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Abstract

We consider the problem of predicting sensitivity of cancer cell lines to new drugs based on supervised learning on
genomic profiles. The genetic and epigenetic characterization of a cell line provides observations on various aspects of
regulation including DNA copy number variations, gene expression, DNA methylation and protein abundance. To extract
relevant information from the various data types, we applied a random forest based approach to generate sensitivity
predictions from each type of data and combined the predictions in a linear regression model to generate the final drug
sensitivity prediction. Our approach when applied to the NCI-DREAM drug sensitivity prediction challenge was a top
performer among 47 teams and produced high accuracy predictions. Our results show that the incorporation of multiple
genomic characterizations lowered the mean and variance of the estimated bootstrap prediction error. We also applied our
approach to the Cancer Cell Line Encyclopedia database for sensitivity prediction and the ability to extract the top targets of
an anti-cancer drug. The results illustrate the effectiveness of our approach in predicting drug sensitivity from
heterogeneous genomic datasets.
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Introduction

The ability to accurately predict sensitivity to anti-cancer drugs

based on genetic characterization can assist us in selecting drugs

with high chances of success for cancer patients. A number of

approaches have been proposed for drug sensitivity prediction. For

instance, statistical tests have been used to show that genetic

mutations can be predictive of the drug sensitivity in non-small cell

lung cancers [1]. In [2], gene expression profiles are used to

predict the binarized efficacy of a drug over a cell line with the

accuracy of the designed classifiers ranging from 64% to 92%.

Tumor sensitivity prediction has also been considered as (a) a

drug-induced topology alteration [3] using phosphor-proteomic

signals and prior biological knowledge of generic pathway and (b)

a molecular tumor profile based prediction [1,4]. Supervised

machine learning approaches using genomic signatures achieved a

specificity and sensitivity of higher than 70% for prediction of drug

response in [5]. In [6], a Random Forest based ensemble approach

on gene expression data was used for prediction of drug sensitivity

and achieved an R2 value of 0:39 between the predicted IC50s and

experimental IC50s for NCI-60 cell lines.

However, the methodology for converting the genetic measure-

ments to predictive models for assisting therapeutic decisions still

remains a challenge [7]. Detailed dynamical models of genetic

regulatory networks [8,9] are not well suited to predict the tumor

sensitivity to kinase inhibitors as the data requirements for model

parameter estimation are significantly higher in terms of number

of samples and preference for time series data [10,11]. In the

recent cancer cell line encyclopedia (CCLE) study [7], the authors

characterize a large set of cell lines (w900) with numerous

associated data measurement sets: gene and protein expression

profiles, mutation profiles, methylation data along with the

response of around 500 of these cells lines across 24 anti-cancer

drugs. For generating predictive models, the authors considered

regression based analysis with elastic net regularization across

input features of gene and protein expression profiles, mutation

profiles and methylation data. The performance (as measured by

Pearson correlation coefficient between predicted and observed

sensitivity values) of the predictive models using 10 fold cross

validation ranged between 0:1 to 0:8. We have recently reported

that the prediction can be significantly improved if the drug target

profile information is incorporated in the predictive model [12].

In this article, we consider a drug sensitivity prediction

approach from heterogeneous genomic datasets that was applied

to NCI-DREAM Drug Sensitivity prediction sub-challenge 1 [13]

with high performance. For the NCI-DREAM Drug Sensitivity

prediction sub-challenge 1, genomic characterizations were

provided for 53 cell lines and responses to 31 drugs were provided

for 35 of these 53 cell lines. The challenge consisted of predicting

the rank order from the most sensitive to the least sensitive of the

remaining 18 cell lines for each drug. Our framework consists of

generating random forest based ensemble prediction from each

genomic dataset (such as RNAseq, methylation, protein abun-

dance) and combine them using a linear regression approach to

generate the integrated prediction results. The prediction accuracy

as measured by bootstrap error for different combination datasets

shows the efficacy of our framework in increasing the prediction

accuracy by using multiple datasets. We also applied our
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framework to the CCLE database and achieved higher prediction

accuracy as compared to the elastic net based approach

considered in [7].

The article is organized as follows: the Results section presents

the performance of our framework in the NCI-DREAM drug

sensitivity sub-challenge 1 along with subsequent detailed analysis

of the challenge provided datasets and CCLE datasets; the

Discussion section provides the inferences from the analysis along

with future directions and the detailed framework is explained in

the Material and Methods section.

Results

The NCI-DREAM Drug Sensitivity Prediction Sub-
Challenge 1

In this anti-cancer drug sensitivity prediction challenge, a total

of 53 cell lines (48 breast cancer cell lines and 5 non-malignant

breast cell lines) were exposed to 31 therapeutic compounds at a

concentration required to inhibit proliferation by 50% after 72

hours (GI50) [14]. Multiple types of genomic and epigenetic data

(copy number variation, methylation, gene expression through

microarray, RNA sequencing, exome sequencing and protein

abundance) were generated before exposure of the cells to the

drugs for each of the 53 cell lines. The challenge participants were

provided with the genomic characterization of 53 cell lines, the

GI50 concentrations for 31 compounds (the identity of the drugs

were kept anonymous) on 35 cell lines and a list of the 18 cell lines

whose corresponding GI50 concentrations were not supplied.

Meanwhile, within the training data, all the drug responses or

genomic characterization could not be reliably measured due to

technical reasons. The data was provided pre-publication by Prof.

Joe Gray from Oregon Health & Science University.

The challenge consisted of generating a model capable of

ranking the sensitivity of 18 breast cancer cell lines and placing

them in the proper order to produce a final ranked list of 53 cell

lines for each of the 31 compounds. Since the GI50 concentrations

in the training data are - log10 transformed, the lowest ranking

(1,2,3…) corresponds to the highest GI50 values and the highest

ranks (…,51,52,53) correspond to the lowest GI50 values. The

challenge organizers had recommended to place the cell lines with

NA values at the end of the list and sort them arbitrarily. The

description of the NCI-DREAM drug sensitivity sub-challenge 1

genomic and drug response datasets are shown in tables 1 and 2

respectively. From table 1, we note that the genomic character-

izations were not available for all the 53 cell lines and each dataset

had missing information for some of the cell lines (the number of

such cell lines is denoted by Missing cell lines in table 1). The last

column denotes whether the genomic dataset had some missing

values for the cell lines containing that specific genomic

characterization.

Integrated Ensemble based approach to prediction for
NCI-DREAM Sub-Challenge 1

Our sensitivity prediction approach consists of a weight-based

integrated Random Forest (RF) model to appropriately utilize the

information in different datasets. Since the genomic characteriza-

tions consisted of numerous features, an ensemble approach such

as RF that can utilize the top features based on bootstrap

aggregation is expected to have good performance. A regulariza-

tion approach on linear regression such as elastic net can limit the

number of features but may lack in accuracy due to the nonlinear

interactions among genomic features.

In our modeling approach, we initially generated single RF

regression models based on each data type and subsequently

applied least square regression to estimate the proportional weight

of each individual model. Additionally, for initial validation of

DREAM-Challenge prediction results, we used leave-one-out

(LOO) error estimation to calculate prediction errors of each

individual RF model and the model with the integrated RFs. Even

though LOO error estimation may have high variance from the

true error, we selected LOO for the DREAM challenge

submission due to time complexity considerations (as compared

to bootstrap error estimation) and the availability of small number

of samples where holding out more samples may degrade the

model estimation significantly. However, we have applied

bootstrap error estimation later on for our detailed analysis of

the datasets. For the challenge submission, we selected the model

(from among the individual and combined models) with minimum

prediction error (based on leave-one-out error estimation) as our

final prediction model for each drug. Instead of ranking NA values

arbitrarily as recommended in the challenge, we treat them as new

unknown drug sensitivities to be predicted and rank them

according to our prediction.

As mentioned previously, we generated predictions from

multiple genomic characterizations using RF and then combined

them through a linear regression model to extract the predictive

information from each dataset. Figures 1 and 2 shows the

comparison in terms of LOO prediction errors for combined RF

model and individual RF models for two drugs 10 and 21

respectively. For the NCI-DREAM challenge submission, we used

the gene expression and methylation dataset for individual models

(termed Gene Expression and Methylation in figures 1 and 2) and

combined them through a linear regression approach (termed

Regression in figures 1 and 2). The analysis incorporating the other

datasets is included in a later section. The reference implemen-

tation of Random Forests in MATLAB (Windows Pre-compiled

version [15]) was used for the individual models. The drugs 10 and

21 (whose detailed performance is shown in figures 1 and 2) were

selected randomly. The X-axis in figures 1 and 2 represents the

cell lines that had both gene expression and methylation data for

Table 1. Description of Genomic Datasets for NCI-DREAM drug sensitivity challenge. Out of 53 cell lines, 35 cell lines are used for
training and 18 for testing the prediction accuracy.

Data Type Dimension Missing cell lines Missing values (Y/N)

Gene Expression 46618632 7 N

Methylation 41627551 12 N

RNA seq 44636953 9 Y

SNP6 47627234 6 Y

RPPA 426131 11 N

doi:10.1371/journal.pone.0101183.t001
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the respective drug. Figure 1 illustrates that reduction in error (as

estimated by LOO error estimation) can be achieved by applying

the combined regression RF model (e.g. cell lines UACC812,

MCF12A, MDAMB361 and MDAMB134VI). Figure 3 shows the

normalized leave-one-out errors for prediction using gene

expression data (blue bars), methylation data (green bars) and

the combined gene expression and methylation data (red bars) for

all the 31 drugs. Although, the majority of the combined

predictions have lower leave-one-out errors than the correspond-

ing individual random forest predictions, a lower leave-one-out

error can be achieved through individual prediction for few of the

drugs (e.g. Drug 14, Drug 18). The higher estimated error for the

joint model may be caused by the high variance of the leave-one-

out error estimation. For final prediction of the holdout testing

datasets, we selected the prediction model (gene expression,

methylation or combined regression) with the minimum leave-one-

out error.

Figure 4 shows the average leave-one-out normalized errors

corresponding to the 31 drugs. As figure 4 shows, the majority of

errors are around or below 0:1 or 10 % which possibly denotes

that the generated regression model has high accuracy and is

appropriate for prediction of new drugs. As the drug response GI50

values provided for drugs 5, 24 and 26 are constant, their

prediction errors approach zero. Our final drug sensitivity

rankings along with the gold standard rankings are included as

Information S1.

Comparison with other approaches and NCI-DREAM drug
sensitivity prediction challenge results

We next present the performance of our approach as compared

to other submitted approaches. 47 different teams submitted their

predictions for this challenge and the performance of the top 10

teams are reported in Table 3. The teams were ranked according

to their weighted average probabilistic c-index score (wac-index)

[13] which is described in the methods section. The framework

applied by teamfin and our team (Holmes) achieved the best

prediction accuracy and were relatively ranked first and second.

The rankings of teamfin and Holmes were statistically found to be

significantly robust to perturbations of the gold standard (the p-

value and FDR for the first two teams are distinctly smaller than

the others). There was a second round of evaluation on 12 more

compounds where our approach performed better than teamfin in

terms of wac-index and p-value (results not included).

Additional Analysis of DREAM-Challenge Datasets
In this sub-section, we present results using 5 datasets for

prediction and utilizing 0.632 bootstrap for estimating the

prediction error. We consider the following five types of genomic

characterizations: Gene Expression, Methylation, RNASeq, SNP6

and RPPA (as shown in Table 1). For genetic mutation

information, we used the SNP6 data and didn’t consider the

Table 2. Description of Drug Response Data for NCI-DREAM
drug sensitivity challenge.

Type of Data GI50 [14]

Number of Compounds 31

Number of Cell Lines for Training 35

Number of Cell Lines for Testing 18

doi:10.1371/journal.pone.0101183.t002

Figure 1. Predictions based on each data type (Gene Expression and Methylation) compared to joint prediction (Regression) for
Drug 10.
doi:10.1371/journal.pone.0101183.g001
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Figure 2. Predictions based on each data type (Gene Expression and Methylation) compared to joint prediction (Regression) for
Drug 21.
doi:10.1371/journal.pone.0101183.g002

Figure 3. Prediction accuracy comparison for different models for DREAM challenge submission. Two individual models based on gene
expression and methylation is considered along with the joint model (Regression) of the two genomic characterizations.
doi:10.1371/journal.pone.0101183.g003
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additional Exome sequence data for prediction analysis. The

confidence intervals for our estimated errors are generated using

Jackknife-After-Bootstrap approach [16,17]. Since we considered

mean absolute error (MAE), the lower limit of the confidence

interval is kept at max (0, MAE { s*z) where s is the standard

error estimated using Jackknife-After-Bootstrap approach (see

Methods) and z is the specific quantile of the standard normal

distribution. Based on 5 datasets, there are possible 25{1~31
non-null combinations of the datasets. Figure 5 shows the mean

0.632 Bootstrap error and 80% confidence intervals for Drug 1 for

the 31 different dataset combinations. The datasets are denoted by

binary digits with the following order: Gene Expression (most

significant bit), Methylation, RNASeq, SNP6 and RPPA (least

significant bit). For instance, 10010 denote Gene Expression and

SNP6 data combination. Similarly, figure 6 shows the mean 0.632

Bootstrap error and 80% confidence intervals for Drug 10 for the

31 different dataset combinations. The figures 5 and 6 shows that

the prediction error as estimated by 0.632 Bootstrap reduces when

more datasets are used (left to right denotes the increase in number

of datasets for prediction). The confidence interval also reduces

with the increase in the number of datasets used. For instance, the

0.632 bootstrap error using gene expression data is 0.163 for Drug

1 with 80% confidence interval of 0 to 0.87 whereas use of all five

datasets reduces the 0.632 bootsrap error to 0.075 with 80%

confidence interval of 0 to 0.26. Drug 10 also presents similar

results where the 0.632Bootstrap error reduces from 0.21 for gene

expression to 0.066 for all datasets combined. The confidence

interval is also compressed more than 3.5 times by using all the

datasets as compared to gene expression alone. We also applied

our framework for predicting the sensitivity of the 18 test cell lines

for drug 1 whose gold standard results were provided following the

end of the challenge. When we used gene expression dataset alone

for training and prediction, the root mean square (RMS) error is

0.2087 whereas using all the five datasets produces an RMS error

of 0.1628. The results signify the ability of our framework to lower

the mean absolute error along with the associated variance of the

error estimation by incorporating multiple datasets. To explore the

importance of linear regression part in our framework for

combining the predictions from different datasets, we considered

the simple mean of predictions from each dataset for drug 1 and

obtained a 0.632 bootstrap error of 0.234 for combining 5 datasets

which is much higher than 0.075 obtained through our linear

regression framework.

Figure 7 shows the 0.632 Bootstrap error and 80% confidence

intervals for Drugs 1 to 31 considering all 5 datasets for prediction.

The prediction for drugs 12, 26 and 27 were not considered as

they contained minimal variations in sensitivity. The regression

coefficients of the five individual genomic characterization datasets

in the integrated modeling framework are included as information

S2. Figure 8 shows the coefficient of determination R2 between

predicted and experimental sensitivities using bootstrap samples

for drugs 1 to 31 while considering all 5 datasets for prediction. We

should note that the R2 values are above 0:82 for all the drugs

denoting good prediction accuracy while using five genomic

characterization datasets.

Analysis of CCLE Datasets
In this sub-section we present results for applying our

framework to CCLE [18] datasets. We used two types of genomic

characterization (Gene Expression and SNP6) for our integrated

prediction. We considered 10-fold cross validation for error

estimation as the number of cell lines was relatively large (300 to

500 for each drug). For this analysis, we also considered the top

predictors based on the integrated random forest model. The top

predictors for individual Random Forests were generated based on

Figure 4. Leave-one-out errors for each drug with integrated
random forest model using gene-expression and methylation
datasets.
doi:10.1371/journal.pone.0101183.g004

Table 3. Prediction accuracy and statistical significance of results provided by NCI-DREAM Organizers [13].

Team Rank wac-index p-value FDR

teamfin 1 0.583 5.47E-07 2.57E-05

Holmes 2 0.577 3.05E-06 7.17E-05

Team#352 3 0.570 2.06E-05 2.91E-04

Team#382 4 0.569 2.48E-05 2.91E-04

Team#383 5 0.565 6.88E-05 5.11E-04

Team#421 6 0.564 7.83E-05 5.11E-04

Team#354 7 0.564 7.92E-05 5.11E-04

Team#384 8 0.564 9.14E-05 5.11E-04

Team#571 9 0.564 9.78E-05 5.11E-04

Team#480 10 0.562 1.24E-04 5.46E-04

doi:10.1371/journal.pone.0101183.t003
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the average bootstrap error of the trees in the forest containing the

specific feature. The combined model regression coefficients were

used to generate the top predictors of the joint model from the

predictor weights of the individual models. Some of the top

predictors were then validated by comparing with the top targets

of the drugs that can be obtained from drug target inhibition

profiles [19,21]. Note that not all top predictors will be targets of a

drug as the expression of upstream or downstream proteins of the

drug targets may predict the efficacy of a drug without being

actual targets of the drug.

For the current analysis, the Gene Expression and SNP6

datasets consists of 18,988 and 21,217 genes respectively and drug

responses for around 500 cell lines is available for the following 24

drugs 17AAG, AEW541, AZD0530 (Saracatinib), AZD6244 (Selume-

tinib), Erlotinib, Irinotecan,L685458, Lapatinib, LBW242, Nilotinib,

Nutlin3, Paclitaxel, Panobinostat, PD0325901, PD0332991,

PF2341066 (Crizotinib), PHA665752, PLX4720, RAF265, Sorafenib,

TAE684, TKI258 (dovitinib), Topotecan and ZD6474 (Vandetanib).

Since majority of the applied drugs target the human kinome (the

set of protein kinases), we also consider a smaller set of features

containing around 400 kinase producing genes. The 400 kinases

are selected from drug target inhibition profile studies [19,20]. We

report our prediction results in the form of correlation coefficients

between predicted and experimental sensitivities to directly

compare our results with the recently published CCLE study

[7]. We have also used 10 fold cross validation similar to [7]. The

CCLE study however used multiple other data types (for a total of

150,000 features) but we have used only gene expression and

SNP6. The results of our prediction approach are shown in

Table 4. We note that the average correlation coefficient across

the 24 drugs was 0.421 for the CCLE Elastic net study [7] but our

approach based on only 400 features produced a higher average

correlation coefficient of 0.454 (we will term this approach CRF-

400), an increase of 7.8%. When we used all the features

(18,988 gene expression features and 21,217 SNP6 features), we

were able to increase our average correlation coefficient to 0.473

(we will term this approach CRF-20,000), an increase of 12.4%.

We next applied our framework to select the top predictors for

each drug for both CRF-400 and CRF-20,000. The details on the

top predictors are available as information S3. The top 20

predictors are then compared with the experimentally validated

targets of the drugs based on earlier studies [19,21]. For instance,

the top predictor for the drug Erlotinib based on both CRF-400

and CRF-20000 is EGFR and EGFR is known to be the primary

target of Erlotinib with an IC50 of 0.2 nM [19]. IC50 denotes the

drug concentration required to inhibit the target protein

expression by half. If we consider the drug Lapatinib, the top

predictor selected was ERBB2 for both CRF-400 and CRF-20000.

ERBB2 is the most potent target of Lapatinib (IC50 of 9.2nM [20])

followed by EGFR (IC50 of 10.8 nM [20]). However, EGFR was

selected as the 34th top predictor for CRF-400 and was not picked

up by CRF-20,000. The analysis of the top predictors shows that

CRF-400 has better chances of selecting the experimentally

validated primary targets of a drug in the top 20 predictors as

Figure 5. Mean 0.632 Bootstrap error and 80% confidence intervals for Drug 1 for 31 ( = 25{1) different dataset combinations. The
datasets are denoted by binary digits with the following order: Gene Expression (most significant bit), Methylation, RNASeq, SNP6 and RPPA (least
significant bit). For instance, 01100 denote Methylation and RNASeq data combination.
doi:10.1371/journal.pone.0101183.g005
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compared to CRF-20,000. However, the prediction accuracy is

decreased on an average by 4% by using the smaller set of 400

features. Our ability to select the top drug targets using CRF-

20,000 might be increased if we use more number of trees so that

each feature appears in a large number of trees in the forest.

Furthermore, the inclusion of primary drug targets in the top

predictors of the model will also depend on the dataset. For

instance, if we consider the individual Random Forest (400

features) models for Gene Expression and SNP6 for Erlotinib,

EGFR is selected as the top predictor for Gene expression but

PHKG1 is selected as the top predictor for SNP6. But since the

regression weights in the combined models are 0.89 for gene

expression and 0.11 for SNP6, the top predictor for the

combination model is EGFR. The analysis of the CCLE database

illustrates the predictive capability of the integrated random forest

approach along with the ability to generate top predictors for drug

sensitivity.

Discussion

In this article, we presented an ensemble based approach for

predicting drug sensitivity from genomic characterizations. Pre-

dictions from individual datasets were combined in a linearly

weighted fashion to generate the integrated prediction. The

combined prediction could have been explored in multiple other

ways such as integrating the datasets before designing a learner.

However, the current approach was able to produce high accuracy

prediction for both the initial NCI-DREAM drug sensitivity

challenge and the second round of evaluation. The final weighted

averaging of predictions from different datasets can be considered

as a continuation of ensemble approach where the results from

different forests are combined. Our results show that the Random

Forest approach with averaging over multiple regression trees can

produce robust predictions from individual datasets. Based on this

general idea, we expected the weighted combination of the

predictions from different forests to produce robust prediction

results. Previous DREAM challenges on inference of genetic

regulatory networks have shown that combining predictions from

multiple inference approaches can produce robust prediction

results [22] and the presented approach to drug sensitivity

prediction also combines predictions from multiple learners

trained on multiple data types.

Biological data collection often suffers from noise in measure-

ments and missing information for some of the samples. Thus

combining predictions from multiple learners with low correlation

between themselves is expected to reduce the effect of noise and

avoid over-fitting. For deciding on the joint model or one of the

individual models for each drug, we relied on leave-one-out error

estimation to guide the selection process. Even though leave-one-

out error estimation can have high variance as compared to the

true error, time and sample limitations directed our choice for the

challenge submission. In this article, we also presented the error

estimation using 0.632 Bootstrap and error confidence intervals

Figure 6. Mean 0.632 Bootstrap error and 80% confidence intervals for Drug 10 for 31 ( = 25{1) different dataset combinations. The
datasets are denoted by binary digits with the following order: Gene Expression (most significant bit), Methylation, RNASeq, SNP6 and RPPA (least
significant bit). For instance, 01100 denote Methylation and RNASeq data combination.
doi:10.1371/journal.pone.0101183.g006
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using jackknife-after-bootstrap. For D different genomic or

epigenetic characterizations, we can generate 2D{1 different

non-null combination predictions. A form of error estimation such

as leave-one-out or 0.632 Bootstrap can then be applied to decide

the best combination rather than selecting the prediction from all

the D datasets. Some of the datasets such as mutation data may

not be informative enough for predicting the drug sensitivity alone,

they can then possibly be combined with other data sets to aid in

prediction. For instance, the probability of selecting the expression

from a mutated gene in prediction can be increased to provide

higher weights to genes with existing mutations. Our results

indicate that the current framework is suitable in reducing the

0.632 bootstrap error for combining multiple datasets as shown in

figures 5 and 6 where mean 0.632 bootstrap error and error

variance reduces with increase in different genomic characteriza-

tions for prediction.

For the NCI-DREAM challenge results, we had applied the

prediction approach for each drug separately. For the second

round of evaluation, we had to predict the response to 12 drugs

based on the genomic characterizations of the cell lines and we

could have used the response of the cell lines to the earlier 31 drugs

(the gold standard for the first round of challenge). The inclusion

of the response to the earlier drugs as 31 additional features in a

Random Forest didn’t noticeably improve our accuracy (as

estimated by leave-one-out errors) and thus our predictions for

second round of evaluation were based on genomic characteriza-

tions alone. However, if more information on the drugs are

provided such as the EC50 s of individual targets of the drugs, the

response of a cell line to drugs with known target inhibition profiles

can be extremely useful in predicting the response to a new drug

with known target inhibition profile [23]. The target inhibition

profile refers to the percent inhibition of different targets (such as

Kinases) at the applied drug concentration [19,21].

Materials and Methods

Let us consider that we have D types of heterogeneous genomic

characterizations denoted by w1,w2, � � � wD. For pre-processing of

the genomic data, any missing value was estimated by averaging

the two nearest data points. Other missing value estimation

approaches can also be applied [24]. Let n denote the number of

samples available for training the predictive models with given

drug response x. Our approach to generate the final combined

models consists of the following (a) Generate D Random Forest

based predictive models from each genomic characterization

dataset (the details are provided in the next sub-section) (b) Design

linearly weighted integrated models from the 2D{1 possible

combination of datasets using least square regression for estimating

the model weights. (c) Estimate the efficacy of the combination

models based on 0.632 Bootstrap or Leave-one-out error

estimation. The combination model with the smallest error is

selected as the final integrated model for future predictions. The

steps in the design of the integrated model are shown graphically

in figure 9.

Figure 7. Mean 0.632 Bootstrap error and 80% confidence intervals for Drugs 1 to 31 considering all 5 datasets for prediction. The
prediction for drugs 12, 26 and 27 were not considered as they contained minimal variations in sensitivity.
doi:10.1371/journal.pone.0101183.g007
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Random Forest Approach
Random Forest regression refers to ensembles of regression trees

[25]. A set of T un-pruned regression trees are generated based on

bootstrap sampling from the original training data. We considered

T~500. For each node, a random set of m features selected from

the total features (M) is used for fitting a regression tree based on

the bootstrap sample. We considered m~M=3. Since the number

of important features for predicting the drug sensitivity maybe a

small fraction of the overall set of features, we considered a large m
to avoid missing the important features during the randomized

feature selection process. For instance, if the number of important

features is denoted mt, the probability Pr(M,m,mt) of not selecting

any of the important features in one randomized variable selection

process is given by

M{mt

m

� �
M

m

� � . As a numerical example, with

m~M=3, we have Pr(900,300,10)~0:0169 and a smaller

m~M=30 results in a higher probability Pr(900,30,10)~0:7112
of not selecting any of the important features in any random node.

However, higher m can increase the correlation between the

regression trees and thus possibly increase the variance of the

overall random forest prediction.

Using the randomized feature selection process, we fit the tree

based on the bootstrap sample f(X1,Y1),:::,(Xn,Yn)g generated

from the training data. During the tree generation process, a node

with less than nsize training samples is not partitioned any further.

We selected nsize~5. Let us consider the prediction based on a test

sample X for the tree H. Let Pn(X, h) be the partition containing

X, the tree response takes the form [25,27]

h(X,H)~
Xn

i~1

wi(X,H)Yi ð1Þ

where the weights wi(X,H) are given by

wi(X,H)~
1fXi[Pn(X,H)g

#fj : Xi[Pn(X,H)g ð2Þ

Let the T trees of the Random forest be denoted by H1, � � � ,HT

and let wi(X) denote the average weights over the forest i.e.

wi(X)~
1

T

XT

j~1

wi(X,Hj): ð3Þ

The Random Forest prediction for the test sample X is then

given by

h(X)~
Xn

i~1

wi(X)Yi ð4Þ

Figure 8. The coefficient of determination R2 between predicted and experimental sensitivities using bootstrap samples for Drugs
1 to 31 while considering all 5 datasets for prediction. The prediction for drugs 12, 26 and 27 were not considered as they contained minimal
variations in sensitivity.
doi:10.1371/journal.pone.0101183.g008
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Integration of predictions from multiple data-types
Let i(j) denote the prediction obtained by Random Forest

approach for genomic characterization dataset Gi and cell line j.

To utilize the biological information in different datasets for

prediction, we consider a linearly weighted combination model.

We use least square regression to estimate the weights for each

dataset Gi by minimizing

X
j

(Yj{
X

i

ai i(j))
2

where Yj is the experimental drug response for cell line j, ai is the

corresponding weight of dataset Gi.

Following the generation of the weights of the individual

datasets, the combined prediction result UC(j) is generated as

follows:

UC(j)~
X

i

aiUi(j):

Normalization and error calculation
Following the generation of predictions from our integrated

random forest approach, we normalized the predicted and

experimental drug sensitivities between 0.0 and 1.0 by min-max

normalization [28]. The normalized prediction C(j) and actual

drug response ŶYj were calculated as follows:

C(j)~
C(j){minj[P( C(j),Yj)

maxj[P( C(j),Yj){minj[P( C(j),Yj)
:

ŶYj~
Yj{minj[P( C(j),Yj)

maxj[P( C(j),Yj){minj[P( C(j),Yj)
:

where P denotes the set of all available cell lines. After

normalization, the corresponding error Ej of cell line j was

Table 4. CCLE Drug sensitivity prediction results in the form of correlation coefficients between experimental and predicted
sensitivities.

Correlation Co-efficients

Drug Name Elastic Net [7] CRF-400 CRF-20,000

17AAG 0.43 0.4116 0.4397

AEW541 0.33 0.4037 0.3934

AZD0530 (Saracatinib) 0.18 0.2855 0.2747

AZD6244 (Selumetinib) 0.58 0.516 0.5909

Erlotinib 0.3 0.4034 0.4333

Irinotecan 0.68 0.6214 0.6776

L685458 0.47 0.5351 0.5423

Lapatinib 0.45 0.5488 0.5263

LBW242 0.08 0.184 0.1400

Nilotinib 0.76 0.5458 0.5476

Nutlin3 0.1 0.2892 0.3096

Paclitaxel 0.6 0.5453 0.5531

Panobinostat 0.65 0.616 0.6503

PD0325901 0.64 0.5837 0.6471

PD0332991 0.58 0.5077 0.5141

PF2341066 (Crizotinib) 0.36 0.5121 0.5055

PHA665752 0.27 0.3393 0.3437

PLX4720 0.55 0.4459 0.4768

RAF265 0.35 0.4378 0.4394

Sorafenib 0.27 0.4099 0.4685

TAE684 0.35 0.4073 0.4453

TKI258 (dovitinib) 0.3 0.4463 0.4611

Topotecan 0.58 0.5619 0.6226

ZD6474 (Vandetanib) 0.24 0.3331 0.3494

Average 0.421 0.454 0.473

Elastic Net denotes the approach applied in [7] for predicting sensitivity using 10-fold cross validation from CCLE database. CRF-400 denotes our proposed combined
Random Forest approach using gene expression and SNP6 data of only 400 genes. CRF-20000 denotes our proposed combined Random Forest approach using
18,988 gene expression and 21,217 SNP6 features.
doi:10.1371/journal.pone.0101183.t004
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generated as D C(j){ŶYj D, both for the bootstrap error Ebsp
j and the

leave-one-out error Eloo
j .

Consider C bootstrap samples created from the n samples

X1,X2, � � � ,Xn. Let Sj the set of bootstrap samples not containing

cell line j, then the overall bootstrap error of cell line j can be

computed as follows:

�EEbsp
j ~

1

DSj D

X
i[Sj

Ebsp
ji :

The corresponding 0.632 bootstrap error can be computed as

E632bsp
j ~0:632�EEbsp

j z0:368Eresub
j , where Eresub

j denotes the re-substi-

tution error for cell line j. For re-substitution error calculations, all

the cell lines were used for training and testing the integrated

Random Forest model.

For leave-one-out error calculations, let Eloo
j denote the

normalized error in prediction when the set of cell lines P\j were

used for training the integrated Random Forest model and tested

on the cell line j. The average leave-one-out error across all cell

lines for a drug is calculated as follows:

�EEloo~
1

DPD

X
i[P

Eloo
i :

Generation of Confidence Intervals
For detailed analysis of DREAM challenge datasets, we

employed Jackknife-After-Bootstrap approach [16,17] for gener-

ating the confidence intervals of the 0.632 Bootstrap errors. Let Sk

denote the set of bootstrap samples that do not contain sample Xk

and denote by Ek, the 0.632 bootstrap estimate computed from Sk.

The standard error can be computed as

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n{1

n

Xn

k~1

(Ek{�EE)2

s
ð5Þ

where �EE~(1=n)
P

k~1
n Ek. The 100(1{a) % prediction intervals

for the true error can be computed as [�EE{sza=2, �EEzsz1{a=2] where

za is the a quantile of the standard normal distribution. Since we

consider the absolute error, the lower bound of the confidence

interval is calculated as maxf0,�EE{sza=2g.

DREAM challenge evaluation approach
The predictions of our model, as well as of other participants in

NCI-DREAM drug sensitivity prediction challenge were evaluated

in terms of an overall score (wac� index [13]) based on actual

experimentally determined cell-line rankings. Since the actual

ranking for a given drug is subject to uncertainties, a pooled

standard deviation s for each drug is used to account for these

uncertainties. The pooled standard deviations were measured drug-

wise and independent of the cell lines. For each drug, an individual

score (c� index) of the concordance between the experimental and

predicted ranking lists was calculated using the Gauss error function

erf . Specifically, let E and P denote the experimental and predicted

ranking vectors, respectively. For cell line pair i and j, a score SC is

Figure 9. Integrated Model Design Workflow: (A) Random Forest models based on individual genomic characterizations are generated (B)
Integrated models are generated based on different combinations of individual models using least squares regression for estimating the model
weights (C) the combination with lowest error as estimated using leave one out (LOO) or 0.632 Bootstrap error estimation is selected.
doi:10.1371/journal.pone.0101183.g009
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computed as follows: SC = 0.5(1+erf[(Ei 2 Ej )/
ffiffiffiffiffiffiffi
2s2
p

]). For the case of

EiwEj and PiwPj , c{index is increased by SC; otherwise if

PivPj , it is increased by 1{SC. Furthermore, if Ei~Ej while i=j,

c� index is added a score of 0.5. The final c� index for each drug is

normalized and a larger score indicates greater statistical significance of

the prediction.

After obtaining the c� index for individual drugs, an overall

score was calculated as the weighted average across all the 31

drugs. To compute the weight wk for drug k, an empirical null

distribution of 10,000 random sets of predictions was generated.

Let mk and sdk denote the mean and standard deviation of the

random predictions, bc� indexk indicates the best c� index

acquired from the experimentally determined ranking, then

wk~(bc� indexk{mk)=sdk. Eventually, a team’s overall

score wac� index can be defined as wac� index~

(
P

k~1
31 wk

:c� indexk)=
P

k~1
31 wk.
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