Skip to main content
. Author manuscript; available in PMC: 2014 Jun 30.
Published in final edited form as: J Am Chem Soc. 2011 Oct 19;133(44):17786–17795. doi: 10.1021/ja206876h

Table 1.

Physicochemical properties of α3Y and α3Y-His variantsa

Protein pKapp Y32b pKapp Hisb Y32 Em(pH)c [Θ]222d % Helixe ΔGf
α3Y 11.3 8.1 −21.9 73.1 ± 0.7 (pH 5.0–10.0) −3.7
α3Y-V9H 10.8 <5.0 n.d. −18.7 63.1 ± 0.4 (pH 5.5–9.1) −3.0
α3Y-L12H 10.4 6.6 n.d. −16.0 53.3 ± 1.0 (pH 4.6–8.6) n.d.
α3Y-K29H 10.7 7.1 7.4 −20.4 66.8 ± 2.5 (pH 5.1–9.1) −2.8
α3Y-K36H 11.0 7.0 7.1 −19.5 64.7 ± 0.8 (pH 5.1–9.1) −2.4
α3Y-I62H 10.6 7.0 n.d. −16.5 53.8 ± 1.6 (pH 5.0–8.9) n.d.
a

Em (nm); [Θ]222 × 103 (deg cm2 dmol−1); ΔG (kcal mol−1); n.d., not determined

b

Apparent tyrosinate/tyrosine and imidazole/imidazolium pKa values of Y32 and histidine residues obtained by fitting the pH-titration curves in Fig. 3 to a single pKa. Statistical errors ≤ 0.1.

c

Apparent pKa obtained by fitting the pH-titration curves in Fig. 4 to a single pKa. Statistical errors ≤ 0.1.

d

Mean residue ellipticity measured at pH 8.2 and 25° C. The α3 W reference displays a [Θ]222 value of −22.6×103 deg cm2 dmol−1 at the same conditions.

e

Scaled relative to α3 W (76 ± 1% α-helical pH 4–10).16,18

f

Global protein stabilities obtained by fitting the urea-denaturation curves in Fig. S8A. Data recorded at pH 8.2 and 25° C. Fitting standard errors < 0.03 kcal mol−1.