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Abstract

An efficient algorithm is described for finding matches, repeats and other word relations, allowing

for errors, in large data sets of long molecular sequences. The algorithm entails hashing on fixed-

size words in conjunction with the use of a linked list connecting all occurrences of the same

word. The average memory and run time requirement both increase almost linearly with the total

sequence length. Some results of the program’s performance on a database of Escherichia coli

DNA sequences are presented.
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1. Introduction

With the rapid accumulation of molecular sequence data, including the advent of the human

genome initiative, there is an increasing need for efficient and versatile computer algorithms

for finding and classifying similarity patterns and relationships in data sets of long

sequences. Over the past decade there has been a variety of approaches for finding similar

segments among multiple sequences, including those of Queen et al. (1982), Waterman

(1984), Bacon & Anderson (1986), Sobel & Martinez (1986), Posfai et al. (1989), Karlin et

al. (1988a, b), Pearson & Lipman (1988), Staden (1989), Stormo & Hartzell (1989), Hertz et

al. (1990), Lawrence & Reilly (1990), Smith et al. (1990), and Schuler et al. (1991). In

many cases the central choice in designing any appropriate algorithm is the particular

measure of multiple alignment quality to be used. In this context a widely used sequence

comparison protocol is based on alignments derived by dynamic programming as introduced

© 1991 Academic Press Limited

NIH Public Access
Author Manuscript
J Mol Biol. Author manuscript; available in PMC 2014 June 30.

Published in final edited form as:
J Mol Biol. 1991 October 20; 221(4): 1367–1378.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



by Needleman & Wunsch (1970; for recent reviews, see Waterman, 1989; Doolittle, 1990;

Spouge, 1989; Karlin et al., 1991; Schuler et al., 1991).

Here, we describe in some detail a close to linear-time algorithm (conjoined hash and linked

list method) for finding approximate multiple repeats within and between nucleic acid or

protein sequences. The advantages of the method are speed and the ability to look for

internal matching segments simultaneously with matching segments among multiple

sequences. Multiple sequences are concatenated into a single composite sequence,

converting the problem of matching to the search for repeats in a single sequence. The

algorithm entails hashing on words of a fixed size in conjunction with the use of a linked list

connecting all occurrences of the same word. We shall later illustrate the performance of the

program for a set of 389 DNA sequences from Escherichia coli totalling about 1·431 million

bases.

A match is an aggregate of extended identity blocks of length ≥b, separated by short error

blocks of length ≤ε. A set of program parameters (including b and ε) are used for selecting

matches to be reported in the output. These parameters may either be specified by the user,

or be set, by default to stringent values that ensure that the matches located are unlikely to

occur by chance. After a first round of locating significant matches, the matching segments

are extended and refined by the procedures outlined in Refinement of the Program Output.

Some caveats on the concepts and implementation of the program are also discussed there.

The method achieves great speed by requiring the segments of all reported alignments to

share a “core block” of identical letters exceeding some minimum length. It is recommended

that this “core” parameter be chosen with reference to the statistical properties of maximal

length common words among random letter sequences (Karlin & Ost. 1988). Such blocks

can be found essentially in linear time in the length of the sequences under study, and it

requires little additional time to extend them allowing for error blocks.

Useful biological information is sometimes revealed by sequence comparison in several

alphabets derived from nucleotide and amino acid classifications. A list of the commonly

used DNA and amino acid alphabets is given in a review by Karlin et al. (1989). Issues of

sensitivity in detecting weak similarities (matches) pose a problem in protein sequence

alignments because of the requirement that long matches should contain a satisfactory core

block. This difficulty can in part be alleviated by using multiple alphabets. The program

includes a translation module so that DNA and protein sequences can be compared in any of

these derived alphabets. The basic design of the algorithm is independent of the alphabet, we

therefore describe only the algorithm for the standard {A, C, G, T} DNA alphabet. The

algorithm also applies to the location of internal repeats in individual sequences, and to

finding other word relations (e.g. inverted complementary pairings in DNA).

The matching program and these variations of it have been coded in C and organized into a

small software package that has been implemented on an IBM PC compatible (running

DOS), a VAX main frame computer (running VMS), a Sun Spare station 470 (running

UNIX) and a Cray Y-MP8/864 super-computer (running UNICOS). A profile of the

performance on the four machines with the set of E. coli DNA sequences is reported in
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Performance Analysis. Among the matches the program finds are the repetitive extragenic

palindromic elements of the E. coli genome and other groups consisting of significant

identities and dyad symmetry pairings. These results with interpretations are presented in An

Example of All Known E. coli Sequences.

Working copies of these programs can he obtained by writing to M.-Y. Leung. Final and

further updated versions of them will be distributed through the University of Texas System

Center for High Performance Computing at Austin, TX.

2. The Algorithm

Our algorithm treats matches between sequences as repeats in the composite sequence

formed by concatenating the individual sequences, with the restriction that the repeating

segments do not overlap the junction of two different sequences. In the following discussion,

an identity block refers to a group of sequence segments (called identity segments) in exact

agreement with one another. None of these crosses sequence boundaries. An identity block

is designated by (a1, …, am; l) where a1,.., am represent the starting positions of the identity

segments in increasing order with respect to the composite sequence; and l the length of the

block. A match is an aggregate of such identity blocks separated by short “error blocks” of

mismatched or inserted/deleted letters.

There are four main steps in the matching algorithm. First, the composite sequence of N

letters is replaced by a sequence of N − k + 1 integers (called keys) representing successive

words of k consecutive letters (Karlin et al., 1983: 1988b). Simultaneously, a linked list

array, which connects each occurrence of a k-word (a string of k consecutive letters) to the

next occurrence of the same word in the composite sequence, is constructed. Second, all

reasonably long identity blocks, called core blocks, are located. Third, these core blocks are

extended by flanking them with other identity blocks in both directions to form longer

matches, allowing interruption by small error blocks. Fourth, maximally extended matches

that meet the prescribed printing criteria (explained below) will be produced in the output

file.

Results in the program output are then refined as follows. (1) Sequence sets containing

statistically significantly long common words found in the first search are reduced to smaller

segments centered on the long words and are re-examined using less stringent limitations on

core block and extension block lengths. (2) Common matches that do not qualify in their

own right do qualify if sufficiently well aligned with and if not too distant from qualifying

matches. Such aligned matches are also printed out. (3) The original database is searched for

words having not more than 20% to 30% mismatch errors with the long words found in (1)

and (2). These refinement schemes are described in Refinement of the Program output.

The algorithm will be illustrated by a data set consisting of four DNA sequences, each of

length 50 base-pairs (bp†), listed in Table 1. Before detailing the individual steps of the

algorithm, we first discuss a number of program parameters. These parameters may be

†Abbreviations used: bp, base-pairs; REP, repetitive extragenic palindromic.
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specified by the user or set to their default, values according to certain statistical criteria

built into the program.

(a) Program parameters

(i) Multiplicity parameters—The number of identity segments and the number of

different sequences in which the identity segments occur are called, respectively, the block

multiplicity and sequence multiplicity of the block. In our sample data set, the five-word

CCCCT occurs at positions 7 and 14 of sequences 1 and 3, positions 8 and 16 of sequence 2,

but only at position 14 of sequence 4. The collection of these occurrence of CCCCT forms

an identity block (7, 14, 58, 66, 107, 114, 164; 5) with block multiplicity 7 and sequence

multiplicity 4. In certain cases a set of sequences divide naturally into different groups (e.g.

sequences from different organisms such as E. coli and Salmonella typhimurium, or from

different functional classes such as nuclear and membrane proteins). The number of groups

containing an identity block is called its group multiplicity.

The user may specify minimum values for all three multiplicities that will be denoted by m0,

s0 and g0, respectively, where m0 ≥ 2, s0 ≥ 1, g0 ≥ 1. By selecting appropriate minimum

values for these multiplicities, different objectives can be achieved. With s0 = 1 the program

ascertains all internal repeats within individual sequences as well as matches between

different sequences. Setting s0 = 2, however, will make the program report only matches

involving at least two different sequences. Setting g0 = 2 will find only those matches

common to at least one sequence from two different groups.

(ii) Block length parameters—To ensure a significant amount of similarity, we set the

following requirements on all matches.

1. All constituent identity blocks with block multiplicity m must be of length bm or

more. The bm values are called minimal block lengths.

2. A match must contain at least one reasonably long identity block called a core

block. A core block with block multiplicity m must be of length cm or more. The cm

values are called core block lengths and generally cm is approximately 2bm. A

match may contain more than one core block. In such cases, the leftmost core block

is called the leading core block.

3. An error block must not contain more than ε letters, where ε (generally < bm/2) is a

small positive integer (usually 3 for DNA but may be higher; in protein sequences

we recommend ε = 1 or 2) called the error block length. Mismatches as well as

insertion/deletion type errors are allowed if the error block length is ≤3. For

practical reasons, only mismatches are considered for larger ε.

It is reasonable to accept smaller minimal and core block lengths for identity blocks with

higher block multiplicities than for those with low block multiplicities. For practical use, we

find it sufficient for the program to accept five decreasing (not necessarily strictly) minimal

block lengths (likewise for core block lengths) corresponding respectively to block

multiplicities m0, m0 + 1, m0 + 2, m0 + 3, and the fifth value to m0 + 4 and above.
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(iii) Printing criteria—The program outputs the location and content of each match

whenever its aggregated matching length (not including the error blocks) reaches the

printing level. Higher printing criteria should be required for a match with more error

blocks. Furthermore, lower printing criteria may be used for matches involving a higher

number of sequences because they are less likely to occur by chance. Thus, printing criteria

are specified as a two-dimensional array (uis), where i represents the number of error blocks

and s the sequence multiplicity of the leading core block of the match. Experience indicates

that rarely does a match contain more than 14 error blocks. The program accepts possibly

different printing criteria uis for i ranging from 0 to 14, and s from the lowest allowable

sequence multiplicity s0 to s0 + 4. Matches with more than 14 error blocks are treated as if

there were only 14; and those with sequence multiplicity s > s0 + 4 are treated as if s = s0 +

4.

(iv) Default parameter values—In an initial run of the program on a new data set, the

user may not know a priori what parameter values should be used. If the user prefers not to

make a choice for some or all of the parameters described above, the program can provide

default parameter values. The choice of default block lengths and printing criteria, as

described below, tend to be conservative so as to ensure that the program will run very

rapidly and produce an initial output representing only the “statistically significant,”

matches among the sequences. The user, after reviewing the output, can then adjust these

parameter values to suit his or her purposes.

Default multiplicity parameters take their smallest possible values: m0 = 2, s0 = g0 = 1. The

minimal extension block lengths bm are set to the same value b for all m, where b satisfies

bαb < N ≤ (b + 1)αb+1, α = 4 being the alphabet size for DNA and N the composite sequence

length. By an idealized consideration of a random ball in urn model for DNA sequences

(Karlin & Leung, 1991), most b-words occur at least once in a sequence of length N with

this choice of b. Table 2 shows the recommended values of b corresponding to different

ranges of N. The maximal error block length ε is set to 3, one codon length, if b ≤ 7. When b

≥ 8. ε is set to b/2, truncated to the largest integer. However, mismatches are the only type of

error allowed by the program when the error block length exceeds 3.

Selection of core block lengths and printing criteria is guided by the statistical properties of

independently generated random letter sequences of the same composition as the data

sequences (Karlin & Ost, 1988). Thus, the core block length cm is set to be the smallest

integer greater than or equal to the theoretical expectation of the length of the maximal m-

fold repeat Lm in a random sequence with the same total length N and the same letter

frequencies as the composite sequence. The default printing criterion uis for a match

containing i errors and involving any s data sequences is set to the 1 % significance level

relative to the expected length of the maximal common word Cis, allowing for i single letter

mismatches, in s out of t random letter sequences (assumed to be independently generated

with the same letter composition as the data) each of length n. Here, t is the number of

sequences in the data set and n the average length of the sequences. Since this algorithm

aims at dealing with long sequences, these values are calculated on the basis of the

asymptotic distributions of Lm and Cis as N → ∞, and then, to be conservative, rounded up
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to the nearest integers. Formulas for these distributions were derived by Karlin & Ost (1988)

and illustrated in Karlin et al. (1989).

(b) The linked list

The repetition of k-words (keys) in the composite sequence is described by a linked list. In a

sequence of N letters, there is a k-word beginning at each position i = 1, …, N − k + 1. The

linked list of keys, called L, is an array of integers whose ith element L(i) is the position

(address) in the composite sequence of the next occurrence of the key at position i. If the k-

word does not occur after position i, L(i) is zero. Thus, given any k-word, if we know where

it first occurs in the composite sequence, the linked list allows us to locate rapidly all its

occurrences in sequence. Alternatively, given any position i, following the linked list L will

yield all subsequent positions in the composite sequence that have the same key as that at i.

The program first reads in all the sequences to be compared, concatenates them and stores

the composite sequence in an array S. This letter sequence S is replaced by an integer

sequence K of the keys fog the k-words starting at each of the first N − k + 1 positions. In an

α-letter alphabet, the key of each distinct k-word is uniquely represented by a number w

between 0 and αk − 1. Details of this numerical representation of the keys for k-words can be

found in articles by Karlin et al. (1983, 1988b). To construct the linked list of keys, we use a

“bucket array” B of size αk, which holds at location w, 0 ≤ w ≤ αk − 1, the position of the

most recent occurrence of the key w. For use in the next step of the algorithm, we need one

more bucket array F that stores the positions of the first occurrence of each key. All three

arrays L, B and F are initialized to zero. Scanning through the composite sequence of keys

stored in K, the following operations are then performed at each position j except for those at

which the k-word crosses the boundary between two sequences.

1. Look up in K the key w of the k-word at j.

2. Examine the content of i = B(w). If B(w) = 0, set F(w) = j because this is the first

occurrence of w. Otherwise, set L(i) = j because this is the first occurrence of w

after position i.

3. Set B(w) = j to reflect the most recent occurrence of w.

With this linked list, we may analyze the composite sequence by keys instead of by letters.

This procedure speeds up the comparison process, but it also means that any repeats of

length less than k will not be detected at this stage. These may, however, be detected by the

refinement procedures described in Refinement of the Program Output. Considering the

minimal block length requirements, the ideal choice of k will be the smallest length l of an

identity block that the user cares to detect. However, this will not be practical when l is large

(e.g. 15) because the bucket arrays F and R of size αk will consume an excessive amount of

computer memory. As a compromise, the program determines the value of k such that it is

the largest integer ≤l such that αk does not exceed 1/64 of the total number of bytes of core

memory of the computer.
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(c) Finding core blocks

The algorithm requires that all matches must contain at least one reasonably long core block.

A core block is an identity block that satisfies the multiplicity and core block length

requirements, and has been extended to its maximal length, i.e. is not part of a longer

identity block. Suppose, for instance, that we are matching the four sequences in Table 1

with minimal core block length 4. The identity block CCCTC occurring at position 8 of

sequences 1, 3 and 4, and position 9 of sequence 2, is a maximally extended core block as

the letters immediately preceding the identity segments (namely C, C, C, T) are not in

complete agreement, and the same is true for the letters immediately following the segments

(C, G, C, T). Embedded in this core block are two smaller identity blocks (CCTC and

CCCT), both of which satisfy the tort block length requirements but will not be core blocks

because they are merely part of the larger identity block CCCTC. The block CCTC is said to

be left-embedded, since it extends further to the left to a larger identity block. Likewise,

CCCT is said to be right-embedded.

For each key w, w = 0, …, α … 1, we obtain from the first occurrence bucket array F and

the linked list L a chain A(w) = (a1, a2, …, ap) giving all the positions in the composite

sequence at which the key w occurs, where a1 = F(w) and ai = L(ai−1) for i = 2, …, p. In

other words, there is an identity block of length k or more at these positions. If this identity

block is left embedded, A(w) is discarded (i.e. not further examined). Otherwise, the

program will attempt to extend this identity block further to form core blocks consisting of

all or some of the identity segments as described below.

When the k-word at position ai agrees with that at aj, we can tell if this agreement extends to

length k + δ for 1 ≤ δ ≤ k by examining whether position ai + δ is linked to position aj + δ in

the linked list. This can be accomplished by successively examining the addresses L(ai + δ),

L(L(ai + δ)), … and stopping as soon as the address equals or exceeds aj + δ. There is an

extension of the match to a length k + δ if and only if we stopped with an equality. Using

this principle, the program pulls out all possible (necessarily disjoint) subchains D = (d1, …,

dq) of A(w) (D is a subchain of A(w) if the set of addresses (d1, …, dq) is a subset of (a1, …,

ap)) that extend the identity at least to a basal length l where l is either the lowest core block

length or 2k, whichever is smaller (i.e. l = min(cm0+4, 2k)). This basal length l is chosen

because any core block, regardless of multiplicity, must be of length no less than cm0+4 since

cm ≥ cm0+4 for m = m0, …, m0 + 3 and cm = cm0+4 for all m ≥ m0 + 4. So cm0+4 is a basal

requirement on all potential core blocks. However, since the extension process works only

with δ ≤ k, it can be used only for extending the identity of A(w) to at most length 2k and

hence if cm0+4 ≥ 2k, we have to take 2k as the basal length.

To each of the subchains D = (d1, …, dq) of A(w) obtained from the above extension, the

following recursive procedure is applied.

1. Discard D if it does not satisfy the multiplicity requirements. Also discard D if it is

left-embedded, because any identity block formed with D will be part of a larger

block that will be found when considering a different chain A(w′) for another key w

′ or a different subchain D′ of the same A(w).
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2. Extend the identity segments to the right as far as is possible until they are no

longer all in perfect agreement to obtain the maximal length l̂ of this identity. This

is done by comparing keys at the relevant positions of the sequence-array K.

3. If l̂ ≥ cq, record (d1, …, dq; l̂) as a core block. Otherwise discard D. Note that cq

may be greater than the basal length l if either m < m0 + 4 or cm0+4 > 2k.

4. Select all subchains of D that extend the identity to a length greater than l̂ and then

repeat steps (1) to (4) on each of these subchains.

These steps are iterated until all subchains of A(w) are exhausted. Then proceed to a new

key, until all keys are exhausted.

As each new core block is found, it is joined to a core list that is maintained in increasing

order of the position of the first identity segment of the block. If there is a long run of a

single letter or a long stretch of certain periodic patterns, the recursive procedure above will

locate a number of core blocks with different multiplicities, but all referring to the same

region. To reduce such redundancy, the program checks for covering as the core blocks are

being joined to the core list. For example, if we examine AAAAATAGCC and

TAAAAACGTT, taking the core block length to be 4, we will find a core block of AAAA

starting at positions 1 and 2 of the first sequence and positions 2 and 3 of the second; and

another core block of AAAAA at position 1 of the first sequence and position 2 of the

second. Although both are qualified core blocks, only the latter will be recorded in the core

list because all identity segments in the first block are covered by some identity segment of

the second block.

(d) Extension with errors

Once all core blocks have been located, extension allowing for errors is attempted on each

of them. First the program extends a core block to the left, then to the right. Since the

algorithm is essentially the same in both directions, only left-extension will be described.

For a given core block (the set of all identity segments) the set of all potential extending k-

words is examined to pick out “matching words” or words that could extend at least m0

occurrences of the core block. Rather than extending all such matching words, at this point

we apply certain criteria to reduce the set of matching words that must be considered further.

The strategy is essentially to consider first those matching words that extend the greatest

number of identity segments of a core block and to consider other matching words only if

they extend identity segments that have not been previously extended. A more detailed

description of this process follows.

(i) Extension to the left—Denote the core block by (a1, …, aq; l) where ai is the address

of the ith identity segment of the core block in the composite sequence and l is the core

block length. The potential extending k-words are then located at positions ai − k (zero

error), ai − k − 1 (1 error), …, ai − k − ε (ε errors) for each ai. We now extract each of these

words (actually the key corresponding to each word) from the key array K and with each

word we associate two numbers: i, the core block index (a number in 1, …, q) and j, the

“number of errors” (a number in 0, …, ε). To visualize this, we can put the words into a
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matrix array with q columns and ε + 1 rows. An example of such an “extension array” (for

the 4 sequences of Table 1 and the core block GGGAGAGG, with parameters k = 3 and ε =

3) is shown in Table 3.

Now the program sorts the set of triplets (key,i,j) according to key number, so that all

occurrences of a given word are grouped together. It is now easy to go through this list and,

for each word, count how many distinct columns it occurred in. Words occurring in fewer

than m0 columns are ignored from here on. Words occurring in m0 or more columns (called

matching words) are shown for this example (with m0 = 2) in Table 4.

If there are no matching words, then extension to the left is complete. Otherwise, we choose

from among the matching words the word that occurs in the greatest number of different

columns (in the example, CCT). There are several possibilities at this point.

First, if there is not a tie for most) distinct columns and if the maximally occurring word

occurs at most once per column, then the word is maximally extended to the left in all the

columns in which it occurs. This is done by examining the keys of the k-words immediately

preceding each error block successively until a disagreement is reached. At this point, there

are three possibilities.

1. The extension block does not meet the minimal block length requirement and is

removed from further consideration.

2. The extension block is long enough to be a core block itself and is discarded. This

condition ensures that a match containing more than one core block will be found

only through right-extension of its leading core block and thus will not be reported

twice.

3. The extension block meets the minimal block length requirement but is not a core

block. In this case, the process of extension with errors is repeated recursively until

no more extension is possible.

For the example case, we extend CCT to the left two more letters (CC), for a total extension

block length of five. Then, if our parameters are set such that a length of five falls into

category (3), above, we extend allowing for errors again.

A second possibility is that two or more matching words may be tied for occurrence in the

greatest number of distinct columns. In this case, the program maximally extends each of the

competing matching words and chooses for further consideration only the one that extends

furthest. Ties at this stage are broken by picking the matching word that entails the fewest

errors, i.e. the word for which the sum of the row numbers for all the array positions is

lowest. If still tied at this point, further extension with errors is carried out for both words.

A third possibility is that the highest matching word or words may occur more than once in

some columns. (This situation generally applies only to repetitive words, e.g. CCC.) In this

case, there are multiple potential “extension paths” that may be taken through the extension

array. This sort of tie is broken in the same way as for ties between different matching

words, i.e. the extension path should be chosen that extends furthest and, if tied for length,

entails the fewest errors.
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At this stage, left-extension with errors has been completed for the matching word present in

the most columns. A separate array of q 1s and 0s keeps track of which columns have been

covered (i.e. contain a matching word which has been extended). If either all columns have

been covered, or all matching words have been exhausted at this point, then we are finished

with this core block. Otherwise, the matching words are again searched, this time for the

word that covers (i.e. is present in) the greatest number of “new” (not previously covered)

columns. Ties arc broken as before. This word is then maximally, and recursively, extended

with errors as just described. This process is repeated until either all columns have been

covered, or all matching words have been exhausted. When this process has been completed,

all of the original set of core blocks which extend sufficiently to meet the printing criteria

are printed in a group, in a format indicating which subsets of these blocks were extended by

the above procedure and the locations of all extension blocks. In the example above, after

the CCT matching word has been recursively extended to its maximum extent, all the

columns would have been covered, so the matching word CTC would be ignored.

(ii) Extension to the right—When extension to the left has been completed, the core

block is extended to the right. Right-extension is carried out in a manner analogous to left-

extension, but operating in the opposite direction. An important difference is that, while we

discard any matching blocks that reach the core block length requirement in extension to the

left, in extension to the right they are kept. Again, the purpose is to ensure that multiple

close core blocks are found only through right-extension of the leading core block so that

they will be counted only once.

After the core block has been fully extended both to the left and to the right, we put together

all the left- and right-extensions to obtain one or more matches that are aggregates of

matching blocks separated by no more than ε letters. The total matching length, equal to the

sum of the identity block lengths, is then compared with the printing criteria. If it qualifies

for printing, it is added to a list of matches. After all matches associated with the core block

have been found, the location of the blocks, their lengths and the matching segments will all

be printed to the output file. Then we proceed to process the next core block.

(e) Variations of the matching algorithm

The matching algorithm can be easily adapted to handle internal repeats and searching for

other word relationships such as dyad pairings in DNA sequences, as described below.

(i) Internal repeats—The algorithm locates matches by identifying repeats in the

composite sequence. In fact, both internal repeats within sequences and matches between

sequences can be found simultaneously when the multiplicity parameters are appropriately

set. In the cases where only internal repeats in each individual sequences are sought, the

sequences can be processed independently of one another. We therefore add an outermost

loop to execute the program, loading only one sequence at a time to the core memory, until

all the sequences have been analyzed. This way, the memory capacity of the computer poses

a limit only on the length of the individual sequence instead of the total sequence length of

the entire data set, making the repeat program very easy to use even on small-memory
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machines. The repeat program is further stream-lined by removing all checks for sequence

and group multiplicities, sequence junctions, etc., which now become superfluous.

(ii) Word relationships—The matching program applies equally well to locate word

relationships other than direct matches. For example, to locate dyad symmetry among

sequences, one can make a copy of inverted complements of all the sequences and join them

to the data set. The original sequences are put in one group and their inverted complements

in another. To ensure that only the dyad pairings are reported but not the direct matches, the

multiplicity parameters are set to m0 = s0 = g0 = 2. The main disadvantage of this simple

adaptation is that two copies of the sequences need to be stored. We are developing a new

program that uses only one copy of the sequences. Instead of hashing through every distinct

k-word, a word and its dyad word are processed concurrently to produce core dyad blocks

and then the dyad symmetry blocks are extended with errors.

3. Refinement of the Program Output

A first application of this program aims primarily at dealing expeditiously with large

databases of long sequences by very efficiently locating only the most significant matches

among the sequences. The block length requirements are set with the intention that each

match located will consist of matching segments composed of stretches of long exact

identities interrupted by a small number of errors. At times, however, it may be desirable to

perform a finer resolution analysis with the sequence data to locate other matches consisting

of identity blocks not all of which satisfy the block length requirement. This, in principle,

can be achieved by lowering the block length requirements. However, with a large data set

such as the 1·431 million bp E. coli DNA database, the program will produce voluminous

output reporting matches most of which occur merely by chance. Below are described three

methods that can be used to refine the results of the program.

(a) Low block length refinement

Sequences involved in a significant match are picked out from the data set. Regions of

length about 1000 bp centering around the matching segments are extracted from the

selected sequences forming a much smaller data set. The program is rerun on the reduced

data set with lower minimal and core block length parameters. The significant match itself,

of course, will be rediscovered in the rerun. In addition, any further extension of the match

with smaller identity blocks that did not meet the previous block length requirements will

now be revealed.

(b) Aligned match refinement

Common matches that do not qualify in length nor multiplicity in their own right do qualify

if sufficiently well aligned with, and not too distant from, qualifying matches. This

algorithm has been described by Karlin et al. (1988a).

(c) Percentage error refinement

After a match has been extended with high resolution, we search through the entire data set

to see whether there are any other sequence segments that are sufficiently similar to the
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match but have not been found because the block length or multiplicity requirements are not

met. To locate these refinement matches, we take the matching segments from a significant

match and search through the entire database to locate all segments that match any of the

matching segments with no more than 30% of mismatched letters.

Table 1 shows the common 24-word GGGAGAGGGTTAGGGTGAGGGGAA at position

22 in sequences 1, 2 and 3. The alignment extension refinement finds the error-free word

GTCCCCTCGCCCC in sequences 1, 2 and 3 of Table 1 at positions 5, 6 and 5, respectively,

with corresponding error block gaps of 4, 3 and 4 greater than the program criterion of 3.

The percentage error refinement with the 24-word cited above found ecoglnhpq with three

mismatches and with the 13-word cited above again found glnhpq with two mismatches.

4. Performance Analysis

The performance of the program was tested with a database of E. coli DNA sequences

totalling 1,431,059 bp (Rudd et al., 1991). The database contains 389 sequences altogether.

We measure the program run time starting with the first two sequences and repeating the

measurement with an increasing number of sequences. The program parameters are chosen

as follows. All multiplicities, the error block length and the minimal block lengths are set to

their default values as given in The Algorithm, section (a). Core block lengths and printing

criteria are set respectively to two times and three times the minimal block lengths.

The program was run on four different computers: an IBM XT-compatible microcomputer

with 640 kilobyte RAM, a VAX 8650 main-frame computer with four megabyte memory

allocation, a Sun Spare station 470 with 32 megabyte RAM, and a Cray Y-MP8/864

supercomputer with 48 megabyte memory allocation. The integer data type on the

microcomputer has a two byte representation, thus limiting the allowable total sequence

length to about 32,000 bp. The run times are shown in Table 5. With the VAX main-frame

computer, the four megabyte memory allocation allowed for a total sequence length close to

500,000 bp. Longer sequences can be handled with virtual memory but the program will

work much more slowly. We stopped the timing experiment at the sequence length at which

a substantial drop of efficiency was observed. With the Sun Sparc station and the Cray the

program completes matching the entire database within minutes. The run times for the VAX,

the Sun Sparc and the Cray computers are displayed graphically in Figure 1. Note that the

program performs only about three times faster on the supercomputer as compared to the

Sun Sparc station. This is because the timing was done strictly on the scalar version of the

program, without using any vectorization or parallelization features on the Cray, just for the

purpose of indicating the efficiency of the algorithm as it now stands. A vectorized version

of the program that makes full use of the vectorized computing power of the Cray Y-

MP8/864 will be implemented.

To give an idea of the growth of run time with total sequence length, we employed the

SYSTAT Version 5·0 software package to fit regression lines for ln(run time) against

ln(sequence length) yielding the relations:

Leung et al. Page 12

J Mol Biol. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where Tc and Ts, in microseconds, denote the run times on the Cray and the Sun Sparc

computers, respectively, and L the sequence length. Both relations indicate that the run times

increase almost linearly with the total sequence length.

5. An Example of All Known E. coli Sequences

We have applied our general program to the E. coli DNA contig collection developed by

Rudd et al. (1990, 1991). This database consists of all the E. coli sequences) in GenBank

(plus a few unpublished sequences) from which all duplicates have been removed and all

established overlapping sequences have been appropriately joined. There are more than 350

contigs, totalling about 1·431 × 106 bp, distributed almost uniformly around the E. coli

genome. Some contigs span more than 25 × 103 bp and include more than ten genes. For

convenience we name the individual contigs Rudd files. Segments that read clockwise

around the circular genome are located on a scale of 0 to 100. Segments that read

counterclockwise are entered in the data as their inverted complements (dyads) but are

located on the same scale as the clockwise segments.

Our program was applied to this entire database with initial search parameters: core block 16

bp, minimum extension block 8 bp, maximum single error block length 3 bp, minimum

printing length 20 bp for matches with no errors and 24 bp for one or more error blocks.

Both direct and dyad matching segments formed 585 sets of two or more Rudd files

containing long word matches (19,000 lines of output). Some matching groups of as many

as 13 files contained the same or dyad long word. Guided by theoretical probabilities of long

matching words that were set forth by Karlin & Ost (1987, 1988) and reviewed for practical

use by Karlin et al. (1989), we chose the following approximate criterion lengths for

selecting significant matches: length 25 bp for a pair of matches, 22 bp for three matches,

and 19 bp for four or more matches. We ignored the presence of an error block that in fact

would require a greater length to qualify as a statistically significant match. We tallied all

sets containing a matching word meeting these criteria and noticed that almost all these

words lay in noncoding sequences of the Rudd files and none substantially overlapped a

coding–noncoding interface. A few lay in genes. We, therefore, selected a set, of 141

distinct sequences that contained any significantly long matching word. These consisted of

complete flanking, or intergenic sequences, or a few complete coding gene sequences.

The general program was applied to the set of these 141 sequences (about 182 × 103 bp)

using less stringent parameters: core block 12 bp, minimum extension block 6 bp, maximum

single error block length 3 bp, minimum printing length 24 bp for matching pairs with no

errors and length 18 bp for three or more matches. This process yielded 801 sets containing

long word matches within the 141 sequences (55,000 lines of output). Some sets of as many

as 24 sequences contained the same or dyad-significant word. This set is a subset of a 59

member set containing an identical 12 bp core block (including a total of 8 cases of

repetitions of the core block spread over some of the segments). Specifically, Rudd file
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ecothr contains a non-coding sequence (co-ordinates 4877 to 5540) involving some long

words common to 58 other non-coding sequences. In aggregate, there are 82 sequences (of

the 141) that contain a significantly long word shared directly with eeothr or with one of the

sequences that matches ecothr and so on. For example, metJecoM, which shares two

significantly long words with ecothr, also shares long words with seven other Rudd files not

in the set of 59 cited above. All of these sequences are non-coding. The long common words

have considerable parts matching the consensus repetitive extragenic palindromic (REP)

sequences first noted by Higgins et al. (1982) and reviewed recently by Gilson et al. (1991).

The functions of these REP elements is currently unknown, although it has been observed

that many of them strongly bind DNA gyrase (Yang & Ames 1988). The four 14 base

consensus sequences of the REP words are here designated

Note that b is an approximate dyad of a (correct in 12 of 14 sites), b′ is the exact dyad of b,

and a′ is the exact dyad of a. A REP unit consists of the sequence a followed by b at a

distance generally of up to four bases. A succeeding REP unit has the inverted

complementary form b′a′, where b′ follows the preceding REP unit sequence b at a distance

of generally 5 to 50 bases, and a′ follows b′ at a distance generally of up to four bases. Thus,

a commonly occurring REP element can be symbolized a(0 to 4)b(5 to 50)b′(0 to 4)a′ or

more simply abb′a′. The form b′a′ab also occurs frequently. The same or dyad significant

word common to 24 sequences (cited above) has the text ATGCG CTXCG

CTTATCAGGCCT, where words common to a and b are underlined. The principal 12 base

core block is the second of the underlined segments.

The refinement program was used to search the entire Rudd database for segments differing

by two or fewer bases from one of the 32 possible forms of the 14 base consensus

sequences. Only ab or b′a′ double occurrences were counted. This search uncovered 13

additional REP units for a total of 95 in the Rudd database. Their locations and information

about them are displayed in Table 6.

The general program applied to the set of 141 segments (completely non-coding or

completely coding) found, in addition to the 82 segments containing long REP elements,

four small independent closed groups of four to twenty segments. The groups were closed in

the sense that each member of the group had a long word matching at least one other

member of the group and no member of the group matched a long word in any of the 141

sequences not in the group. Table 7 shows an example of one of these groups containing six

locations identified by the general program, together with two additional locations found by

the percentage error refinement program.

Application of the aligned match refinement to the segments containing the long words of

Table 7 found a 13 base word matching exactly across the six segments at hemBeco1516,
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ecoaptadk6634, entDecoM16577. entDecoM24033. bglBecoM6631, ecophnaq15183 at

slants of 22 or 23 (16 or 17 for the inverted complements). Reapplication of the percentage

error refinement program recovered segments for entDecoM16288 and glnhpq at slants 23

and 17, respectively. The aligned matching word. GTCCCCTCGCCCC, for four of these

segments may be observed in Table 1 (GTTCCCTCTCCCC in sequence 4, where

mismatches are underlined).

In the refinement program and in the absence of a recognized target text, what criterion can

be used for limiting the degree of relaxation of the subset selection criterion? In the example

in Table 7. where the target text is of length 19. a criterion admitting 0, 1, 2, 3, 4, 5, 6 errors

yields subset increments of 6, 1, 0, 1, 1, 22, 135 members, respectively. It is apparent that

criteria of 5 or 6 errors admit abrupt large increases in numbers of members, largely due to

background noise. The file for error criterion 3 is accepted because it introduces a segment

that is a close dyad to a segment meeting criterion 0. The file for error criterion 4 is rejected

because it introduces a coding sequence, while all others in the subset are non-coding

sequences. REP words have been found in some of the files of Table 7 but at different

locations: in ecoglnhpg, at 3015, bglBecoM at 6543, 8565, and ecophnaq at 3228, 6180,

11501. Significantly long common words in a second small closed group have been found in

some of these files but again at different locations: in ecoglnhpq at 2308, 2640, in bglBecoM

at 6337 and in ecophnaq at 4817.

6. General Discussion

While this program performs very efficiently when the block length parameters are

appropriately set, these parameters also limit the sensitivity of the program. It is possible

that some long matches composed of short approximately aligned identity blocks will not be

detected. The purpose of the several refinement schemes in Refinement of the Program

Output is to reduce this risk of missing some sequence features that may be of biological

interest. However, we have found that most meaningful long matches do contain a

satisfactorily long core block.

The matching program works equally well with protein sequences. Because protein

sequences have a 20 letter alphabet, long stretches of matching amino acids are much less

likely to occur. The block length parameters that we use for proteins are much lower than

those for DNA. Typical minimal/core/error block lengths are 2/4/1 for small data sets

(≤5000 amino acid residues) and 3/6/2 for larger ones. Use of the matching program on

amino acids and other derived alphabets will be illustrated elsewhere.

Finally, as parallel computational equipment will be increasingly available to the scientific

community in the near future, we would like to mention a very intuitive way of parallelizing

our matching algorithm. Most of the computing time of this program is spent on finding core

blocks and then extending them with errors. As the core blocks are found by hashing all

distinct k-words and the long matches by extending each core block with errors, the average

run time will be reduced if a number of k-words (likewise a number of core blocks) are

processed in parallel, with one word (1 core block) on one processor. Such a parallelization
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scheme is well suited for implementation on a shared memory multiple instruction parallel

computer system.
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Figure 1.
Run times of the matching program versus sequence length on the VAX 8650, Sun Sparc

station 470, and Cray Y-MP8/864 computers.
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Table 1

Sample data set of four DNA sequences selected from Table 7

Sequence 1 (bglBecoM)

GTCGGTCCCC TCGCCCCTCT GGGGAGAGGG TTAGGGTGAG GGGAAAACCG

Sequence 2 (ecoaptadk)

GGACAGTCCC CTCGCCCCCT CGGGAGAGGG TTAGGGTGAG GGGAACAGGC

Sequence 3 (entDecoM)

ATCCGTCCCC TCGCCCCTTT GGGGAGAGGG TTAGGGTGAG GGGAACAGCC

Sequence 4 (ecoglnhpq)

GGCAGTTCCC TCTCCCCTAT GGGGAGAGGA TTAGGGTGAG GGGCGCAAAC
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Table 2

Recommended minimal block lengths for different composite sequence lengths

Total sequence length N Minimal block length b

≤1000 3

1001–5000 4

5001–25,000 5

25,001–100,000 6

100,001–500,000 7

500,001–2,500,000 8

2,500,001–10,000,000 9

10,000,001–50,000,000 10
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Table 4

Matching words

Word Array positions (col.,row) No. columns

CCT (1,3); (2,1); (3,3); (4,3) 4

CTC (1,2); (2,0) 2
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Table 5

Run times on the IBM XT-compatible (12 MHz, 640 K RAM) microcomputer

No. of sequences Total length (bp) Run time (s)

2 3670 8

3 5571 3

4 9833 7

5 14,033 10

6 16,567 14

7 18,768 17

8 22,691 24

9 23,913 26

10 27,297 11

11 27,597 12

12 27,797 12

13 27,997 12

14 28,197 13

15 31,571 15
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Table 6

REP words found in the E. coli data base of K. Rudd

min† Rudd‡ file Location§ Rep pattern||

NA ecogacar 1504 abb′a′a

NA econtrla 1089 ab

00.0 ecothr 5422 ab

00.5 ant-ecoM.I 18,256 abb′a′

00.9 folAecoM.D 1063 ab

01.4 polBecoM.D 4161 abb′a′abb′a′abb′a′

02.4 leuAecoM.I 27,954 b′a′abb′a′ab

03.0 ecglde 2498 abb′a′

03.7 mrcBecoM.I 8851 abb′a′

07.8 lacTeco 1242 abb′a′

07.9 cynTecoM.D 3205 b′a′

09.8 m23546 84 b′a′

11.8 ecopurek 1983 abb′a′ab′a′

13.2 entDecoM.D 2107 abb′a′

13.2 — 24,096 b′a′

15.4 asnBecoM.D 2328 abb′a′

15.4  .I 10,675 aa′abb′a′

15.4 ecotgop 958 bab

16.0 ecophrorf 1991 ab

16.3 gltAecoM.I 6317 b′a′ab

16.3 — 10,669 b′a′abb′a′ab

16.7 ecocyd 191 ab

16.8 ecoarog 1613 b′a′

17.6 bioAecoM.I 8253 abb′a′

18.3 ecoglnhpq 2948 abb′a′

22.5 appAeco 118 aa′

22.5 — 1576 b′a′

25.2 econdh 12 b′a′ab

25.2 1669 ab

27.0 ecogdhak 1547 ab

27.7 narLecoM.D 11,559 ab

37.4 ecosodb 782 abb′a′

41.0 ecoruvab 1941 b′a′abb′a

42.4 cheZecoM.D 23 b′a′

43.2 ecohag 1610 ab

43.2 srmBeco 1859 bb′a′

46.1 cdd-eco 984 ab

50.2 ecorcsbc 3543 bb′a′b′bb

50.3 ecgyraam 240 abb′a′
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min† Rudd‡ file Location§ Rep pattern||

50.5 econrda 5836 b′a′abb′a′ab

52.4 argTecoM.D 2224 abb′a′

54.3 alaWecoM.D 4141 ab

54.6 cysPeco 4450 b′a

54.6 — 5524 b′a

54.8 ecoglya 1651 abb′a′

55.7 purCecoM.D 847 ab

58.5 rrnGecoM.D 276 b′a′

60.4 ecoprou 4008 b′a′ab

63.1 ecfucose 190 aa′

66.6 ecofdapgk 5546 abb′a′

66.3 speBecoM.D 1142 b′a′abb′a′

67.8 exbDecoM.D 194 abb′a′ab

68.1 rpsUecoM.I 8763 b′a′

68.9 ecocca 1703 abb′a′ab

70.0 rnpBecoM.I 1093 abb′a′

71.3 deaDecoM.D 7220 b′a′ab

76.4 malQecoM.D 196 bb′a′

76.4  .I 8089 b′a′

76.7 glpRecoM.? 4301 abb′a′

77.5 ugpQecoM.D 3631 ab

77.5  .D 5262 abb′a′

77.5  .D 11,090 abb′a′

79.8 ecofpp 1792 abb′a′

80.4 ecoavt 100 abb′a′

81.0 ecocysxe 1057 ab

81.2 mtlAecoM.I 2333 abb′a′

83.4 gyrBecoM.D 1219 abb′a′

84.2 bglBecoM.D 6543 b′a′

84.2  .D 8565 ab

85.1 ilvGecoM.I 7057 ab

85.9 uvrDecoM.I 2597 abb′a′

86.8 fadAecoM.D 28 abb′a′abb′a′abb′a′

87.6 ecogln 1509 ab

88.4 ecocpxa 1677 b′a′ab

88.5 pfkAecoM.I 1112 abb′a′

88.9 metJecoM.D 1 abb′a′

88.9  .I 4400 b′a′

90.8 purDecoM.I 14,141 b′a′abb′a′

91.2 IysCecoM.I 3756 b′a′ab

91.4 xylEecoM.D 107 ab

91.4  .I 5105 b′babb′a′
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min† Rudd‡ file Location§ Rep pattern||

91.4  .I 9331 b′a′abb′a′

91.6 plsBecoM.D 778 abb′a′

91.9 ecotyrba 150 ab

92.9 ecophnaq 3228 b′a′abb′a′abb′a′abb′a′abb′a′ab (a at end of phnA-30)

92.9 6180 b′a′ab

92.9 11,501 abb′a′

93.4 melAecoM.I 4527 abb′

96.5 valSecoM.D 3648 abb′a′

98.6 merCecoM 11,090 ab

99.5 deoCecoM.I 1920 abb′a′

99.6 ecotrpr 719 b′a′abb′a′

†
Location of the REP in the genome scaled 0 to 100 clockwise from the origin of replication.

‡
Rudd et al. (1990, 1991). I indicates the Rudd file is in the same polarity as the coding polarity. D indicates the sequence has been complemented

and inverted.

§
Location of the 1st base of the 1st word of the REP element relative to the 1st base of the Rudd file.

||
REP words are designated as follows:

(Yang & Ames, 1990).
A concatenation ab or b′a′ is called a repetitive extragenic, palindromic sequence (REP). A cluster of REPs has been called a REP element. Note
that b is the approximate dyad of a (correct in 12 out of 14 sites) and that b′ is the exact dyad of b. and a′ is the exact dyad of a.
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Table 7

A significantly long common word found in a closed subset of the files in the E. coli database of K. Rudd:

target word CTCAC CCTAA CCCTC TCCC

Min† Rudd‡ name Location§ Adjacent genes|| Distances to genes¶

8·7 hemBeco 1516.I hemB,* 56, 339

10·7 ecoaptadk 6634.D adk,* 34, 170

13·5 entDecoM.? 16577.D fepB, entC 83, 273

13·5  .? 16628.I fepB, entC 134, 222

13·6  .I 24033.I ORF, ORF 59, 107

18·3 ecoglnhpq 1466.D glnH, glnP 47, 74

84·2 bglBecoM.D 6631.D pstA, pstB 143, 21

92·9 ecophnaq 15183.I phnP, phnQ 27, −66

ORF. open reading frame.

†
Location of the word in the genome scaled 0 to 100 clockwise from the origin of replication (Bachmann, 1990).

‡
Rudd et al. (1990, 1991). I designates that the interval containing the long word is in the same polarity as the coding polarity of the neighboring

genes; D designates that the interval and the neighboring genes have been inverted and complemented (dyad); ? designates that 1 of the
neighboring genes is in the dyad polarity and 1 is not.

§
Location of the 1st base of the word relative to the 1st base of the Rudd file. I designates that the word is the same polarity as the displayed text; D

designates the dyad form.

||
*Designates that the word occurs in a terminal non-coding segment of the Rudd file.

¶
The 1st number is the number of bases between the end of the preceding gene and the 1st base of the common word. The 2nd number is the

number of bases between the last base of the common word and the 1st base of the succeeding gene.
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