key regulators of cell motility and therefore, it is not surprising

that inactivation results in developmental abnormalities. RhoA, RhoB, and RhoC are related

and RhoA knockout in mice leads to embryonic lethality whereas loss of RhoB or RhoC

result in milder phenotypes [41–43]. These results suggest a fundamental role for RhoA

whereas RhoB and RhoC may have overlapping and tissue- or disease-specific roles apart

from activating common RhoA targets. Since there are ~3 times as many GEFs that activate

Rho-family GTPases [10], a major challenge in the field is to understand how temporal and
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spatial activation of GEFs relates to RhoA activation and cell function. A standard approach

is to analyze the effect of loss of expression in a transgenic mouse model. However, few

developmental defects have been observed in mice lacking RhoGEFs [44, 45]. This may be

attributable to either redundancy during development or tissue-specific RhoGEF expression.

Analyses of heterozygous crosses of transgenic Rgnef knockout mice showed that Rgnef−/−

mice were present at normal Mendelian ratios on embryonic day 13.5 [44]. However, Rgnef

−/− mice were born at a significantly lower Mendelian frequency. At birth, Rgnef−/− mice

exhibit an overall smaller size than Rgnef+/− or Rgnef+/+ littermates. Analyses of Rgnef−/−

offspring did not reveal apparent tissue abnormalities and this size difference was negligible

by 6 to 8 weeks of age. It is likely that there is an important role for Rgnef in mouse growth

or development, but that some type of partial redundancy or compensation may be occurring

to lessen or bypass the potential restriction point between embryonic day 13.5 and birth.

Highest Rgnef expression was found in the brain, ovary, and spleen of 10 week old mice

[44]. Although roles for Rgnef have been proposed in neuronal [23, 46, 47] and immune cell

[48, 49] function, Rgnef−/− mice are fertile and do not exhibit obvious defects. Moreover,

partial embryonic lethal phenotypes are uncommon in other RhoGEF transgenic mouse

models (Table I). Except for AKAP13 (ARHGEF13) [50], Sos1 [51], Ect2 (ARHGEF31)

[52], β-Pix (ARHGEF7), and Trio (ARHGEF23) knockouts which result in embryonic

lethality [53], other RhoGEF knockouts have non-lethal phenotypes (Table 1).

Interestingly, as observed with loss of Rgnef, knockout of the RhoA effector proteins

ROCK1 or ROCK2 (Rho-associated protein kinases) also result in partial embryo lethality

and birth of small pups [54, 55]. ROCK2 loss was associated with late placental dysfunction

and ROCK1 loss with cellular actomyosin bundling defects. Future studies of Rgnef

knockout embryos in utero will be focused on identifying potential phenotypes as a means to

link Rgnef to RhoA signaling in vivo. Many of the restricted hematopoietic or neural defects

associated with RhoGEF loss are linked to potential alterations in cell movement (Table 1).

For instance, Lsc/p115 (ARHGEF1) loss is associated with marginal zone B-cell and

neutrophil migration defects [56, 57]. In culture, Rgnef−/− fibroblasts exhibit defects in

adhesion formation and cell movement when stimulated by extracellular matrix proteins

such as fibronectin [44]. This has been associated with decreased integrin-mediated

signaling to RhoA as well as FAK activation as discussed below.

INTEGRIN-RHOA SIGNALING AXIS

Integrin receptors are heterodimeric transmembrane proteins comprised of alpha and beta

subunits that cluster upon binding to extracellular matrix proteins and signal across the

membrane in both directions [58]. Integrins generate signals within cells with respect to

external surroundings and establish a physical linkage to the actin cytoskeleton to facilitate

cell adhesion, shape change, and tension. Cell adhesion complexes (also called focal

adhesions, FAs) consist of integrins and various cytoplasmic proteins such as talin, vinculin,

paxillin, and alpha-actinin. FA formation is associated with the activation of kinases,

including FAK and c-Src, that phosphorylate substrates such as p130Cas or cortactin

promoting the binding of adaptor proteins like Crk or Nck and the establishment of large

multi-protein signaling complexes at FAs. Linkages of Crk and Nck to actin nucleating
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protein complexes such as N-WASP or Arp2/3 alter actin branching with effects on cell

protrusion activity. These early signaling events are associated with cell spreading, cycles of

GTPase activation and inactivation, which occur concurrent with the formation, maturation,

and eventual turnover of FAs [59]. All of these events must be precisely coordinated to

enable efficient directional cell movement.

Canonical cell migration models postulate that Rac promotes membrane protrusion at the

leading edge and Rho regulates contractility in the cell body [7]. However, studies with

FRET-based probes for Rho GTPases revealed high levels of RhoA activity at both the

leading and trailing edges of cells [60]. The occurrence of high Rac and Rho activity at

leading edge is likely cyclical and/or may occur at distinct sites. At the leading edge, Rac

activation can provide the necessary “push” (decrease in cell contractility) needed for

lamellipodial growth and Rho activation then facilitates the “pull” (increase in cell

contractility) to stabilize growing lamellipodia in part through FA maturation [61].

Biochemically, cell adhesion to fibronectin (FN) initially triggers an overall transient

decrease in RhoA activity levels (at 15 to 30 min), followed by an extended phase of RhoA

activation associated with FA maturation [62, 63]. It is the coordination of GAP and GEF

activity that promotes RhoA cyclic regulation upon FN binding. Interestingly, FAK is linked

to FN-mediated cyclic RhoA regulation through associations with both p190RhoGAP [64]

and Rgnef [29]. FAK expression and activity promoted FA localization and tyrosine

phosphorylation of p190RhoGAP [34, 64] and this is associated with increased GAP

activity, cell protrusion, and establishment of polarity [65]. The FAK-p190RhoGAP

interaction is indirect and dependent upon the binding of p120RasGAP to both FAK and

p190RhoGAP [64]. In the absence of FAK expression or activity, RhoA activity is high and

deregulated [62]. In addition to the loss of p190RhoGAP regulation, FAK−/− fibroblasts

exhibit high levels of Rgnef expression due in part to compensatory signaling from the

FAK-related Pyk2 kinase [29]. Elevated Rgnef expression contributes to aberrant FAK−/−

fibroblast morphology, RhoA activity, and increased FA formation. However, in normal

fibroblasts, Rgnef knockdown prevents FN-stimulated RhoA regulation, FA formation, and

cell motility [29]. Despite published putative roles for LARG (ARHGEF12), Lsc/p115

(ARHGEF1), and GEFH1 (ARHGEF2) in FN-stimulated RhoA regulation [66, 67], Rgnef

knockout fibroblasts exhibit defects in FN-stimulated RhoA regulation that are rescued by

Rgnef re-expression [44]. Taken together, these studies establish the importance of Rgnef in

RhoA regulation downstream of integrins. Simplistically, too much or not enough Rgnef

expression in cells inhibits cell movement, as the formation of overabundance or too few

FAs limits cell motility.

COMPLEX INTERACTIONS BETWEEN RGNEF AND FAK

In this integrin-Rho signaling axis, it remains undetermined how Rgnef becomes activated to

facilitate RhoA GTP binding. Using a binding assay with a nucleotide-free mutant of RhoA

[66], Rgnef became activated 60 min after replating cells on FN [44]. Rgnef tyrosine

phosphorylation after FN replating occurs at 60 min and this was disrupted by deletion of

the FAK binding site (1292–1301) on Rgnef [29]. Rgnef tyrosine phosphorylation is

associated with the localization of Rgnef to FAs and this is correlated with the ability of
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Rgnef to activate RhoA. However, the molecular mechanisms linking integrin signaling to

Rgnef and RhoA activation is undetermined. In particular, it is not known how

phosphorylation and the activity of different Rgnef domains act to control Rgnef function.

Despite over twenty years of research on FAK [68], the mechanisms through which FAK

associates with integrin signaling complexes at FAs also remains unclear. Although FAK

and paxillin co-localize to the earliest adhesions formed upon cell attachment to FN [69],

other mutational and knockout studies have concluded that paxillin is important but not

essential for FAK recruitment to nascent adhesions [70, 71]. Additionally, direct binding

between FAK and talin may contribute to but is not essential for adhesion localization of

FAK [72, 73]. It is the C-terminal region of FAK termed the focal adhesion targeting (FAT)

domain that binds to paxillin and talin and facilitates FAK localization to integrin adhesion

sites. The FAK FAT domain also binds to Rgnef residues 1292–1301 [28].

Interestingly, Rgnef Δ1292–1301 over-expression results in a similar phenotype to neurons

that lack FAK [74]. This result was originally interpreted as Rgnef being downstream of

FAK and that Δ1292–1301 Rgnef would block signaling leading to RhoA activation.

However, an alternative possibility is that if Rgnef also functions upstream of FAK,

expression of Rgnef Δ1292–1301 would not bind FAK and may inhibit FAK. To this end,

recent studies in Rgnef−/− fibroblasts found that FAK activation (FAK Y397

phosphorylation) and paxillin tyrosine phosphorylation were inhibited at early time points (5

to 30 min) after cell adhesion to FN [38]. This was associated with decreased FAK co-

localization at FAs. Rgnef mutagenesis and re-expression studies found that the Rgnef PH

domain or FAK binding region were required as part of a mechanism promoting FAK FA

localization, FAK activation, and paxillin tyrosine phosphorylation. Interestingly, Rgnef PH

domain mutation (R1098A, K1100A) prevented phosphatidylinositol 4-P and

phosphatidylinositol 4,5P2 binding and these residues are conserved within related GEFs

(Fig. 1B). Modeling of the Rgnef DH-PH domain structure reveals that R1098 and K1100

may be located within a surface exposed pocket that could potentially form a

phosphatidylinositol headgroup binding site (Fig. 1C). In this way, it is likely that Rgnef

lipid binding and scaffolding play an unexpected but important role in promoting FAK

recruitment and activation at FAs.

Moreover, re-expression of a GEF-inactivating Rgnef point mutation (Y1003A) [21] in

Rgnef−/− fibroblasts was sufficient to promote FAK FA localization and activation upon

cell adhesion to FN [38]. However, Rgnef Y1003A did not promote paxillin tyrosine

phosphorylation. This separates FAK and paxillin tyrosine phosphorylation downstream of

integrins. Interestingly, myosin II activity and the generation of cell tension promote FAK-

mediated paxillin tyrosine phosphorylation leading to adhesion maturation and cytoskeletal-

matrix linkage reinforcement [75]. Thus, since Rgnef−/− fibroblasts do not efficiently

activate RhoA upon cell adhesion to FN [44], and RhoA activation of ROCK can stimulate

cell tensional forces through myosin-mediated contractility [76], it may be that Rgnef-

mediated RhoA activation allows for FAK-mediated paxillin tyrosine phosphorylation at

FAs in response to contractility signals or FA maturation.
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As summarized in a simplistic model (Fig. 1D), cell binding to matrix leads to integrin

receptor clustering and activation. Signals are generated to increase phosphatidylinositol

lipids within the plasma membrane near adhesion sites, and this facilitates Rgnef membrane

association via the Rgnef PH domain. FAK binding to Rgnef is not regulated by cell

adhesion, but the translocation of Rgnef to the membrane brings FAK to nascent adhesion

sites and likely facilitates the formation of a complex between FAK and paxillin within FAs.

Through processes that remain unclear, but may involve release of intramolecular inhibitory

constraints [77] and intermolecular FAK transphosphorylation at Y397 [78], FAK becomes

catalytically active. Rgnef-mediated RhoA activation and increased contractility facilitate

FAK-mediated paxillin tyrosine phosphorylation important for FA maturation and the

further recruitment of proteins such as vinculin to FAs. Inhibition of any of these steps

prevents efficient cell movement.

RGNEF AND RHO - MORE THAN ONE CONNECTION

The recombinant DH-PH domain of Rgnef possesses exchange activity for RhoA and this is

blocked by a point mutation (Y1003A) within the DH domain [21]. It is the DH domain that

provides the canonical interface for Rho GTPase binding. PH domains bind to lipids and

other protein targets [17]. Mutagenesis and in vitro binding assays have confirmed that the

Rgnef PH domain binds phosphatidylinositol lipids and this is mediated in part by Rgnef

residues R1098A and K1100A [38]. The PH domain of Rgnef also bound directly to

activated RhoA and this was dependent on hydrophobic residues F1154 and I1156 [79]. In

three-dimensional models of the Rgnef PH domain, this hydrophobic patch does not overlap

with the R1098A and K1100A residues involved in phosphatidylinositol lipid binding (Fig.

1C). Interestingly, mutation of Rgnef F1154 and I1156 in the full-length protein also

attenuated RhoA activation, as assayed by a serum-response element gene reporter, when

compared to wild type Rgnef [79]. This RhoGEF-activated RhoA binding interaction is

conserved within the Lbc-family of RhoGEFs. It is proposed that this interaction could serve

as a positive feedback loop, perhaps working in tandem with PH domain lipid-binding

residues to correctly orient RhoGEFs at the plasma membrane or relieving auto-inhibition.

In fact, several unrelated proteins including RhoGEFs have been shown to bind to activated

GTPases through their PH domain, suggesting that this could be a common regulatory

mechanism [80–82]. It will be of interest to test whether this Rgnef hydrophobic patch

regulates its subcellular localization and whether the Rgnef PH domain also binds efficiently

to other GTPases such as RhoC. This adds another layer to the possible mechanisms by

which RhoA and RhoC are spatiotemporally regulated in normal and transformed cells.

RGNEF AND FAK IN CANCER

Studies of the molecular mechanisms controlling FAK activation are of potential clinical

importance due to the fact that FAK controls various aspects of tumor progression [83].

Small molecules that act as ATP-competitive inhibitors of FAK activity are in various stages

of development and human clinical trials testing [84–88]. What remains unclear are the

molecular mechanisms driving elevated FAK activation in tumor cells. Notably, Rgnef

mRNA and protein expression are significantly increased during colorectal tumor

progression and dominant-negative expression of the Rgnef C-terminal domain resulted in
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smaller, less invasive tumors with reduced paxillin tyrosine phosphorylation as analyzed in

an orthotopic model [37]. This tumor inhibitory activity of Rgnef-C required the presence of

the FAK binding site and we speculate it may be associated with the prevention of FAK or

Rho GTPase activation. Early studies identified Dbl (ARHGEF21) in a cell transformation-

based screen [89], various RhoGEFs are over-expressed in tumors [90], and small molecule

inhibitors of RhoGEFs that disrupt binding to RhoGTPases are being developed [91]. Thus,

targeted inhibition of RhoGEFs like Rgnef may result in dual inhibition of FAK and Rho

GTPase signaling pathways.

Mechanistic screens for RhoGEF inhibitors include in vitro invasion assays, as RhoA and

RhoC GTPases have been linked to an invasive cell phenotype [76]. In fact, recent studies

point to the importance of a RhoA-FAK signaling axis in KRAS-driven non-small cell lung

cancer (NSCLC) [92]. This study concluded that since RhoA silencing and FAK

pharmaceutical inhibition yielded similar anti-tumor effects on NSCLC tumor bearing

KRAS and INK4A/Arf mutations, that activation of a RhoA-FAK signaling axis is a

genotype-specific vulnerability of high grade tumors. FAK activity is also an important

factor promoting breast cancer tumor growth and metastasis [87, 93, 94]. Structures termed

invadopodia on carcinoma cells degrade surrounding matrix and allow for enhanced tumor

cell invasion [95]. In breast carcinoma cells, Rgnef was shown to activate RhoC to facilitate

invadopodia formation [22]. Although functional connections between FAK and Rgnef have

not been established in breast cancer, invasive matrix degradation is dependent upon FAK

signaling [93, 96]. Understanding the mechanisms of Rgnef spatiotemporal regulation and

interactions with FAK and RhoA or RhoC GTPases in vivo will provide new insights on the

molecular pathways involved in cancer progression.

CONCLUDING REMARKS

In this review we have emphasized the dual function of Rgnef, which acts as a GEF for

RhoA and RhoC, and plays a novel scaffolding role in FAK recruitment and activation. The

Rgnef-FAK interaction is critical for both normal cell migration and tumorigenesis, as FAK

contributes to several hallmarks of cancer, including survival, proliferation, angiogenesis,

and invasion. Future studies will be aimed at understanding the molecular mechanisms

behind Rgnef-FAK signaling in tumor progression to better understand how these pathways

can be targeted in the future for more effective treatments.

Further, the recent discovery of novel RhoA-GTP binding patch on the PH domain provides

a new opportunity to understand how Rgnef spatiotemporally regulates Rho GTPases, and

vice versa. Due to recent evidence that a lipid-binding mutation in the PH domain prevents

FAK membrane localization, further investigation of the role of the Rgnef PH domain with

regard to lipid binding, necessity in promoting FAK activation, and interactions with

RhoA/C in the context of tumor progression are warranted.

The use of Rgnef-null mouse and cell lines has provided a powerful system to dissect

signaling pathways downstream of integrins at focal adhesions. Already, the use of these

cells has revealed a novel method of FAK recruitment and allowed us to separate FAK and

paxillin phosphorylation downstream of integrins for the first time. These knockout systems
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will be a valuable tool in examining the role of Rgnef and its binding partners in cellular

signaling, development, and cancer.
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ABBREVIATIONS

ATP adenosine triphosphate

C-terminus carboxy terminus

Dbl diffuse B-cell lymphoma

DH dbl-homology

ECM extracellular matrix

FA focal adhesion

FAK focal adhesion kinase

FAT focal adhesion kinase

FN fibronectin

FRET fluorescence resonance energy transfer

GAP GTPase activating protein

GDP guanosine diphosphate

GTP guanosine triphosphate

NSCLC non-small cell lung cancer

PDZ post synaptic density protein, disc large tumor suppressor, zona occludens-1

PH pleckstrin homology

ROCK Rho-associated protein kinase
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Fig. (1). Rgnef protein domains and structure
(A) Mouse Rgnef protein schematic. Shown are the leucine-rich domain (Leu), zinc-finger

motif (Zn), tandem Dbl-homology (DH) and pleckstrin-homology (PH) domains, FAK-

binding domain (1292–1301), coiled-coil domain (coil), and PDZ-binding motif. Also

shown are the locations of the GEF-inactivating mutation (Y1003A), lipid-binding mutation

(R1098A/K1100A), and RhoA-GTP binding residues (A1151/A1153). (B) PH domain

alignment of Lbc RhoGEF subfamily members. Highlighted in gray are putative locations of

beta-strands (b1–b7), asterisks indicate identical residues. In red is the location of residues
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necessary for efficient PI lipid binding in Rgnef. In blue are residues necessary for binding

to activated RhoA across all Lbc subfamily GEFs. (C) Left, theoretical structure of the

Rgnef DH-PH domain at the plasma membrane. Rgnef binds to PI lipids (red) at the plasma

membrane through conserved residues in the PH domain (residues in red, PH domain in

blue). Rgnef also potentially binds to RhoA-GTP (green) at the plasma membrane through

conserved hydrophobic residues (yellow) in the PH domain. These factors potentially

localize and orient Rgnef for its GEF activity towards RhoA-GDP (purple) through the DH

domain (cyan). Right, top down view of Rgnef in complex with RhoA-GTP and RhoA-

GDP. Theoretical Rgnef DH-PH model created in Swiss-Model. RhoA-GDP crystal

structure from PDB 1X86. RhoA-GTP crystal structure from PDB 3KZ1. Theoretical Rgnef

DH-PH model created in Swiss-Model based on PDB 3KZ1 [97] (D) Simplified model of

Rgnef function downsteam of integrin signaling. Cell binding ECM leads to integrin

clustering and activation at the membrane, generating increased phoshatidylinositol lipids at

adhesion sites. Rgnef PH domain associates with concentrated membrane lipids and

facilitates FAK localization at nascent adhesions. FAK activation promotes FA maturation

and Rgnef RhoA-GEF catalytic activity promotes actomyosin contractility, both required for

proper cell motility.
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