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Trp53 Haploinsufficiency Modifies EGFR-Driven Peripheral
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Malignant peripheral nerve sheath tumors (MPNSTs) are genetically diverse, aggressive sarcomas
that occur sporadically or in association with neurofibromatosis type 1 syndrome. Reduced TP53
gene expression and amplification/overexpression of the epidermal growth factor receptor (EGFR)
gene occur in MPNST formation. We focused on determining the cooperativity between reduced TP53
expression and EGFR overexpression for Schwann cell transformation in vitro (immortalized human
Schwann cells) and MPNST formation in vivo (transgenic mice). Human gene copy number alteration
data, microarray expression data, and TMA analysis indicate that TP53 haploinsufficiency and
increased EGFR expression co-occur in human MPNST samples. Concurrent modulation of EGFR and
TP53 expression in HSC1l cells significantly increased proliferation and anchorage-independent
growth in vitro. Transgenic mice heterozygous for a Trp53-null allele and overexpressing EGFR in
Schwann cells had a significant increase in neurofibroma and grade 3 PNST (MPNST) formation
compared with single transgenic controls. Histological analysis of tumors identified a significant
increase in pAkt expression in grade 3 PNSTs compared with neurofibromas. Array comparative
genome hybridization analysis of grade 3 PNSTs identified recurrent focal regions of chromosomal
gains with significant enrichment in genes involved in extracellular signaleregulated kinase 5
signaling. Collectively, altered p53 expression cooperates with overexpression of EGFR in Schwann
cells to enhance in vitro oncogenic properties and tumorigenesis and progression in vivo.
(Am J Pathol 2014, 184: 2082e2098; http://dx.doi.org/10.1016/j.ajpath.2014.04.006)
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Malignant peripheral nerve sheath tumors (MPNSTs) are
aggressive, malignant tumors of Schwann cell origin that
compose approximately 10% of diagnosed soft tissue sar-
comas. MPNSTs arise spontaneously or in association with
the inherited tumor predisposition syndrome neurofibroma-
tosis type 1 (NF1). Sporadic MPNSTs have a 0.001% inci-
dence in the general population, whereas individuals with
NF1 (1 in 3500 people) have an 8% to 13% lifetime risk of
developing MPNSTs.1e3 MPNSTs are the most common
malignancy in adults with NF1 and the leading cause of NF1-
related mortality. Because of the invasive nature and high
stigative Pathology.
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EGFR/Trp53 Cooperate for MPNST Formation
incidence of metastasis of MPNSTs, surgical resection,
radiotherapy, and chemotherapeutic treatments have proved
to be ineffective for long-term treatment, resulting in 5-year
survival rates of approximately 40%.1,4e6 The severity and
lack of adequate treatments for MPNSTs emphasize the need
for improved understanding of the genetic basis of these
tumors.

Currently, few genetic drivers are implicated in benign
neurofibroma formation and further progression intoMPNSTs.
The most commonly altered known gene is NF1, which
encodes the neurofibromin 1 protein, an RAS-GTPasee
activating protein that causes NF1 syndrome when inherited in
a mutated form.7e10 Mutations in the NF1 gene are also
observed in approximately 40% of sporadic MPNSTs.11

Deletion or mutation of the NF1 gene in cells causes
increased and aberrant signaling through progrowth and pro-
proliferation signaling pathways [RAS/mitogen-activated
protein kinase (MAPK)/extracellular signaleregulated kinase
(ERK) and phosphatidylinositol 3-kinase (PI3K)/AKT/
mammalian target of rapamycin (mTOR)] in human neurofi-
bromas and MPNST-derived cell lines.12e14 However, NF1
gene loss alone likely is not sufficient forMPNST formation on
the basis of results from genetically engineered mouse models
(GEMMs).15 Increased expression of growth factor receptors
and ligands, such as epidermal growth factor receptor (EGFR),
NRG, PDGF, HGF, SCF, and TGFb1, is also stimulated in
neurofibromas and MPNSTs with NF1 mutation.16e21 In
addition toNF1mutations, few genomic aberrations have been
identified in neurofibromas.22 However, genomic aberrations,
such as copy number alterations (CNAs), commonly occur in
MPNSTs, suggesting that progression from benign to malig-
nant tumor formation requires many cooperating genomic al-
terations.22 Deletions and/or mutations of cell cycle regulators
TP53, RB1, and CDKN2A and gene amplification of growth
factor receptor genes ERBB2, EGFR, KIT, MET, and PDGFR
are identified in humanMPNSTs.23e34However, identification
of genetic drivers of MPNST formation is hindered because of
the hyperdiploid or near-triploid genomes of MPNSTs.35e42

In addition to NF1 mutations, genetic alterations in TP53
and EGFR genes frequently occur in human MPNSTs.
Deletions and/or point mutations of TP53 occur in ap-
proximately 75% of human MPNSTs, but rarely inactivate
both alleles, suggesting haploinsufficiency is sufficient for
MPNST formation.43 Moreover, a GEMM with cis-linked
Nf1- and Trp53-null mutations (NPcis mice) rapidly de-
velops sarcomas, including MPNSTs, in which not all tu-
mors undergo loss of heterozygosity (LOH) of the wild-type
(WT) Nf1 and Trp53 alleles.44,45 EGFR gene amplification
and/or overexpression occur in 25% to 75% of human
MPNSTs.25,46e48 Transgenic mice overexpressing human
EGFR in Schwann cells and their precursors display a nerve
hyperplasia phenotype with features of early-stage neurofi-
broma pathogenesis and rare incidence of benign neurofi-
broma formation, but no MPNST.49 Furthermore, inhibition
of EGFR signaling in NPcis mice with a hypomorphic allele
of EGFR increased survival compared with NPcis mice with
The American Journal of Pathology - ajp.amjpathol.org
intact EGFR signaling.49 Finally, inhibition of EGFR kinase
activity in cell cultureebased assays reduced migration of
MPNST cells.50 These results suggest that aberrant EGFR
expression is involved inMPNST progression, but only in the
context of other mutations. For example, in human esopha-
geal cancer, EGFR overexpression and TP53 mutations
frequently co-occur, and in vitro human esophageal epithelial
cells can be transformed by overexpression of WT EGFR,
activation of telomerase reverse transcriptase, and reduced
TP53 expression by RNA interference.51,52 Anecdotally, a
human cell line derived from an NF1-associated MPNST had
EGFR gene amplification and deletion of exons 5 to 8 within
the TP53 gene.53

Herein, we assessed the cooperativity of WT EGFR over-
expression and reduced TP53 expression in a CDK4 and
telomerase reverse transcriptase immortalized humanSchwann
cell line (iHSC1l) and with GEMMs. HSC1l cells over-
expressing EGFR with reduced TP53 expression have a sig-
nificant increase in proliferation and anchorage-independent
growth, phenotypes characteristic of oncogenic transformation.
Transgenic mice heterozygous for Trp53 and overexpressing
EGFR in Schwann cells have a significant increase in Schwann
cell tumorigenesis compared with single transgenic controls.
Schwann cell tumors in these mice histologically resemble
human neurofibromas and MPNSTs. Genetic analysis of tu-
mors and tumor-derived cell lines demonstrate frequent loss of
the Trp53 WT allele and a high incidence of aneuploidy with
CNA gains on chromosomes 4, 5, 8, and 15. Collectively, the
data demonstrate cooperativity betweenEGFR overexpression
and p53 haploinsufficiency for Schwann cell tumorigenesis.

Materials and Methods

Gene Expression Data Analysis

Published data from the Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo; accession number GSE14038;
Affymetrix GeneChip HU133 Plus 2.0) were used for gene
expression pattern analysis. For gene annotation, custom CDF
(custom GeneChip library file), on the basis of reference
sequence target definitions (Hs133P REFSEQ version 8,
University ofMichigan, AnnArbor,MI), was downloaded and
used to provide accurate interpretation of GeneChip data.54

Statistical comparisons were done using R/Bioconductor
packages and GeneSpring GX, version 7.3.1 (Agilent Tech-
nologies, Santa Clara, CA). Differentially expressed genes
were defined as genes with expression levels at least threefold
higher or lower in target groups (MPNST) compared with
normal human Schwann cells after applying Benjamini and
Hochberg55 false-discovery rate correction (P � 0.05).

MPNST Whole-Methylome Data Analysis

Feber et al56 published unbiased whole-methylome data of
normal primary human Schwann cells (NHSCs), neurofi-
bromas, and MPNST genomes in the Gene Expression
2083
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Omnibus (http://www.ncbi.nlm.nih.gov/geo; accession
number GSE21714). We adopted the Feber et al56 method for
detecting differentially methylated regions (DMRs) in MPNST
compared with NHSC.57 Briefly, Batman methylation scores
per 100 bp were averaged for each 1000-bp window. A con-
servative threshold for DMR calling was used, on the basis of
the 95th percentile of the difference in methylation score. DMR
regions were mapped to human genome build version hg18
(National Center for Biotechnology Information-36).

The nearest CpG island shores (CpG-IS) to the transcription
start sites of each gene/miRNA were scanned.56,57 We defined
CpG-ISas areas up to2kilobases indistances fromCpGislands.
We considered the nearest upstream CpG-IS from the tran-
scription start site, within 5000 bp, ranges from each tran-
scription start sites. The genomic coordinates of miRNAs,
genes, and CpG islands (National Center for Biotechnology
Information36/hg18)were extracted fromcorresponding tracks
of the University of California, Santa Cruz, Genome Browser
(http://genome.ucsc.edu/cgi-bin/hgGateway, last accessed
January 9, 2013). In case of intragenic miRNAs, we assumed
that their expression is influenced by the nearest CpG-IS to the
transcription start site of their host gene.

CNA Data Analysis

CNA data on 51 primary MPNSTs were from the published
GSE33881 data set [Agilent Human Genome CGHMicroarray
kit (4 � 44,000), http://www.ncbi.nlm.nih.gov].58,59 A circular
binary segmentation algorithm was applied to the log2 ratios of
intensity values from tumor and normal to reduce local noise
effects. Circular binary segmentation calculates a likelihood-
ratio statistic for each array probe by permutation to locate
change points.60 After the segmentation step, a CGH call algo-
rithmwas used to assign each segment an aberration label: gain,
loss, or normal.61 A visualization program was written in R
(http://www.r-project.org) to present overall gain/loss patterns
of all 51 MPNSTs. Genomic coordinates used in plots were
based on hg19/GRCh37.p8 (R/Bioconductor biomaRt package;
Fred Hutchinson Cancer Research Center, Seattle, WA).62

TMA Data

Representative areas of disease were identified on H&E-
stained sections for 30 dermal neurofibromas, 31 plexiform
neurofibromas, and 32 MPNSTs. Blocks consisting of dupli-
cate 1.0-mm core samples were constructed with a manual
tissue arrayer (Beecher Instruments Inc., Sun Prairie, WI) and
limited to 64 cores per recipient block. Unstained tissue
microarray (TMA) sections (4 mm thick) were deparaffinized
and rehydrated using standard methods. Slides went through
antigen retrieval and were incubated in pH 6.0 buffer (Reveal
Decloaking reagent; Biocare Medical Inc., Concord, CA) in a
steamer for 30 minutes at 95�C to 98�C, followed by a 20-
minute cool down period. Slides were rinsed in running tap
water, followedby immersion in 1�Tris-buffered saline/0.1%
Tween-20 (TBST; pH 7.4). Endogenous peroxidase activity
2084
was quenched by slide immersion in 3% hydrogen peroxide
solution (Peroxidazed; Biocare Medical Inc.) for 10 minutes,
followed by a TBST rinse. A serum-free blocking solution
(Background Sniper; Biocare Medical Inc.) was placed on
sections for 30 minutes. Blocking solution was removed, and
slides were incubated in primary antibody diluted in 10%
blocking solution/90% TBST. Anti-EGFR (1:500; Sigma
Prestige, St. Louis, MO) was incubated overnight at 4�C,
followed by a TBST rinse and detection with Alexa Fluor 488
(1:500; Invitrogen, Grand Island, NY) for 2 hours at room
temperature. Next, slides were immersed in TBST. A second
application of blocking solution (Background Sniper) was
applied for 10 minutes, followed by p53 (1:2000; Dako,
Carpinteria, CA), incubated for 60 minutes at room tempera-
ture, and rinsed in TBST. Alexa Fluor 555 (1:500; Invitrogen)
was applied for 2 hours at room temperature. Slides were
rinsed in TBST, followed by distilled water, and coverslipped
using ProLong Gold Anti-fade with DAPI (Invitrogen).

Cell Cultures/Assays

Immortalized human Schwann cells (iHSC1l) were acquired
from the laboratory of Dr. Margaret Wallace. iHSC1l cells
were cultured in complete media [1� Dulbecco’s modified
Eagle’s medium (DMEM), 10% fetal bovine serum, and 1�
penicillin/streptomycin] and grown at 37�C in 5% CO2.
Proliferation assays were set up in a 96-well plate format with
500 cells per well in full DMEM media containing 1 mg/mL
of puromycin (Life Technologies, Carlsbad, CA). Prolifera-
tion was assessed every 24 hours for 5 days using the Cell-
Titer 96 AQueous One Solution Cell Proliferation assay
(Promega, Madison, WI) following the manufacturer’s
protocols. Cultured cells were plated at 500 cells per well of a
96-well plate in replicates of 10. Measurements were taken
on days 0, 1, 2, 3, and 4 using the BioTek Synergy MX
automated plate reader (Bio-Tek, Winooski, VT). Experi-
ments were performed in triplicate. Soft agar anchorage-
independent colony formation assays were performed as
previously described.63 After 2 weeks of growth, cells were
fixed in 10% formalin containing 0.005% crystal violet for 1
hour at room temperature. Formalin was removed, and col-
onies were imaged on a Leica S8 AP0 microscope (Leica
Microsystems Inc., Buffalo Grove, IL). Twelve images per
cell line were taken, and automated colony counts were done
using ImageJ software version 1.48 (NIH, Bethesda, MD).

Cell Culture Constructs

EGFR cDNA (Addgene, Cambridge, MA) and the shTP53
(OpenBiosystems, Pittsburg, PA) were cloned into the
Gateway Vector System (Life Technologies) and subcloned
into a piggyBac (PB) transposon vector, as previously
described.64 The PB control vector contains the Luciferase
and Gfp reporter genes. Cells were transfected with 2 mg of
EGFR/shTP53, EGFR, shTP53, or Luciferase PB transposon
(Supplemental Figure S1A) and 500 ng of PB7 transposase
ajp.amjpathol.org - The American Journal of Pathology
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plasmid using the NEON transfection system, following the
manufacturers’ protocols (Life Technologies). Successfully
transfected cells were enriched with 1 mg/mL puromycin.
Transcription activator-like effector nucleases (TALENs) were
generated against the human TP53 locus using a previously
established protocol.65 Briefly, thefirst coding exon of theTP53
gene was targeted with TALENs to introduce mutations near
the translational start (Supplemental Figure S1D). TALEN left
(direction refers to the orientation that the TALENs bind
relative to the site to be cut), 50-GGAGGAGCCGCAGTCA-
30; TALEN left RVD sequence, NNNNNINNNNNINNHD-
HDNNHDNINNNGHDNI; TALEN right, 50-CCCCCTCT-
GAGTCAGG-30; and TALEN right, HDHDNGNNNIHDN-
GHDNINNNINNNNNNNNNN. TALEN plasmids were
transfected into HSC1l cells with neon transfection (Life
Technologies), followed by subsequent single-cell cloning
and analysis by a PCR-based assay (CEL-I) and sequencing to
identify TALEN-induced mutations. The following CEL-I
primers were used: sense, 50-TGGGTTGTGGTGAAACAT-
TG-30; antisense, 50-TCCCACAGGTCTCTGCTAGG-30.

Generation of Transgenic Animals

Generation of transgenic mice carrying the 30-cyclic nucleo-
tide 30-phosphodiesterase gene (Cnp) promoter driving the
human EGFR cDNA (Cnp-EGFR) has been previously
described.49 Transgenic mouse harboring a conditional Trp53
allele possessing an R270H point mutation in exon 8 has been
previously described.66 For our experiments, this was never
bred to a Cre-expressing mouse. Therefore, the dominant
negative allele was never expressed but used as a marker for
the null allele, essentially making every cell in the mouse
heterozygous for Trp53. We refer to this allele as Trp53þ/� to
indicate it is not expressed because of the presence of a floxed
stop cassette in intron 1.66 Single transgenicmicewere crossed
to obtain double transgenic experimental mice possessing one
allele of each transgene.All animalworkwas conducted under
an institutionally approved animal welfare protocol.

PCR Genotyping

Genotypes of transgenic mice were determined using a PCR-
based approach: First, genomic DNA was isolated from tail
clippings using standard proteinase K treatment, phenol-
chloroform extraction, and ethanol precipitation. Genomic
DNAwas resuspended in sterile Tris-EDTA buffer [10mmol/
L Tris-HCl (pH 7.5) and 1 mmol/L EDTA (pH 8)] and
quantified using a Nanodrop spectrophotometer (Thermo
Scientific, Waltham, MA). PCR genotyping was performed
using 100 ng of diluted genomic DNA as template in a 25-mL
PCR volume. PCR primers used for Cnp-EGFR were as fol-
lows: forward, 50-TGACATCTCCTCCTCCCTTC-30; and
reverse, 50-TGCCCAACTGCGTGAGC-30 (amplicon, 380
bp). Trp53R270H floxed alleles were as follows: WT, 50-
TTACACATCCAGCCTCTGTGG-30 (forward) and 50-
CTTGGAGACATAGCCACACTG-30 (reverse); and flox,
The American Journal of Pathology - ajp.amjpathol.org
50-AGCTAGCCACCATGGCTTGAGTAAGTCTGCA-30

(forward) (WT amplicon, 170 bp; and floxed allele amplicon,
270 bp). PCR conditions for ReddyMix (Thermo Scientific,
Waltham, MA) were used according to the manufacturer’s
instructions with an initial denaturing step of 95�C for 2 mi-
nutes; 30 to 35 cycles of denaturing at 95�C for 25 seconds,
annealing at 55�C for 35 seconds, and extension at 72�C for 65
seconds; followed by a final extension at 72�C for 10 minutes.
PCR products were separated on a 1.5% agarose gel and ge-
notype determined by the absence or presence of expected
amplicons.

Tumor Analysis

Mice were monitored three times a week for changes in
mobility (paralysis), frank tumor development >1 cm, or
moribundity. If mice met one of the criteria, they were culled
and tumors were carefully removed from the sacrificed animal
under a dissecting microscope (Leica Microsystems Inc.),
washed, and placed in cold PBS. These separated tumors were
split into samples for DNA, RNA, and protein extraction. Tis-
sue samples for RNA were stored at �80�C in RNAlater
(Sigma-Aldrich, St. Louis, MO) to prevent RNase contamina-
tion and degradation. DNA extraction was done as previously
described in the PCR genotyping section. Extraction of RNA
was done using the TRIzol reagent (Life Technologies) using
protocols described by themanufacturer. Protein extractionwas
performed using standard isolation techniques. Histological
sections were only taken for larger tumors (>2 mm in diam-
eter). Formalin-fixed, paraffin-embedded sections from various
tissues were divided into sections (5 mm thick) using a standard
microtome (LeicaMicrosystems Inc.), mounted, and heat fixed
onto glass slides. Tissue section slides were either stained with
H&E using standard protocols or used for immunohistochem-
istry (IHC) as described in the next section.

IHC Data

Tissues were fixed in 10% buffered formalin and embedded
in paraffin blocks. Sections were cut (5 mm thick) and
rehydrated through a series of graded ethanols. Slides un-
derwent antigen retrieval by boiling for 30 minutes in an-
tigen unmasking solution (Vector Laboratories Inc.,
Burlington, CA). Endogenous peroxidases were quenched
with 3% hydrogen peroxide solution for 10 minutes. For
antibody staining, a M.O.M. kit (Vector Laboratories Inc.)
was used for blocking and antibody incubations. Primary
antibodies used were as follows: mouse antieKi-67 (1:100;
Leica Microsystems Inc.), rabbit anti-S100b (1:100; Santa
Cruz Biotechnology, Dallas, TX), rabbit anti-EGFR (1:100;
Cell Signaling Technology, Danvers, MA), rabbit antie
phosphorylated (phospho)-EGFR (1:400; Cell Signaling
Technology), mouse anti-p53 (1:100; Cell Signaling Tech-
nology), mouse anti-p21 (1:100; BD Pharmingen, San
Jose, CA), rabbit antiephospho-Erk (1:100; Cell Signaling
Technology), and rabbit antiephospho-Akt (1:100; Cell
2085
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Signaling Technology). After a series of washes, slides were
incubated with the corresponding anti-mouse biotinylated or
anti-rabbit biotinylated secondary antibody (1:250; Vector
Laboratories Inc.). Slides were washed, incubated with the
vectastain avidin-biotin complex kit (Vector Laboratories
Inc.) for 30 minutes at room temperature, washed again, and
stained using peroxidase substrate kit diaminobenzidine
(Vector Laboratories Inc.). Finally, slides were counterstained
with hematoxylin, dehydrated, cleared with citrosolv, and
mounted with Permount (Fisher Scientific, Waltham, MA).

Pathological Analysis of Nerve-Associated Tumors

H&E-stained tissue sections were evaluated for degree of
cellularity, nuclear atypia, necrosis, hemorrhage, and myx-
oid background, on the basis of a scale of none, low, me-
dium, or high for each phenotype. Slides immunostained for
the proliferative marker Ki-67 were evaluated and graded on
the scale of none, low, medium, or high with a subgrading
of 0 to 3. Neurofibromas tend to have none to low-grade
1 Ki-67 staining, whereas grade 3 PNSTs had more prolif-
erating cells and a medium- to high-grade 2 to 3 Ki-67
staining index. In addition, mitotic figures were counted on
the basis of the H&E stain for one tissue section per tumor.
Also, tumors were assessed for the presence of mast cells by
toluidine blue staining and scored on the basis of presence
or absence of mast cells. S100b IHC was evaluated for
negative, focal, or diffuse staining pattern.

Generation of Cell Lines

Large nerve-associated tumors were carefully dissected using
aseptic techniques. The tumor was sliced into small pieces,
then placed into 1� DMEM containing 2 mg/mL collagenase
A. This solution was incubated at 37�C in 5%CO2 for 3 hours
to allow dissociation of cells from the bulk tumor. Before
plating, the solution was triturated and placed through a
33-mm filter. Cells were plated on 10-cm dishes containing
complete media (1� DMEM, 10% fetal bovine serum, and
1� penicillin/streptomycin) and grown at 37�C in 5% CO2.
These cell strains were transduced with a lentivirus contain-
ing an enhanced green fluorescent protein (eGFP) and lucif-
erase reporter transgene. Successfully transduced cells, as
assessed by eGFP expression, were cell sorted using FACS-
Aria (BD Biosciences, San Jose, CA). The top 5% eGFPþ

cells and eGFP� cells were collected into 96-well plates.
eGFP� clones that grew from the cell sort were assessed by
immunofluorescence with rabbit anti-S100b (1:100; Santa
Cruz Biotechnology), rabbit anti-human EGFR (1:100; Cell
Signaling Technology), and rabbit anti-Olig2 (1:100; Abcam,
Cambridge, MA) to demonstrate Schwann cell origin and
expression of human EGFR.

Trp53 LOH Analysis

The analysis was performed as previously described.67 Briefly,
genomic DNA isolated from tumor cell lines underwent PCR
2086
amplification for exon 8 of Trp53. Purified PCR products un-
derwent a restriction enzyme digest withMsl1. The Trp53R270H

allele possesses an Msl1 recognition sequence in exon 8, not
observed in theWTallele.When separated on a 2%agarose gel,
three products may be present after restriction endonuclease
digest: a higher-molecular-weight band (WT allele) and two
lower-molecular-weight bands (the digestedTrp53R270H allele).

Cytogenetic Analysis

Spectral karyotyping analysis (SKY) was performed by the
University of Minnesota (Minneapolis) Cytogenetics core.
SKY was performed on early-passage cell lines (three to
seven passages) derived from Cnp-EGFR;Trp53þ/� mouse
tumors. Cells were treated for 3.25 hours with colcemid, then
harvested according to standard cytogenetic protocols.
Eleven metaphases were analyzed by G-banding. An addi-
tional eight metaphase cells were examined by multicolor
fluorescence in situ hybridization with spectral karyotyping.
The G-banding and fluorescence in situ hybridization results
were integrated for final karyotype interpretation. For array
comparative genomic hybridization (aCGH), mouse tumor
DNA was restriction digested and labeled with fluorochrome
cyanine-5 using random primers and exo-Klenow fragment
DNA polymerase. Control tail DNA from the same mouse
was labeled concurrently in cyanine-3. The sample and
control DNAs were combined, and aCGH was performed
with a microarray constructed by Agilent Technologies, Inc.,
that contains approximately 170,000 distinct biological oli-
gonucleotides spaced at an average interval of 10.9 kb. The
ratio of sample/control DNA for each oligo was calculated
using Feature Extraction software version 10.5 (Agilent
Technologies, Inc.). The abnormal threshold was applied
using Genomics Workbench version 7.0 (Agilent Technol-
ogies, Inc.). A combination of several statistical algorithms
was applied. Aminimum of three oligos that have a minimum
absolute ratio value of 0.1 [on the basis of a log(2) ratio] is
required for reporting of a copy number loss or gain.

Allografts

Cultured cells were trypsinized, resuspended at 1 � 106 in
1� PBS, and injected s.c. into severe combined immuno-
deficiency (SCID)/BIEGE mice. After 1 month of growth or
when tumors reached 10% of body weight, tumors were
harvested, and wet weights were taken and then fixed in
10% buffered formalin for histological analysis.

Results

EGFR and TP53 Expression Alterations Co-Occur in
Human MPNSTs

To determine whether there are co-occurring changes of
EGFR and TP53 genomic CNAs and gene expression pat-
terns in human MPNSTs, we used previously generated
ajp.amjpathol.org - The American Journal of Pathology
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human aCGH, human microarray expression, methylome
data, and a TMA (Figure 1, AeC). Data sets are generated
from independent analysis of nonoverlapping, unique
human patient samples. By using aCGH data (GSE33881),
we identified EGFR gene CNA gains in approximately
37% of samples (19 of 51 patients) and TP53 CNA losses
in approximately 29% of samples (15 of 51 patients)
(Figure 1A).59 EGFR CNA gains tend to occur in the context
Figure 1 Analysis of humanSchwann cell tumors for co-occurring EGFR and TP53 alt
for EGFR and TP53. Copy number is represented by a log2 scale.B:Microarray expression
nerves (NHSCs; nZ 10), dermal neurofibromas (dNFSCs; nZ 11), plexiform neurofibro
panel) of dermal neurofibromas (dNFs; n Z 13), plexiform neurofibromas (pNFs; n Z
Displayed are four probes for EGFRand a single probe for TP53. A scatterplot of the purifi
against EGFR expression (y axis). C: Dual immunofluorescent analysis of EGFR and TP53
(green) and TP53 (red) expression with the nuclear DAPImarker from a human TMA. Th
(C). Scale barZ 50 mm (C).
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of near complete amplification of the entire chromosome 7,
whereas TP53 CNA losses tend to coincide with loss of
chromosome arm 17p. Of 51 patients, 5 had co-occurring
EGFR gene CNA gains and TP53 gene CNA losses [odds
ratio with 95% CI of 39.92298, Fisher’s exact test (FET)
P Z 3.53924 � 10�6]. To determine whether the CNAs
observed reflect alterations in gene expression, we analyzed
methylome, microarray expression, and TMA data.
erations.A: CNAdata from51humanpatientMPNST samples at a 1-MB resolution
analysis was performed on purified Schwann cells (toppanel) fromnormal sciatic
mas (pNFSCs; nZ 11), and MPNSTs (nZ 13). In addition, bulk tumors (bottom
13), and MPNSTs (n Z 6) were also assessed for EGFR and TP53 expression.

edSchwann cells fromeach tumor typewith the TP53 expression (x axis) plotted
expression in human MPNSTs. Depicted are four representative images of EGFR

e isotype control is depicted in the top left corner. Originalmagnification,�400
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Promoter CpG-IS methylation status is predictive of gene
expression: hypermethylation is associated with gene si-
lencing, and hypomethylation is associated with gene ex-
pression. MPNST whole-methylome data (GSE21714, n Z
10 MPNST samples) were analyzed for methylation of the
promoter CpG-IS regions for EGFR and TP53.56 No signifi-
cant alterations in promoterCpG-ISmethylation ofEGFR and
TP53 genes in human MPNSTs were identified compared
with normal human Schwann cells (data not shown).

Previously reported microarray expression data analysis
on purified Schwann cells and bulk tumors for nerves,
neurofibromas, and MPNSTs were used to assess EGFR and
TP53mRNA levels (GSE14038). The microarray expression
data are similar to previous reports of a significant increase in
EGFR mRNA levels in MPNST formation compared with
neurofibromas (P Z 0.0002 for purified Schwann cells,
P < 0.0001 for bulk tumors, Student’s t-test), whereas TP53
mRNA levels were not significantly altered in tumor pro-
gression from neurofibromas (Figure 1B).68 Of 13 MPNST
cell lines, 3 had a 0.75-fold or greater reduction in TP53
expression and a threefold increase or greater in EGFR
mRNA expression, whereas nearly all bulk tumor samples
(including neurofibromas) possessed co-alterations in TP53
and EGFR mRNA expression (Figure 1B). This discrepancy
may reflect alterations in additional cellular components,
such as mast cells, macrophages, fibroblasts, axons, and
endothelial cells, within the bulk tumor.

To determine whether alterations in mRNA expression
reflect protein expression, dual immunofluorescent staining
for EGFR and TP53 was performed on a human TMA con-
taining dermal neurofibromas (n Z 30), plexiform neurofi-
bromas (n Z 31), and MPNSTs (n Z 32) (Figure 1C). All
tumors stained positive with varying intensities for TP53
expression, whereas EGFR expression was observed in only
50% of MPNSTs. Figure 1C shows representative images of
the 32 MPNST samples assessed. In some cases, EGFR
expression, when present, was not uniform throughout the
Table 1 EGFR and TP53 Co-Alteration Analysis from TCGA

Cancer type Odds ratio 95% C

Bladder urothelial carcinoma 2.6 0.20
Acute myeloid leukemia 6.071429 0.51
Lung squamous cell carcinoma 4.285714 0.54
Lung adenocarcinoma 2.291667 1.13
Sarcoma 5.085714 1.13
Breast invasive carcinoma 11.519126 3.34
Glioblastoma multiforme 0.2222 0.12
Prostate adenocarcinoma 0 0-NaN
Skin cutaneous melanoma 0.845455 0.093
Uterine corpus endometrial carcinoma 1.276923 0.31
Stomach adenocarcinoma 1.811765 0.76
Head and neck squamous cell carcinoma 1.616 0.710
Colon and rectum adenocarcinoma 0.550725 0.15
Ovarian serous cystadenocarcinoma 0.4887 0.097
Kidney 0 0-NaN

NaN, not a number.
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tumor but occurred in focal regions. TP53 expression was
variegated throughout the tumors, with rare TP53-negative
cells (Figure 1C).
To determine if alterations in EGFR and TP53 coexist in

other cancer types, we analyzed The Cancer Genome Atlas
(TCGA) database for several cancer types.69 EGFR and
TP53 alterations (mutations, CNAs, and microarray ex-
pression) had a tendency for co-occurrence in bladder uro-
thelial carcinoma (FET P Z 0.44), acute myeloid leukemia
(FET P Z 0.22), lung squamous cell carcinoma (FET
P Z 0.113), lung adenocarcinoma (FET P Z 0.015), sar-
coma (FET P Z 0.052), and breast cancer (FET P Z
0.000003) data sets. Glioblastoma multiforme, ovarian se-
rous cystadenocarcinoma, prostate adenocarcinoma, skin
cutaneous melanoma, colon and rectum adenocarcinoma,
uterine corpus endometrial carcinoma, stomach adenocar-
cinoma, and head and neck squamous cell carcinoma had no
association or tendency for mutual exclusivity (Table 1).
Collectively, the data suggest that EGFR and TP53 alter-
ations occur in a subset of human MPNSTs and other
cancers, supporting a cooperative interaction.

EGFR Overexpression and Reduced TP53 Expression
Cooperate to Increase Proliferation and Anchorage-
Independent Growth in Vitro

To assess the cooperativity of EGFR and TP53 expression
for cellular transformation, overexpression of the full-length
EGFR cDNA and shRNA-targeted knockdown of TP53
were performed in iHSC1l cells either alone or in combi-
nation (dual) (Supplemental Figure S1A).70 A luciferase
cDNA served as a control. Quantitative RT-PCR (RT-
qPCR) and Western blot analysis demonstrated that EGFR
overexpression and the shTP53 constructs functioned
properly (Figure 2, A and C). Analysis of protein expression
indicates a significant increase in EGFR (P < 0.05) and an
approximately 25% reduction in TP53 expression in the
I P value Association

5e32.905 0.44 Tendency toward co-occurrence
8e71.178 0.22 Tendency toward co-occurrence
7e33.555 0.113 Tendency toward co-occurrence
5e4.624 0.015 Tendency toward co-occurrence
3e22.818 0.052 Tendency toward co-occurrence
4e39.684 0.000003 Tendency toward co-occurrence
3e0.401 0 Toward mutual exclusivity

0.475 Toward mutual exclusivity
9e7.605 0.680 No association
0e5.257 0.494 No association
7e4.279 0.125 No association
1e3.679 0.167 No association
1e2.01 0.277 No association
8e2.441 0.314 Toward mutual exclusivity

0.978 Toward mutual exclusivity
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Figure 2 Combined EGFR overexpression and
reduced TP53 expression in iHSC1l cells increase
proliferation and anchorage-independent growth. A:
RT-qPCR for EGFR and TP53 expression in each iHSC1l
cell line targeted with EGFR overexpression (EGFR), a
TP53 shRNA (shTP53), or both (dual). A luciferase
cDNA (Luciferase) served as a control. Statistical
analysis performed with Student’s t-test relative to
Luciferase control. B: Graph depicts results from an
MTS cell viability assay during the course of 4 days for
each of the four cell lines. Data are a representative of
three independent experiments. Statistics were per-
formed using an unpaired Student’s t-test. C: Bar
graph depicts results from a soft agar colony forma-
tion assay. Experiments were performed in triplicate
(n Z 12 measurements for each experiment). Sta-
tistics were performed using an unpaired Student’s
t-test relative to a Luciferase control. Western blot
analysis depicts EGFR, TP53, and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) expression in
each of the four cell lines.D: Bar graph depicts results
from a soft agar colony formation assay. Experiments
were performed in triplicate (n Z 12 measurements
for each experiment). Statistics were performed using
an unpaired Student’s t-test relative to an EGFR cell
line targeted with HPRT TALENs (EGFR). EGFR:TP53
TALEN clones listed include clones in which the TP53
locus was not modified (WT), multiple mutations in
different alleles are present (MD), and homozygous
mutations that knocked out TP53 expression (KO).
Statistics were performed using an unpaired Student’s
t-test relative to EGFR:HPRT control. Western blot
analysis depicts TP53 and GAPDH expression in
the EGFR-overexpressing cell lines. *P < 0.05,
**P < 0.01, ***P < 0.005, and ****P < 0.0001.

EGFR/Trp53 Cooperate for MPNST Formation
dual targeted cell line (Supplemental Figure S1B). Func-
tionally, dual EGFR overexpression and reduced TP53
expression significantly enhanced proliferation by MTS cell
viability assay and anchorage-independent growth (two-
tailed t-test P < 0.0001) by a soft agar colony formation
assay compared with the single transgene controls (Figure 2,
B and C). To validate these findings, mutations into the
TP53 locus were introduced into EGFR-overexpressing
iHSC1l cells via TALENs. TALENs targeting the inert
HPRT locus served as a control. Single-cell clones were
selected and analyzed for mutations at the TP53 locus by
sequencing. Sequencing results identified mutations that
caused complete knockout (KO) of TP53 and complex
mutations in which each allele possessed different muta-
tions [called mutation detected (MD)] (Figure 2D and
Supplemental Figure S1D). Western blot analysis revealed
that clones with complex mutations had increased TP53
protein, but the molecular weight of the band was shifted
downward, suggesting the presence of a mutated protein
(Figure 2D). The KO clone displayed no protein product.
Individual clones were seeded in soft agar colony formation
assays to assess anchorage-independent growth capacity.
Clones containing complex mutations (MD) developed
significantly more colonies than the controls (Figure 2D).
The American Journal of Pathology - ajp.amjpathol.org
However, clones that had complete loss of TP53 protein
formed significantly fewer colonies compared with the con-
trol. Interestingly, regardless of EGFR or TP53 status, the
colony sizes were not significantly altered (Supplemental
Figure S1, C and E). Collectively, these data demonstrate
that increased EGFR expression and reduced/altered TP53
expression cooperate to increase oncogenic properties of
immortalized human Schwann cells in vitro, but that com-
plete loss of p53 protein may not do so. These data also
suggest that additional changes are necessary to fully trans-
form cells.

Trp53 Haploinsufficiency and EGFR Overexpression
Cooperate in Vivo to Significantly Increase
Neurofibroma and Induce Grade 3 PNST

To assess cooperativity of EGFR overexpression and reduced
TP53 expression in tumor formation in vivo, transgenic mice
overexpressing the human EGFR gene (Cnp-EGFR) were
bred toTrp53 heterozygousmice (Trp53R270H/þ, from here on
called Trp53þ/�). Cnp-EGFR;Trp53þ/� mice had a signifi-
cantly reduced median survival (349 days, P < 0.0001)
compared with single transgenic controls (Cnp-EGFR; 413
days) (Figure 3A). Cnp-EGFR;Trp53þ/� mice developed a
2089
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Figure 3 Trp53 haploinsufficiency and EGFR
overexpression cooperated for grade 3 PNST for-
mation in vivo. A: Kaplan-Meier survival plot of the
four genetic cohorts analyzed: WT (n Z 46),
Trp53þ/� (n Z 43), CNP-EGFR (n Z 44), and CNP-
EGFR;Trp53þ/� (n Z 84). B: Necropsy images de-
pict the peripheral nerves targeted for tumor
development: dorsal root ganglia, lumbar plexus,
subcutaneous nerves, and trigeminal nerves. Ar-
rows indicate tumor location. C: IHC analysis of
nerve-associated tumors for H&E staining, toluidine
blue (mast cells), Ki-67 (proliferation marker), and
S100b (Schwann cell marker) indicates the tumors
have features of various grades of Schwann cell
tumors. The arrows in indicate Toluidine Blue
positive cells. D: IHC for Schwann cell markers Gfap,
Nestin, Olig2, and Sox10. Images depicted are from
a grade 3 PNST. E: Bar graph depicts breakdown of
neurofibroma, grade 3 PNST, or both tumors in each
mouse genetic cohort. Tumor type was determined
on the basis of histological analysis performed (C
and D, Supplemental Figure S2A, and Supplemental
Table S1). Statistics were performed with a Fisher’s
exact test. ****P< 0.0001. Original magnification,
�400 (C and D). Scale bar Z 50 mm (C and D).
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variety of nerve-associated tumors associated with paraspinal
dorsal root ganglion (54%), trigeminal nerves (5.5%), sub-
cutaneous nerves (1.7%), and brachial plexi (1.4%)
(Figure 3B). Nerve-associated tumors were histologically
evaluated for cellularity, nuclear atypia, necrosis, hemor-
rhage, myxoid background, and tumor border on the basis of
H&E staining (Figure 3C and Supplemental Table S1). H&E
staining identified features found in neurofibromas (low-
medium cellularity, no-medium nuclear atypia, no necrosis,
no hemorrhage, low-medium myxoid background, and no
mitotic figures) and grade 3 PNSTs (MPNSTs in humans,
high cellularity, high nuclear atypia, some necrosis, rare
hemorrhage, and presence of mitotic figures) (Supplemental
Table S1). Toluidine blue staining identified the presence of
mast cells, which are often associated with neurofibroma and
grade 3 PNSTs (Figure 3C). IHC for Schwann cell markers
S100b, Gfap, Nestin, Olig2, and Sox10 confirmed that the
nerve-associated tumors were derived from the Schwann cell
lineage (Figure 3, C and D, and Supplemental Figure S2D).
To determine whether mice developed true neurofibromas
versus microMPNSTs, we IHC evaluated tumors for the
presence of axons (neuronal nuclei),fibroblasts (vimentin), and
macrophages (CD45) (Supplemental Figure S2A). This anal-
ysis demonstrated the presence of additional cell types
consistent with neurofibroma formation. IHC for the prolifer-
ationmarkerKi-67 indicated the presenceof someproliferating
2090
cells in neurofibromas (0 to medium-grade 1) and many
proliferating cells in grade 3 PNSTs (medium grade 2 to high
grade 3) (Supplemental Table S1). The proliferative index of
the nerve-associated tissues (normal nerve, nerve hyperplasia,
neurofibromas, grade 2 PNSTs, and grade 3 PNSTs) was
assessed by counting mitotic figures on the basis of H&E
staining (Supplemental Figure S2B). Only grade 3 PNSTs
displayed mitotic figures by H&E staining, with an average of
approximately two mitotic figures per field (Student’s t-test
PZ0.0052).Collectively, the histological data suggest that the
nerve-associated tumors represent various grades of human
Schwann cell tumor formation: nerve hyperplasia, neurofi-
broma, grade 2 PNSTs, and grade 3 PNSTs. Neurofibromas
were predominantly observed in the paraspinal dorsal root
ganglion, whereas grade 3 PNSTs were observed more
frequently in all other peripheral nerves. In addition, 40% (nZ
11 of 27 analyzed) of grade 3 PNSTs contained rare regions of
additional cellular phenotypes (epithelioid-like cells, matrix-
producing cells, and wreath-like giant cells) observed in some
humanMPNSTs (Supplemental Figure S2C).71,72 Collectively,
these data suggest that the nerve-associated tumors resemble
human neurofibromas and MPNSTs.
Cnp-EGFR;Trp53þ/� mice had significantly increased

neurofibroma formation (Cnp-EGFR FET P Z 0.0003;
Trp53þ/� FET P < 0.0001) and grade 3 PNST formation
(Cnp-EGFR FET P < 0.0001; Trp53þ/� FET P < 0.0001)
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Activation of downstream signaling pathways in
Schwann cell tumors. IHC for downstream effectors of EGFR
(pEGFR, pErk, and pAkt) and Trp53 (p21) signaling. A: IHC im-
ages for either neurofibromas (n Z 6) or grade 3 PNSTs (n Z
13) from Cnp-EGFR;Trp53þ/� mice. B: Scoring for IHC: 0, nega-
tive; 1, <25% of tumor; 2, 25% to 75% of tumor; and 3, >75%
of tumor staining positive. Statistics were performed with an
unpaired Student’s t-test: ****P < 0.0001. Original magnifica-
tion, �400 (A).

EGFR/Trp53 Cooperate for MPNST Formation
compared with single transgenic mice (Figure 3E). Tumor
penetrance for each genotype is summarized in Supplemental
Table S2. Interestingly, we observed a 15% penetrance of
neurofibroma formation on the Cnp-EGFR background
compared with previous reports of nerve hyperplasia with
5% neurofibroma formation.49 Discrepancies in these ob-
servations may be due, in part, to differences in mouse
strain. Our mouse model was generated by backcrossing the
Cnp-EGFR transgene from a C57BL/6 background to an
FVB/N background (five to seven generations). Previous
reports used C57BL/6-SJL mice with backcross onto
C57BL/6. FVB/N mice are more susceptible to tumor for-
mation than C57BL/6 in the context of GEMMs for tumor
formation, most likely attributed to differences in genetic
modifiers (Jackson Laboratories, Bar Harbor, ME).

To determine whether the downstream signaling pathways
of EGFR and Trp53 were altered in theCnp-EGFR;Trp53þ/�

mouse tumors, histological analysis of downstream signaling
pathways of EGFR (pEGFR, pErk, and pAkt) and Trp53 (p21
expression) were assessed in neurofibromas (nZ 6mice) and
grade 3 PNSTs (nZ 13 mice) (Figure 4A and Supplemental
Figure S2D). EGFR, pEGFR, pErk, Trp53, and p21 were
present in both neurofibromas and grade 3 PNSTs, with more
intense EGFR, pEGFR, and pErk staining observed in grade 3
PNSTs. pAkt was absent in neurofibromas, and variable
expression was observed in grade 3 PNSTs (Student’s t-test
P < 0.0001) (Figure 4B). These data support the previous
The American Journal of Pathology - ajp.amjpathol.org
finding that the PI3K/AKT pathway is important in progres-
sion from neurofibroma to grade 3 PNST.70,73

aCGH Analysis Identifies Genes Enriched in Erk5
Signaling

Because Cnp-EGFR;Trp53þ/� mice only had a 33% pene-
trance of grade 3 PNST formation, additional genetic al-
terations must be required for the tumors to develop. LOH
analysis of the Trp53 gene identified that 40% of grade 3
PNSTs lost the WT Trp53 allele (data not shown). To
identify additional genetic events leading to tumor formation,
we performed aCGH on seven Cnp-EGFR;Trp53þ/� grade 3
PNSTs. The tumors contained a variety of chromosomal al-
terations, including whole chromosome gains and losses and
regional gains and losses (Figure 5 and Supplemental Table
S2). Whole chromosome gains occurred on chromosomes 3,
5, and 15 in four of seven mice. Three of seven grade 3
PNSTs showed whole chromosome losses on chromosomes
10 and 18. To identify candidate MPNST-driver genes, we
analyzed genes found on focal chromosomal gains/losses
and included tumors that also possessed whole chromosomal
gains/losses that contained the focal regions of interest
(Figure 5). We only assessed CNAs observed in four or more
mouse tumors (Table 2). This narrowed the search down to
five regions containing 2452 genes: CNAs on chromosomes
4, 15, and 18. We identified the human orthologs for the list
2091
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Figure 5 aCGH analysis was performed on seven grade 3 PNSTs to
identify recurrent CNAs. Depicted is an ideogram of mouse chromosomes.
Individual tumors are color coded. Lines to the left of the chromosome
indicate CNA losses, whereas lines to the right indicate CNA gains. The
asterisks denote focal CNAs observed in at least four of seven mice that
were further pursued to identify grade 3 PNST driver genes.

Rahrmann et al
of candidate MPNST-driver genes and assessed the CNA
status on 51 human MPNST tumor samples. Comparative
analysis to human CNA data identified 199 of 2452 genes
with recurrent CNAs in human MPNSTs (Supplemental
Table S3).

Ingenuity Pathway Analysis (Ingenuity Systems Inc.,
Redwood City, CA) of the 199 genes with recurrently
occurring CNAs in mouse and human MPNSTs identified
eight signaling pathways significantly enriched: ERK5
signaling, ephrin receptor signaling, phospholipase C
signaling, axonal guidance signaling, tec kinase signaling,
ephrin A signaling, polyamine regulation in colon cancer,
and P2Y purinergic receptor signaling pathway (Table 3). In
addition, there was significant enrichment in genes found in
normal cellular processes, such as cell cycle regulation and
DNA replication, recombination, and repair (Supplemental
Table S4). Moreover, 56 genes identified are implicated in
cancer, including four with recurrent CNA gains (PRUNE,
PTK2, NTRK1, andMYC ) previously implicated in MPNST
development (Supplemental Tables S3 and S4).74e77 These
data suggest that EGFR overexpression and reduced Trp53
expression cooperate to generate an environment permissible
for gross chromosomal alterations that enrich for protu-
morigenic signaling pathways for MPNST formation to
occur in Schwann cells in vivo.

Characterization of Cnp-EGFR;Trp53þ/� Grade 3
PNST-Derived Cell Lines

To identify additional mutations and to corroborate the
aCGH finding, G-banding and SKY analysis were performed
2092
on single-cell clones from three early-passage (three to seven
passages) grade 3 PNSTs that express Schwann cell markers
(Olig2 and S100b) (data not shown). Cell clones were
analyzed for cytogenetic abnormalities (G-banding and
SKY), LOH of WT Trp53 allele, and allograft tumor for-
mation. G-banding and SKY analysis from 15 and 13 cell
clones, respectively, from two tumors identified variable
karyotypes, including whole chromosomal gains, losses, and
translocations (Figure 6, A and B). Recurrent whole chro-
mosomal gains were observed on chromosomes 4 (27 of 28),
6 (26 of 28), 8 (27 of 28), and 15 (28 of 28). The high level of
aneuploidy observed in these cell lines is similar to the
incidence observed in human MPNSTs. Interestingly, 80%
of the tumor-derived cell lines analyzed underwent LOH for
the WT Trp53 allele within the first three passages after
single-cell sorting, suggesting there is a selective pressure for
the loss of the WT Trp53 allele in vivo and/or in cell culture
(Figure 6C). Last, clones were injected into SCID/BIEGE
mice for allograft tumor formation assays to determine
whether they retain properties similar to the parental tumors
(Figure 6D). Histological analysis of tumors (H&E, toluidine
blue, Ki-67, and S100b) indicated that the clones produced
tumors with features of grade 3 PNSTs: spindle-shaped cell
morphological characteristics, mast cell infiltration, high
proliferative index, and expression of a Schwann cell marker,
S100b (Figure 6D). Collectively, these data suggest that
EGFR overexpression and loss of Trp53 expression alone are
not sufficient for MPNST formation but facilitate chromo-
somal aberrations that lead to MPNST formation.
Discussion

We performed a comprehensive analysis of EGFR and TP53
cooperativity in human and mouse MPNST development.
We identified co-occurring alterations of the EGFR and TP53
genes by CNAs, microarray expression, and dual immuno-
fluorescent staining in human MPNSTs. Modulation of
EGFR and TP53 expression in iHSCs in vitro increased
proliferation and anchorage-independent growth. Transgenic
mice overexpressing EGFR and haploinsufficient for Trp53
formed all grades of Schwann cell tumors. Last, cytogenetic
analysis of grade 3 PNSTs from EGFR-overexpressing
and TP53-haploinsufficient mice developed chromosomal
aberrations that enriched for genes in the ERK5 signaling
cascade.
Amplification of the EGFR gene and mutations and/or

deletions of the TP53 locus are common events in human
MPNST.25,46,78,79 However, there has not been a large-scale
study correlating the expression of both events. Tabone-
Eglinger et al47 performed a large-scale IHC analysis of
EGFR expression on 52 MPNST samples (NF1 syndrome
associated and sporadic) and observed that 86% of the
samples overexpressed EGFR. From the 52 samples, they
assessed four for co-expression of TP53 and identified half
of the samples overexpressing EGFR to be associated with
ajp.amjpathol.org - The American Journal of Pathology
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Table 2 Comparative aCGH Analysis

Chromosome
No. Region (mm9) Size (nt) CNAs

No. of
genes

No. of human
homologues

No. of human genes
with recurrent CNAs

3 87588760-95767212 8,178,452 Gain 962 209 152
4 87904820-90001325 2,096,505 Gain 245 9 1
4 128549741-137966192 9,416,451 Gain 313 204 17
4 140085152-155607029 124,578,123 Gain 922 195 24
15 60596527-63754443 3,157,916 Gain 9 4 4
18 9838430-10017847 179,417 Loss 1 1 1
Total 2452 622 199

EGFR/Trp53 Cooperate for MPNST Formation
loss of TP53 expression.47 Comparatively, we observed
TP53 expression in all MPNST samples with varying in-
tensity of staining, whereas only 50% of samples expressed
EGFR. This discrepancy with previous reports may be the
result of many factors, including sample size and method.
Also, immunofluorescence/IHC will not identify mutations
in TP53 that may produce a mutant protein product. In
addition, we analyzed DNA CNA data for the EGFR and
TP53 loci in human MPNSTs and identified a subset of
patients with co-occurring EGFR CNA gains and TP53
CNA losses (5 of 51 patients). Assessment of several cancer
types in TCGA identified a significant co-occurrence of
EGFR and TP53 aberrations (mRNA expression, CNAs,
and mutations) in breast cancer and sarcomas (Table 1).
Collectively, the data suggest that EGFR overexpression
and reduced/impaired TP53 expression may cooperate for
tumor formation in a subset of human cancers.

The reasons for this strong cooperation between EGFR
overexpression and Trp53 haploinsufficiency in vivo are un-
clear. Some possible reasons for the cooperation include, but
are not limited, to the following: Trp53 haploinsufficiency
alleviates EGFR-induced senescence. Trp53 haploinsuffi-
ciency impairs DNA repair mechanisms, allowing for
acquisition of rare oncogenic mutations that cooperate with
EGFR overexpression. It seems possible that overexpressing
EGFR activates TP53, thereby limiting cell proliferation,
perhaps by up-regulating CDKN1A. Senescence is triggered
by the activation of signaling pathways, such as TP53 and
CDKN2A.80 TP53 loss of function and EGFR activation co-
occur in other cell types, such as in human esophageal cancer,
where there is a correlation between EGFR overexpression
and TP53 loss of function.52,81,82 Okawa et al51 demonstrated
Table 3 Signaling Pathway Analysis of aCGH Focal Gain Regions

Signaling pathway
B-H corrected
P value Genes

ERK5 0.0005 SH2D2A, MYC, RPS6KA6, MEF2D
Ephrin receptor 0.0046 PTK2, SHC1, GNB4, GNB3, GNB2
Phospholipase C 0.0063 SHC1, GNB4, PRKC1, GNB3, MEF
Axonal guidance 0.0120 ADAM14, EFNA3, SEMA6C, EFNA
Tec kinase 0.0324 PTK2, GNB4, PRKC1, GNB3, HCK
Ephrin A 0.0380 PTK2, EFNA3, EFNA4, EFNA1
Polyamine regulation 0.0380 MCY, ODC1, OAZ3
P2Y purinergic receptor 0.0380 MYC, GNB4, PRKC1, GNB3, GNB2

B-H, Benjamini-Hochberg.
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that overexpression of EGFR, activation of telomerase
reverse transcriptase, and reduction in TP53 expression were
capable of transforming esophageal epithelial cells. Ohashi
et al83 demonstrated that overexpression of EGFR in
immortalized esophageal epithelial cells induced expression
of cell cycle kinase inhibitors p15INK4B, p16INK4A, and p21.
This senescent state was alleviated partially by introducing a
mutant TP53, leading to increased transformation of the
immortalized esophageal cells. It is possible that, in our
mouse model, EGFR overexpression induces an oncogenic
senescence that is partially alleviated by Trp53 hap-
loinsufficiency, allowing for acquisition of additional muta-
tions for grade 3 PNST formation. Because only 33% of mice
developed grade 3 PNSTs, clearly additional mutations and/
or genetic alterations are required for high-grade tumor
formation.

In addition to the role TP53 has in cell cycle progression
and its transcriptional activity, TP53 has a pivotal role in
DNA repair mechanisms that prevent acquisition of genome
mutations. Loss of Trp53 expression reduces the activity of
DNA repair pathway mechanisms (base/nucleotide excision
repair) that leads to the accumulation of mutations that
generate genomic instability that often results in chromo-
somal aberrations (aneuploidy).84 This study focused on
gross chromosomal alterations by cytogenetic analysis of
grade 3 PNSTs and tumor-derived cell lines. The aCGH,
SKY, and G-banding data demonstrated an aneuploidy
phenotype in both the bulk tumors and tumor-derived cell
lines, which is similar to that observed in human MPNST
bulk tumors and cell lines.22 To identify potential signaling
pathways that cooperate with EGFR overexpression and
Trp53 haploinsufficiency for grade 3 PNST formation, we
, NTRK1, RPS6KA3, CREB3L4
, EFNA3, CREB3L4, EFNA4, EFNA1
2D, GNB2, RPS6KA3, LYN ARHGEF2, CREB3L4
4, EFNA1, PTK2, SHC1, GNB4, PRKC1, GBN3, NTRK1, GNB2, SEMA4A
, GNB2, LYN

, CREB3L4

2093

http://ajp.amjpathol.org


Figure 6 Characterization of grade 3 PNST-derived cell lines.A: SKY of grade 3 PNST-derived cell lines. Two clones from a single tumor are depicted. The clone on
the left possesses translocations (chromosomes 9 and 19), duplications (chromosomes 3, 4, 6, 8, 15, 16, 19, and X), and deletions (chromosome 14). On the right, a
clone possesses large whole chromosomal amplifications (chromosomes 1 to 19) and a translocation on chromosome 4. B: G-banding analysis of grade 3 PNST-
derived cell lines. Both clones are from the same tumor in A. The clone on the left possesses a few deletions, amplifications, and translocations (arrows). The
clone on the right possesses numerous whole chromosomal amplifications. C: Agarose gel electrophoresis of PCR products from a Trp53 loss-of-heterozygosity
experiment. D: A band at 600 bp represents the WT Trp53 allele, whereas the double smaller bands represent the digested Trp53R270H allele. Luciferase live imag-
ing of cell lines injected into SCID/BIEGE mice demonstrating their capacity for tumor formation. Histological analysis of tumors for H&E staining, toluidine blue
staining, and IHC for Ki-67 and S100b indicates the cell lines formgrade3 PNSTs.E:Bar graphdepicts RT-qPCR results for HbegfmRNAexpression relative toGapdhon
grade 3 PNST-derived cell lines from three independent tumors. Original magnification,�400 (D). Scale barZ 50mm (D). RE, restriction enzyme digested; U, uncut.
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chose five focal chromosomal gains and losses observed in
at least four of seven tumors analyzed by aCGH. Ingenuity
Pathway Analysis of the human homologues of genes with
recurrent CNAs identified eight significantly enriched
signaling pathways (Table 3 and Supplemental Table S5).
The top pathway, ERK5 signaling or BMK1, is an atypical
MAPK signaling pathway that promotes cellular prolifera-
tion (activation of c-Jun, SAP, and MYC) and inhibits
apoptosis by phosphorylating BAD and Foxo3A.85,86 Pre-
vious studies on ERK signaling in human MPNST cell lines
indicate that ERK5 signaling is active and induced in the
presence of EGF ligand.87 Our mouse model suggests that
additional studies on ERK5/BMK1 signaling in MPNST
development are warranted and may provide a potential
therapeutic target for treatment of MPNSTs.
2094
Activation of several signaling pathways known to be
involved in MPNST development was also observed in our
mouse model. Increased signaling through EGFR, via pAkt,
was observed inCnp-EGFR;Trp53þ/� grade 3 PNSTs. These
data corroborate previous reports indicating that pAkt and
downstream signaling through the mTOR pathway are
important inMPNST.12e14,70,73 Similar to ourGEMM,NPcis
tumors and tumor-derived cell lines have activated the PI3K/
AKT/mTOR pathway and increased EGFR expression
(Figure 6C).88 Inhibition of the PI3K/AKT/mTORpathway in
NPcis cell lines potently inhibited EGF-dependent growth.88

In addition, TP53 loss is known to induce growth factor
expression, such as heparin-binding epidermal growth factor
(HB-EGF).89 HB-EGF binds to EGFR and induces signaling
through the MAPK and PI3K/Akt pathway. Cell lines from
ajp.amjpathol.org - The American Journal of Pathology
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the NPcis mouse express HB-EGF.88 Our grade 3 PNST-
derived cell lines also express HB-EGF, which may be an
additional mechanism for activating the PI3K/Akt pathway in
ourmousemodel (Figure 6E). Potentially in ourmodel,Trp53
haploinsufficiency removes a senescent brake on Schwann
cell transformation, while also causing growth factor ex-
pression to stimulate proliferation in an autocrine manner.

Recently, aCGH was performed on 11 early-passage,
grade 3 PNST cell strains from the P0-GGFb3 transgenic
mouse overexpressing neuregulin in the Schwann cells.74

Neuregulin is a growth factor ligand, implicated in many
human cancers, including MPNSTs, that binds to and stim-
ulates signaling through erbB receptors.17 Transgenic mice
overexpressing neuregulin in Schwann cells develop both
neurofibromas and frank MPNSTs. In our study, chromo-
somal CNAs, including whole chromosome gains of chro-
mosomes 3, 5, 15, and 18, were identified in four of seven
tumors. Interestingly, Kazmi et al74 reported whole chro-
mosomal losses for chromosome 4, and no alterations were
observed on chromosome 5. This discrepancy in CNAs may
reflect differences in mouse strain background and/or acti-
vation of erbB2 and erbB3 receptor signaling pathways
by neuregulin and not solely EGFR (erbB1), as in our model.
Recently, Brosius et al90 demonstrated that neuregulin
overexpression alone was not sufficient to generate MPNSTs
on a C57BL/6J mouse strain. However, when combined
with Trp53 haploinsufficiency, P0-GGFb3 transgenic mice
developed de novo MPNSTs. Interestingly, our study and
Brosius et al90 identified a similar CNA gain on chromosome
15 in a region containing MYC. Moreover, MYC expression
is elevated in human MPNSTs compared with neurofibromas
and is directly altered by modulating components of the Wnt/
b-catenin pathway.91 Collectively, the data sets support
previous reports that MYC is a strong genetic driver of
MPNST formation.

In summary, we determined that co-alteration of EGFR
and TP53 expression in vitro and in vivo contribute to
Schwann cell tumorigenesis through increased proliferation,
anchorage-independent growth, PI3K/Akt pathway activa-
tion, and chromosomal alterations enriching for alterations
in genes in the ERK5 signaling pathway.
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