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Minireview

Toward a More Precise and Informative Nomenclature Describing Fetal and Neonatal
Male Germ Cells in Rodents1
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Department of Biology, University of Texas at San Antonio, San Antonio, Texas

ABSTRACT

The germ cell lineages are among the best characterized of all
cell lineages in mammals. This characterization includes precise
nomenclature that distinguishes among numerous, often subtle,
changes in function or morphology as development and
differentiation of germ cells proceed to form the gametes. In
male rodents, there are at least 41 distinct cell types that occur
during progression through the male germ cell lineage that gives
rise to spermatozoa. However, there is one period during male
germ cell development—that which occurs immediately follow-
ing the primordial germ cell stage and prior to the spermato-
gonial stage—for which the system of precise and informative
cell type terminology is not adequate. Often, male germ cells
during this period are referred to simply as ‘‘gonocytes.’’
However, this term is inadequate for multiple reasons, and it is
suggested here that nomenclature originally proposed in the
1970s by Hilscher et al., which employs the terms M-, T1-, and
T2-prospermatogonia, is preferable. In this Minireview, the
history, proper utilization, and advantages of this terminology
relative to that of the term gonocytes are described.

gonocytes, male germ cells, prospermatogonia

BACKGROUND

In both male and female mammals, the germ cell lineages
are typically the first future adult cell type to be specified in the
embryo proper [1, 2]. Once specified, these lineages follow
dynamic differentiation pathways that are largely sexually
dimorphic and include distinguishable stages throughout
embryonic, fetal, neonatal, pubertal, and adult development
[3–8]. In both sexes, these different stages are typically
distinguished by distinct terminology for each different cell
type within each developing lineage. Thus, germ cells initially
appear as primordial germ cells (PGCs) in the developing
embryo at a stage approximately coincident with gastrulation in
rodents [1, 4, 9–11]. As in all other vertebrate (and several
invertebrate) species studied to date, mammalian PGCs do not
arise in the same region as the gonadal anlagen, but are rather

derived from the epiblast and subsequently migrate to and
colonize the developing genital ridges so as to be properly
located to participate in gametogenesis [1, 10]. During the PGC
stage, the germ cells appear similar in both males and females.
However, following initiation of sexual differentiation of the
gonads, which occurs in gonadal somatic cells and does not
require the presence of germ cells [5, 12, 13], ovarian germ
cells enter an oogenic pathway, whereas testicular germ cells
enter a spermatogenic pathway [7]. From this point on,
development and differentiation of the germ cells is dimorphic
in males and females.

Following gonadal sex differentiation in fetal female
rodents, mitotically active germ cells are termed ‘‘oogonia.’’
These cells then enter meiosis as ‘‘primary oocytes,’’ and once
they reach the dictyate stage of first meiotic prophase, they
enter a meiotic arrest that is maintained until adulthood [7]. A
series of terms are used to characterize different stages of
developing follicles and the oocytes within these follicles (for
review, see Ref. 14). These terms distinguish different stages of
maturation of the follicles as well as distinguishing oocytes in
different stages of first or second meiosis prior to fertilization.

In fetal male rodents, PGCs give rise to germ cells that are
initially mitotically active, but which then enter a mitotic arrest
during mid-late fetal development that persists until a few days
after birth, when mitotic activity resumes in these cells such
that, a few days later, they give rise to spermatogonia, which
are premeiotic spermatogenic cells. There is more than one
system of terminology used to distinguish different stages of
spermatogonial development and/or different types of sper-
matogonia in rodents, and other nomenclature systems are used
to describe spermatogonia in other mammalian species,
including primates (see detailed review in Ref. 15). All
systems designate at least two types of spermatogonia—type
A and type B, with type A being further subdivided to include
undifferentiated spermatogonia (As-Apr-Aal) with little or no
heterochromatin visible in the nucleus and early differentiating
spermatogonia (A1-A4) with visible heterochromatin in the
nucleus, and type B referring to later differentiating spermato-
gonia, also with visible heterochromatin. The most common
terminology system used to describe various types of
spermatogonia in rodents includes 11 types: As, Apr, Aal4,
Aal8, Aal16–32, A1, A2, A3, A4, In, and B spermatogonia [15].
Among these spermatogonial types, the As spermatogonia are
believed to represent functional spermatogonial stem cells
(SSCs) [15].

Subsequent to the spermatogonial stage in male mammals,
spermatogenic cells enter meiosis, which includes several
specific stages during first meiotic prophase (preleptotene,
leptotene, zygotene, pachytene, and diplotene), followed by
metaphase I and anaphase I to give rise to secondary
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spermatocytes (at least eight types of spermatocytes) that then
rapidly divide to yield postmeiotic, haploid spermatids.
Spermatids are divided into round spermatids, elongating or
condensing spermatids, and elongated or condensed sperma-
tids, and these cells give rise to testicular spermatozoa.
Spermatid differentiation is also known as spermiogenesis,
and this process has been divided into at least 16 different steps
[16]. Testicular spermatozoa are released from the seminiferous
epithelium by a process called spermiation [16], and are then
collected in the rete testis from where they exit the testis and
enter the epididymis. Epididymal spermatozoa can be distin-
guished on the basis of the portion of the epididymis in which
they reside at any one time. This includes at least three different
regions (the caput, corpus, and cauda epididymis), but has
sometimes been divided into more segments [17, 18]. It is in
the epididymis that spermatozoa acquire the traits of motility
and fertility [17]. Finally, the spermatozoa move out of the
epididymis into the vas deferens from where they are
subsequently released upon ejaculation. Thus, it is possible to
distinguish at least five types of spermatozoa in the adult male
(testicular, caput epididymal, corpus epididymal, cauda
epididymal, and vas deferens spermatozoa).

A PERIOD FOR WHICH CURRENT TERMINOLOGY
IS DEFICIENT

The nomenclature described above reflects the facts that
germ cell development and differentiation are quite well
characterized in each sex, and that these are highly dynamic
processes for which extensive cell type-specific terminology is
used to distinguish the numerous different stages and/or
processes involved in spermatogenic or oogenic differentiation.
As described above, in the case of male germ cell development
and differentiation, at least 41 distinct cell type designations
span the PGC (1 designation), spermatogonial (11 designa-
tions), spermatocyte (8 designations), spermatid (16 designa-
tions), and spermatozoon (5 designations) phases of the male
germ line. However, there is one notable exception to the rule
that different developmental stages, morphologies, or functions
in developing male germ cells are commonly distinguished by
the use of distinct cell type-specific terms—the period during
fetal and neonatal development of the male germ cell lineage
that immediately follows the PGC stage and precedes the
spermatogonial stage in rodents. In male mice, this period
typically extends from approximately 13.5 days postcoitum
(dpc) to approximately 3–6 days postpartum (dpp). Some
authors have extended the use of the term PGCs to describe
fetal/neonatal male germ cells [19]. Others have used the term
‘‘fetal spermatogonia’’ [20–22]. However, the most commonly
used term to describe male germ cells during this period has
been ‘‘gonocyte(s)’’ [20] or ‘‘I-gonocyte(s)’’ or ‘‘II-gono-
cyte(s)’’ [23]. The term gonocyte was first introduced in the
literature by Clermont and Perey [24], and has been frequently
used since then [e.g. 15, 25–50]. While this term carries
significant historical value and has had widespread use, it is
otherwise less than optimal as a means of describing the
various types of male germ cells that occur during this period.

DEFICIENCIES ASSOCIATED WITH USE OF THE TERM
GONOCYTE

Deficiencies presented by use of the term gonocyte can be
grouped into at least two categories: 1) failure of this term to
implicitly convey the intended cell identity, and 2) the need for
more than one term to describe the various types of, and/or
activities ongoing in, male germ cells during this period. Taken
literally, the term gonocyte means simply ‘‘gonadal cell.’’ As

such, this term does not implicitly convey the identity of this
cell as a germ cell rather than a somatic cell. Nor does this term
provide any indication of the sex of the individual in which this
cell type is found, as opposed to all other terms for specific
germ cell types following the PGC stage, which uniformly
include the root ‘‘oo’’ to indicate female, oogenic germ cells or
‘‘spermato’’ to indicate male, spermatogenic germ cells.
Indeed, there are examples in the literature where the term
gonocyte(s) has been used to refer to both male and female
germ cells [22, 51]. Furthermore, the term gonocyte provides
no implicit indication of the developmental stage at which
these cells occur relative to other cell types in the male germ
lineage. By comparison, the terminology used to describe
female germ cells that occur during this same developmental
period includes the term oogonia for the cells that are still
dividing mitotically, and primary oocytes for the cells that have
entered first meiotic prophase. These terms effectively convey
the identity of these cells as female germ cells (by use of the
root oo) and as either premeiotic (by use of the root ‘‘gonia/
um’’) or meiotic (by use of the root ‘‘cyte[s]’’) germ cells, and
the fact that these oocytes precede later types of oocytes in the
female germ cell lineage (by use of the term ‘‘primary’’). In
contrast, the term gonocyte(s) fails to convey any of the
equivalent information regarding male germ cells during this
same developmental period.

As noted above, development of fetal and neonatal male
germ cells prior to the spermatogonial stage includes a period
of mitotic activity, followed by mitotic arrest, followed by
resumption of mitotic activity. The term gonocyte fails to
distinguish among these periods of cellular activity. Thus,
different authors have used the single term, gonocyte(s), to
describe different populations of male germ cells, in some
cases referring to the mitotically active male germ cells that
immediately follow the PGC stage (e.g., Ref. 41), or, in other
cases, referring to the mitotically quiescent cells that occur in
the male germ line during the latter portion of fetal
development and/or early neonatal development (e.g., Ref.
25), or, in still other cases, referring to the mitotically active
male germ cells that immediately precede the formation of
spermatogonia (e.g., Ref. 31).

We now know that a variety of different functions are
achieved during each of these phases of fetal/neonatal male
germ cell development. Expansion of the male germ cell (and
future spermatogonial) pool appears to be a primary product of
the first round of mitotic activity in male germ cells
immediately following the PGC stage. During the phase in
which male germ cells are in mitotic arrest, extensive
epigenetic reprogramming occurs [52–57]. Whether or not
mitotic quiescence is required to facilitate this epigenetic
reprogramming is not known, but the correlation between these
two events is intriguing. Finally, during the phase of renewed
mitotic activity of male germ cells just prior to the
spermatogonial stage, there is further expansion of the male
germ cell pool, and there is also evidence that differences in
developmental potential among subsequent spermatogonia are
first manifest at this time [58–66]. These distinctions in cellular
activity among male germ cells at various stages of fetal and
neonatal development warrant distinguishing terms to identify
each different male germ cell function or activity during this
period.

PREFERABLE TERMINOLOGY FOR FETAL AND
NEONATAL MALE GERM CELLS IN RODENTS

A nomenclature that avoids all of the deficiencies of the
gonocyte terminology described above was introduced in a
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series of studies published in the 1970s by Hilscher et al. [29,
67–70]. These authors made the case that male germ cell
development can be divided into three major phases, which
they termed the ‘‘pregonadal period’’ (the period of PGC
specification and migration to the genital ridges), ‘‘presperma-
togenesis’’ (a phase during fetal and neonatal development in
male rodents characterized by proliferation and differentiation
of the precursors of the mature germ cells later found in the
adult testis), and ‘‘spermatogenesis’’ (the maturation of the
male germ cells to form spermatozoa in the pubertal and adult
testis). To describe the male germ cells that occur during the
prespermatogenesis phase, Hilscher et al. [70] proposed the
term ‘‘prospermatogonia’’ (plural) or ‘‘prospermatogonium’’
(singular). Thus, these terms have existed in the literature for
nearly 40 yr. This terminology has the advantage that it clearly
conveys germ cell identity based on inclusion of the root gonia
or gonium. It further clearly conveys the identity of a male
germ cell, because it contains the root spermato. In addition,
this terminology implicitly conveys the fact that these are
mitotic cells, because the root gonia/um is similar to the use of
the same root in the terms oogonia/um or spermatogonia/um,
both of which are premeiotic germ cells (note that the term
gonocyte is further problematic in this regard, because the root
cyte used in this term to identify mitotic cells leads to
confusion with the terms spermatocytes or oocytes that
designate meiotic stages of the male and female germ cell
lineages). Finally, the term prospermatogonia/um conveys the
timing of occurrence of this cell type in the developing male
germ cell lineage on the basis of inclusion of the root ‘‘pro,’’
which implies that these cells occur prior to the spermatogonia/
um stage.

Hilscher et al. [70] also proposed terminology to distinguish
among the three different periods of replication activity (or lack
thereof) that occur in fetal/neonatal male germ cells in rodents.
Thus, these authors proposed the terms ‘‘M-prospermatogo-
nia’’ to represent the ‘‘multiplying prospermatogonia’’ that
occur immediately following the PGC stage, ‘‘T

1-prosper-
matogonia’’ to represent ‘‘primary transitional prospermatogo-
nia’’ that are in ‘‘the first state of transition between the M-
prospermatogonia and the A-spermatogonia’’ and are also in
mitotic arrest, and ‘‘T2-prospermatogonia’’ to represent
‘‘secondary transitional prospermatogonia’’ that are in ‘‘the
second state of transition to the A-spermatogonia’’ and are
mitotically active [70]. After undergoing a few rounds of
mitotic replication, T2-prospermatogonia give rise to type A
spermatogonia, and this marks the end of the prespermato-
genesis phase and the beginning of the spermatogenesis phase.
The occurrence of each type of prospermatogonium is largely
consecutive (Table 1), although it is possible to have both M-
and T1- or T1- and T2-prospermatogonia present simultaneous-
ly during the transition period between each cell type. Note—
the term ‘‘prespermatogonia/um’’ has also been used in the
literature to describe these same cell types [71], but this tends
to confuse the terminology for the specific cell types with the
terminology for the process of prespermatogenesis, and so is
more confusing than informative.

Interestingly, Hilscher et al. [29, 67–70] made the point that
the morphology of M-prospermatogonia is initially similar to
that of oogonia at the equivalent developmental period, and
that sexual dimorphism between developing male and female
germ cells is really first visible on the basis of distinctions
between T1-prospermatogonia, which enter mitotic arrest, and
primary oocytes, which have entered first meiotic prophase at
the equivalent developmental stage. However, in a later
publication, Hilscher and Hilscher [72] noted that a more
subtle distinction between male and female germ cell

development may be seen slightly earlier, at the end the first
proliferation wave of M-prospermatogonia and oogonia,
respectively, when the cell cycle is seen to be slightly shorter
in male germ cells than in female germ cells [73]. In their
publication in 1974, Hilscher et al. [70] provided a schematic
comparison of development of male and female germ cells that
is reproduced here as Figure 1.

This reveals striking parallels between male and female
germ cell development, despite the fact that these lineages are
distinguished by entry of fetal female germ cells into meiosis
while fetal male germ cells remain mitotic [6]. Hischer et al.
[70] described this parallel development of female and male
germ cells as follows: ‘‘The final comparison of the female and
male gametogenesis shows that the ‘gonia stage’ of the female
germ cells is limited to one proliferation wave only (first part of
oogenesis), whereas the ‘gonia stage’ of the male germ cells
consists of a first proliferation wave—comparable to that of
oogonia—(first part of prespermatogenesis), a preparation
phase to initiate spermatogenesis (second part of prespermato-
genesis), and a second proliferation wave with renewal and
differentiation of the spermatogonia (third part of prespermato-
genesis).’’ Hilscher and colleagues also provided extensive
detailed descriptions of the morphological features that
characterize and distinguish M-, T1-, and T2-prospermatogonia
in the rat [23, 68–70], although the identification of convenient
protein markers for each prospermatogonial cell type is still
lacking. They later extended the application of this terminology
to the mouse [72], and have also discussed its potential use to
describe early male germ cells in humans as well [74, 75].

The terms M-, T1-, and T2-prospermatogonia are congruent
with those used to describe male germ cells at all other stages
of male gametogenesis. Table 1 (modified from McCarrey
[76]) demonstrates how the M-, T1-, and T2-prospermatogonia
can be integrated into the terminology system used to describe
the complete development and differentiation of the male germ
line—from PGCs to spermatozoa.

HISTORICAL PERSPECTIVES

As noted above, there is no doubt that the term gonocyte has
a long-term and widespread history in the literature, including
descriptions from pioneers in the field of male germ cell
biology, such as Clermont and Perey [24], Huckins and
Clermont [30], Holstein and Wartenberg [20], Wartenberg et
al. [21], and many others (e.g., Refs. 15, 25–50]. Interestingly,
however, Wartenberg [32] was subsequently one of the first to
adopt the prospermatogonia nomenclature proposed by Hilsch-
er et al. [70].

Thus, gonocyte(s) has been, indisputably, the most
commonly used term in the literature to describe fetal and
neonatal male germ cells in rodents, and often in primates as
well. However, the frequency of use of a term does not
necessarily establish it as the preferable choice as the most
precise or informative term. Indeed, it is worth considering the
context in which this term was initially proposed. In the
original paper in which the term gonocyte was first employed,
Clermont and Perey used this term to refer to ‘‘large cells’’
contained in the sex cords in rat fetuses at 15–21 dpc and in
newborn rats at 1 dpp [24]. They provided the following
description of these cells: ‘‘The gonocytes, located in the
central region of the sex cords, had a large, light, spherical
nucleus containing fine chromatin granules and two or more
globular nucleoli, as well as a clearly visible cytoplasmic
membrane. These cells were numerous in the late fetus and less
abundant thereafter.’’ [24]. These authors also discussed a
second cell type within the seminiferous cords, which they
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referred to as ‘‘supporting cells.’’ These cells were described as
‘‘located along the basement membrane, with variable size
nuclei containing coarse chromatin granulations which delin-
eated both nuclear membrane and nucleolus as well as by a
thin, scarcely visible cytoplasmic membrane’’ [24]. They
concluded that, ‘‘although many gonocytes degenerated, some
of them produced type A spermatogonia, which, in turn,
produced all the other cells of the germ cell lineage.’’ They also
concluded that ‘‘the supporting cells eventually became Sertoli
cells and played no role in the production of definitive germ
cells’’ [24]. Thus, this latter, supporting somatic cell type is
presumably what is commonly referred to as ‘‘pre-Sertoli
cells’’ in the current literature [77], and this stands as an
example of a more precise and informative term (pre-Sertoli

cells) replacing an earlier, less descriptive term (supporting
cells).

It seems likely that the rather generic term, gonocyte(s), was
considered adequate when it was first used to describe fetal and
neonatal male germ cells, because, for the majority of the time
during this period, the male germ cells are quiescent with
respect to replication activity, and undergo only relatively
minor changes in morphology. Clermont and Perey [24]
referred to some changes in the size of gonocytes or their
nuclei, as well as the appearance of mitotic figures in some of
these cells, and they also noted that many gonocytes
degenerated, but no discussion of function(s) ongoing in these
cells was presented. Indeed it is possible that, to many early
investigators, it was not clear that these cells performed any

TABLE 1. The male germ cell line in rodents.*
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significant function other than spanning the period between
initial development of PGCs in male embryos and the
subsequent appearance of spermatogonia and initiation of
spermatogenesis in prepubertal-adult males. In this regard, the
fetal/neonatal period of male germ cell development in rodents
has more recently been termed ‘‘the forgotten cells of the
(male) germ cell lineage’’ [45].

Thus, it is to the credit of the Hilschers and their colleagues
that they recognized the subtle changes ongoing in fetal-
neonatal male germ cells and took the initiative to propose
terms to distinguish specific male germ cell types within this
period. Specifically, they proposed terms that not only
distinguished different stages during this period, but also
conveyed the identity of these cells as male germ cells that
precede spermatogonia. Although use of the term gonocyte(s)
has persisted in the literature, several investigators have
adopted the prospermatogonia/um terminology. As noted
above, one of the earliest of these was Wartenberg [32]. In
addition, Dr. Anne McLaren also adopted this terminology
early on, and actually initiated direct contact with the Hilschers
to learn about the proper use of this (then) new nomenclature,
which then led to a Ph.D. student, Ms. Maxine Sutcliffe, from
the group of Anne McLaren and Paul Burgoyne, traveling to
the Hilschers’ laboratory to learn how to recognize the different
prospermatogonial stages in mice (P. Burgoyne, personal
communication), especially for subsequent use in investiga-
tions of the effects of sex chromosomes and sex-linked genes
on germ cell development and germ cell sex differentiation
[78–81]. Thus, while it was a father of the field of
spermatogenesis (Clermont) who coined the term gonocyte(s)
[24], it was another father of the field (Wartenberg) [32] as well
as the mother of the field of germ cell developmental biology
(McLaren) [78–82] who recognized the value and promoted the
use of the more precise and informative prospermatogonia/um
terminology following its original introduction by Hilscher et
al. [70]. This has been followed by use of the prosper-
matogonia/um terminology by many other authors and
laboratories (e.g., Refs. 52, 76, 83–95). Therefore, while
gonocyte(s) remains the most frequently used term in the

literature to describe fetal/neonatal male germ cells in rodents,
the term prospermatogonia/um has also experienced, and
continues to gain, widespread use.

FUNCTIONAL PERSPECTIVES

Findings published in recent years have informed our
understanding of molecular processes ongoing during fetal and
neonatal male germ cell development in rodents. These include
studies of gene expression patterns and factors that regulate
differential gene expression in developing male germ cells
[45]. However, one of the most active molecular processes
ongoing during the prospermatogonial stages in male germ
cells and the equivalent oogonia/oocyte stages in female germ
cells is epigenetic reprogramming. Significant epigenetic
reprogramming occurs in the preimplantation embryo [52,
96–99]. Somatic cell lineages largely retain global methylation
patterns established in the early embryo and subsequently
undergo only locus- and lineage-specific changes in DNA
methylation associated with regulation of tissue-specific gene
expression characteristic of each individual somatic cell type
[96, 98]. On the other hand, the PGCs undergo another,
germline-specific wave of global genomic reprogramming that
begins with erasure of nearly all DNA methylation, including
that at imprinted genes and at many repeated sequences, which
begins as the migrating PGCs colonize the developing genital
ridges and is complete by the M-prospermatogonia stage in
males and the oogonia stage in females [52, 99]. Thus, fetal
germ cells in both sexes reach a unique ‘‘epigenetic ground
state’’ [100, 101] that is not found in any other cell type in the
body at any other developmental stage. This is followed by yet
another wave of global remethylation of germ cell genomes,
which takes place primarily in T1-prospermatogonia in males
and during oocyte development and maturation in females [52,
102].

This second major wave of epigenetic reprogramming,
which is unique to the germ line in both sexes, and specific to
T1- and T2-prospermatogonia in males, achieves multiple
functions. It has been demonstrated that potentiation of
expression of germ cell-specific genes that will be subsequent-

FIG. 1. Oogenesis and prespermatogenesis as originally presented by Hilscher and colleagues. The diagram, reproduced with permission from Hilscher
et al. [70], shows the parallel differentiation pathways of female (left) and male (right) germ cell development emphasizing the period between the PGC
stage and folliculogenesis (in females) or spermatogenesis (in males). This marked the original usage of the terms ‘‘M-prospermatogonia,’’ ‘‘T1-
prospermatogonia,’’ and ‘‘T2-prospermatogonia’’ to describe male germ cells during the fetal and neonatal periods in rodents, also known as the period of
prespermatogenesis.
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ly expressed during later stages of gametogenesis begins in
fetal germ cells [52, 103]. This is also believed to be a period
when the germline genomes become programmed to properly
direct development of progeny produced by natural reproduc-
tion [99, 101]. In addition, this is the stage at which imprinted
genes are biallelically reprogrammed in each sex such that
paternally imprinted genes will become biallelically methylated
in spermatogenic cells, while maternally imprinted genes will
be biallelically methylated in oogenic cells [104]. Finally, this
epigenetic reprogramming process that is unique to the
developing germ line has recently been shown to correct
certain types of epimutations induced by conditions associated
with assisted reproductive technologies [105].

Global remethylation of the male germline genome is
initiated in T1-prospermatogonia, and is largely completed
before the appearance of T2-prospermatogonia [52, 102].
However, some gene-specific reprogramming, including com-
pletion of acquisition of DNA methylation associated with
certain paternally imprinted genes [106] and gene-specific
demethylation that precedes transcriptional activation of certain
spermatogenesis-specific genes [52, 103], continues in T2-
prospermatogonia and even in early spermatogonia, at least
during the initial wave of spermatogenesis. The timing of this
major wave of epigenetic reprogramming in prospermatogonia
is uniquely advantageous, because it precedes the stage of the
adult SSC. Thus, epigenetic reprogramming that is achieved
once in prospermatogonia merely needs to be maintained
thereafter in SSCs and subsequent spermatogenic cell types. If,
on the other hand, de novo epigenetic programming were to
normally occur in spermatogenic cells following the SSC stage,
it would have to be accomplished anew during each subsequent
wave of spermatogenesis, which would seem to involve an
undesirable, repeated expenditure of energy throughout the
lifetime of the male.

While T1-prospermatogonia represent a stage during which
major epigenetic reprogramming occurs in developing male
germ cells, T2-prospermatogonia appear to represent a stage at
which discrimination among early male germ cells is manifest
to determine which prospermatogonia will give rise to adult
SSCs and, hence, to all subsequent waves of spermatogenesis
in each individual male. Thus, a variety of lines of evidence
indicate that the population of T2-prospermatogonia present in
the neonatal male is heterogeneous with respect to potential to
form SSCs. For instance, the first wave of spermatogenesis in
male rodents appears to derive from a population of
spermatogonia that is distinct from subsequent SSCs in that
the spermatogonial cells that give rise to the first wave do not
undergo self-renewal, whereas the SSCs that produce all
subsequent waves do undergo self-renewal [58]. In addition,
Yoshida et al. [58–61], Shinohara et al. [62, 63], and others
[65] have reported results that raise the possibility that distinct
subpopulations of early type A spermatogonia can be
distinguished on the basis of marker gene expression, and that
these different subpopulations may show differences in their
potential to become functional SSCs. Finally, a recent analysis
of the frequencies of spontaneous mutations detectable at
different stages of prespermatogenesis and spermatogenesis
also indicated the existence of distinct subpopulations of T1-
and T2-prospermatogonia and early spermatogonia that differ
with respect to the potential to form functional SSCs [66].

FUTURE PERSPECTIVES

If anything, the emerging evidence regarding distinct
functions ongoing in various types of prospermatogonia during
the prespermatogenesis phase may soon compel an even more

complex nomenclature system to accurately describe male
germ cells during the fetal and neonatal periods that further
subcategorizes these cells to an extent even greater than that
provided by the M-, T1-, and T2-prospermatogonia terminol-
ogy. Thus, while we should always honor the history of our
field and those who forged many of the early studies to begin to
describe and understand the development and differentiation of
male germ cells in mammals, we must also continue to heed
new information as it becomes available and to allow our
system of nomenclature to evolve by incorporating this
information accordingly. In this way, we can preserve a
system of terminology that effectively conveys a maximum
amount of information regarding the designated cell types in a
manner that distinguishes, as precisely as possible, differences
that develop in the male germ line as prespermatogenesis and
spermatogenesis progress.
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REBUTTAL FROM MARTINE CULTY

John McCarrey’s article constitutes a thorough review on
male and female rodent germ cell development, describing in
detail prespermatogenesis and spermatogenesis. He proposes to
call prospermatogonia rather than gonocytes the fetal to
neonatal male germ cells between PGCs and spermatogonia.
As explained in both reviews, these phases present similarities,
such as being periods of intense DNA methylation, but they
also present differences that have led to distinguishing three
cell types in rodents and humans. We agree that the better
understanding of these phases should be reflected in using
more precise terminologies to identify the cells, and we both
propose adding letters in front of the cell names, including
mitotic, transitional, and, in my case, quiescent, to help
delineate these cell types in the literature. Therefore, the only
difference between our lines of thought seems to be that I
recommend using the historical term gonocyte, whereas he
proposes shifting to the newer term prospermatogonia.

Without going into detail about the reasoning behind keeping
the term gonocyte presented in my review, I will respond to two
points, referred to as ‘‘deficiencies’’ by John McCarrey:

1) Regarding the ‘‘failure of this term [gonocyte] to implicitly
convey the intended cell,’’ this is clearly not the case, since

the term ‘‘gonocyte’’ chosen by Clermont and Perey in the

1950s [24] contains the prefix ‘‘gon(o),’’ indicating ‘‘seed,

semen’’ in ancient Greek, and ‘‘cyte,’’ meaning ‘‘cell.’’
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Moreover, Dr. McCarrey extends the meaning of terms

beyond their definition, such as when stating that cyte

conveys the indication of a ‘‘meiotic cell,’’ while it simply

stands for cell. He argues that calling a cell ‘‘presperma-

togonia/um’’ would confuse the cell types with the process

of prespermatogenesis. Surely, anybody with minimal

biology/English knowledge can distinguish these words

by recognizing the suffix ‘‘-esis’’ as qualifying a process

and not a cell! Moreover, ‘‘pre’’ has a single meaning in

both Latin and Greek, whereas ‘‘pro’’ has different

meanings. Therefore, pre should be less confusing than

pro as a prefix used by people preferring a term related to

spermatogonia.

2) Regarding the need for using a nomenclature more

informative about the functional and/or mitotic status of

cells, I support this proposal, but I believe it can be done

independently of the name chosen for the cells. I agree that

using M (mitotic) and T (transitional) would help to specify

the first and last periods of gonocyte development.

However, I propose Q (quiescent) instead of ‘‘T1’’ for

cells in ‘‘the first state of transition in mitotic arrest.’’

In summary, we agree with Drs. Hilscher, Wartenberg,
McLaren, and many authors cited in my review that
complementing the name of the cells with adjectives reflecting
their status would be helpful. However, in view of the lack of
consensus for newer terminologies and the need for a better
characterization of the cells, I propose keeping the original
name gonocyte, encompassing a specific location, morpholog-
ical appearance, and period of development, applicable to both
humans and rodents. Independent of the term favored, one has
to remember that these phases overlap.
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