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Abstract

The key step of template-based protein–protein structure prediction is the recognition of

complexes from experimental structure libraries that have similar quaternary fold. Maintaining

two monomer and dimer structure libraries is however laborious, and inappropriate library

construction can degrade template recognition coverage. We propose a novel strategy SPRING to

identify complexes by mapping monomeric threading alignments to protein–protein interactions

based on the original oligomer entries in the PDB, which does not rely on library construction and

increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838

nonhomologous protein complexes which can recognize correct quaternary template structures

with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score

of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while

the number of targets with an interface RMSD <2.5 Å by SPRING is 134% and 167% higher than

these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins.

Although the relative performance of SPRING and ZDOCK depends on the level of homology

filters, a combination of the two methods can result in a significantly higher model quality than

ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to

quaternary structure recognition that is ready to use for genome-scale modeling of protein–protein

interactions due to the high speed and accuracy.
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INTRODUCTION

The number of possible protein–protein complexes scales in principle as the square of the

number of monomer protein chains in genomes, with estimates of the possible number of

distinct protein complexes in the order of millions.1 Although the currently available high-

throughput experimental methods have been employed to identify putative interacting

protein pairs on proteome scales, the estimated error rates range from 41% to 90%.2 These

high-throughput methods do not provide structural information, i.e., where and how the

proteins interact. Structural determination methods, such as X-ray and NMR techniques,

could provide such information but are too costly and labor intensive to be applied on the

proteome scale.

To address these issues, many computational approaches have been proposed for predicting

the quaternary structures of proteins, which can be categorized as template-based and

template-free approaches.3 In the template-based approaches as applied to dimers,4–10 the

quaternary model is constructed by matching a pair of monomer target sequences to a library

of related template protein complexes which have the structure experimentally solved. In the

template-free approaches,11–18 also known as protein–protein docking, the target protein

complex structure is predicted by scoring a large set of protein–protein orientations which

are generated by assembling known monomer structure models.

Both methods have advantages and disadvantages. The template-free approaches can in

principle treat any protein targets whose monomer structures are known. However, there is

no guarantee of a high-quality structural prediction, particularly when bound structures

undergo conformational changes from the unbound structures.19 These usually involve side-

chain readjustments and sometimes backbone rearrangements. Furthermore, the docking

methods require the information that the two proteins interact; this restriction is largely due

to the limitations of the force fields used for evaluating the interaction energy.20
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Template-based (or homologous modeling) approaches generally have a higher accuracy

than docking when homologous templates are available, but the alignment accuracy

decreases sharply when the evolutionary relationship between target and template proteins

becomes ambiguous, which generally corresponds to the scope of a target–template

sequence identity <30%. Recently it was recognized that the structural space of protein–

protein interfaces is highly degenerate,21,22 which implies that the template-based approach

can in principle be used to deal with any protein. In practice, the identification of the

analogous protein complex pairs is highly challenging because the majority of the

neighboring structure pairs have no obvious evolutionary relationship. Thus, development of

new approaches to detect distantly homologous protein complex pairs is essential.

Partly toward this goal, we recently developed a method called COTH9 which first threads

both target sequences to a representative complex structure library. The monomer template

structures identified by single-chain threading are then shifted to the dimeric framework that

was identified by multiple-chain threading. The combination of the tertiary and quaternary

libraries demonstrates a significant increase of the alignment coverage from the original

complex structure templates, compared with other multiple-chain threading methods.

However, the COTH procedure can be laborious since two template libraries (one for

monomer and one for dimer) need to be maintained and updated. It is quite often that we

found some interactions have been missed in the dimeric library even though we increased

the sequence identity cutoff up to 90%. More importantly, the structural superposition can

shift the complex structure to a wrong orientation especially when the structural similarity

between the monomer structures in the two threading steps is low.

In this work, we address these issues by developing a new single-chain-based threading and

mapping method for complex structure prediction, called SPRING (single-chain-based

prediction of interactions and geometries). Since in most cases one chain structure is taken

directly from the original oligomer structure in the PDB, the alignment loss from the

monomer-to-dimer superimposition is kept minimal. Second, the close match of the

interface areas from the same oligomers helps improve the coverage and accuracy of

interface contact predictions which aims to solve a major issue in previous multiple-

threading approaches.8,9,23 Third, since a one-step single-chain threading is conducted, only

the monomer structure library is needed in SPRING. It is therefore faster than COTH and

other threading approaches, and the library is easier to maintain and update. Meanwhile, a

precalculated lookup table is exploited to quickly exclude most of the complex frameworks

that have no homologous association to the binding sequences. This is particularly important

for speeding up the genome-scale modeling of protein–protein interactions, since only a

small subset of interactions need to be pursued after this filtering step. Moreover, the

complex template coverage is significantly maximized since there is no sequence cutoff for

constructing the library. To examine the efficiency and generality, we will carefully test the

method in control with other state-of-the-art template-based methods in large-scale

benchmarks. The SPRING algorithm is freely available at http://

zhanglab.ccmb.med.umich.edu/spring/.
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MATERIALS AND METHODS

SPRING Algorithm

SPRING constructs the structure of protein complexes starting from two input chain

sequences A and B (Figure 1). At first, a list of putative monomer templates (TA) for

sequence A is identified from the monomeric template library using a threading approach,

e.g., MUSTER,24 HHsearch,25 or both. The threading provides a template alignment and a

Z-score (ZA) for the input sequence A. Here, the Z-score is defined as the difference between

the raw alignment scores and the mean in the unit of variations, which has been widely used

to assess the significance of the threading alignments, i.e., a higher Z-score means a higher

significance and usually corresponds to a better quality of the alignment. The top template of

the highest Z-score (TA1) will be used to construct a monomer model for chain A.

Meanwhile, we thread the sequence of chain B through the monomeric structure library to

identify another set of putative templates (TB) with associated Z-scores (ZB) (right column

of Figure 1). Analogous to chain A, we derive a top-ranked monomer model for chain B

using the template with the highest Z-score (TB1).

To construct structure models of the complex, we now gather a set of template/partner

frameworks by using the (top- and lower-ranking) monomer templates of chain A (TA).

Therefore we retrieve the corresponding oligomer file of each monomer template TA from

the PDB. Then, all binding partners of the templates TA are collected from the oligomers

(labeled as PA). These also include binding partners and their respective orientations as

deposited by the remark “350” of the PDB file. Template/partner frameworks can only be

derived from monomer templates TA with at least one binding partner.

Using the identified template/partner frameworks, we start by structurally aligning the top-

ranked monomer model of chain A to all templates (TA), where the alignment is built on the

subset of interface residues. Additionally, we align the top-ranked monomer model of chain

B to all binding partner structures of chain A that were retrieved from the PDB oligomers

(PA); the alignment is based on the subset of interface residues. These two monomer-to-

oligomer superimpositions yield a dimeric model, consisting of the reoriented top monomer

models for chains A and B based on each of the oligomer frameworks. Here, we note that

the tertiary structures of two components are both from the top threading template, although

the oligomer frameworks can come from the lower-rank threading templates. Based on our

training results, using the top-rank monomer templates can generate on average better

quality of complex models than using lower-rank monomer templates based on both global

and interface scores. This is because the top monomer templates have generally a higher

accuracy of alignments than lower-rank ones. Moreover, for reasonable frameworks the

structures of component chains and the top monomer templates are often close, and the

alignment loss from the superimpositions is minimal. Nevertheless, most of the top complex

models by SPRING are built from the top oligomer frameworks. In these cases, the

component models of the probe chain are taken directly from the oligomers, and no

structural superimposition is needed.
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To improve the efficiency, we exclude template/partner frameworks if the corresponding

binding partner is not homologues to any of the monomer templates (TB) identified for chain

B. The homology can be quickly verified through our precalculated look-up table, which is

essentially a one-to-one PDB ID map to associate every binding partner in the oligomers to

its closest homologues monomer structure from our tertiary template library (middle column

of Figure 1). The look-up table was pregenerated by an all-against-all PSI-BLAST search26

of the PDB library, where the partner/homologue association with the lowest E-value was

selected for each binding partner. The look-up table is particularly useful to increase the

efficiency for genome-wide all-against-all modeling studies, since only a small subset (~1%)

of protein pairs that can find putative template/partner frameworks is needed for the

consequent model construction.

The models constructed from monomer-to-oligomer mappings are evaluated by the

SPRING-score which is a linear combination of three terms:

(1)

where the first term is the smaller Z-score of threading of the two target sequences; the

second is the TM-score returned by TM-align27 when aligning the top-ranked monomer

model for B to the subset of interface residues of the selected binding partners of chain A

(PA); the third counts for a distance-specific interface contact potential, which was derived

from 3897 nonredundant dimeric protein structures with a sequence identity <30% to each

other.22 It uses a formula similar as Zhou et al. but with the atomic distances taken from

residues in separate chains,28 and w1 = 12.4 and w2 = −0.2 are the weight factors balancing

the terms. We determine the weighting parameters through a grid search on a separate

training set of 200 randomly selected protein complexes by maximizing the number of

‘acceptable’ models, where an acceptable model refers to the top-ranked models with >30%

of correctly predicted Cα-atom contacts in the interface.

For heterodimer proteins, this process is repeated using B as probe to identify binding

partners for the complex template identification and model construction. The models of the

highest SPRING-score in the two processes are finally selected as predicted models. For

homodimer proteins, a single threading starting on one chain is sufficient due to the

symmetry of the complex structures.

Libraries of Protein Structure Templates

SPRING is based on monomer threading, and we constructed from the PDB a representative

set of 43 571 monomeric protein structures, sharing a pairwise sequence identity of <70%.

Obsolete structures and theoretical models were removed. For multiple-domain proteins,

both individual domains and whole proteins are included in the library, which has been

proven to increase the alignment accuracy of single domain proteins.24

For benchmarking SPRING with other methods, we also constructed a set of nonredundant

dimeric complex structures that is needed by COTH and the naïve complex threader using

MUSTER, HHsearch, and PSI-BLAST. This library was derived from DOCKGROUND29

with a filter of pairwise sequence identity <70%. In addition, irregular structures,
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transmembrane complexes, and complexes with alternate binding modes were removed. To

rule out crystallization artifacts, complexes with <30 interface residues or with a buried

surface area <250 Å2 were not included. It finally contains 7404 dimeric protein structure

templates at the same date cutoff of the monomer library.

Test Set of Protein–Protein Complexes

The evaluation of prediction performance was conducted using a set of 1838

nonhomologous protein–protein complexes from the PDB, including dimers derived from

higher order oligomers, similar to that used by Lu et al.8 Each of the 3676 monomer

structures from the dimers contains at least 40 interface residues with at least 30 interface

residue–residue contacts, where a contact is defined as a pair of residues from different

chains with at least one pair of side-chain heavy atoms within 4.5 Å. In addition, the dimers

have a sequence identity <35% to each other (i.e., at most one chain in a dimer can have

>35% sequence identity to any of the chains in another dimer so that homodimers are

included).

Measures of Dimer Model Quality

The global model qualities are evaluated using TM-score,30 the global complex RMSD, and

the sequence-template alignment coverage. Local model qualities are measured using the

fraction of native Cα- atom contacts (fnat) in the interface, the interface RMSD (I-RMSD),

and the interface alignment coverage, where interface residues are defined as those with a

heavy atom distance of <10 Å to any residue of the other chain.

TM-score has been extensively used to assess the quality of monomeric protein structure

predictions, because of its attribute to balance alignment accuracy and coverage. In order to

calculate TM-score of dimeric models, we convert the dimer into an artificial monomer by

connecting the C-terminal of the first chain with the N-terminal of the second and then run

TM-score program, using the length of the query complex as normalization scale. This

definition of complex TM-score is sensitive to the topology of individual chains and their

relative orientation. A high complex TM-score indicates the correct modeling of both

individual chain structures and their relative orientation.31

RESULTS

Control of SPRING with Competing Threading Methods

SPRING derives complex structure by mapping monomer alignments as identified by

single-chain threading algorithms, e.g., MUSTER24 and HHsearch25 (Figure 1). To examine

the gain of the threading and mapping procedure over the traditional dimeric or monomeric

threading procedures, we implement SPRING using the monomer alignments from

MUSTER (called SPRING-M), in control with COTH (threading and superposition) and a

naïve implementation of MUSTER (called NAIVE-M). In NAIVE-M, MUSTER is used to

align every chain of the target complex with that of known proteins in the complex template

library. A template model is obtained if both chains from a template are aligned with the

target. This procedure is identical to the strategy that was used by several authors in the

former studies.8,23,32

Guerler et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2 shows a comparison of the three methods on a set of 1838 interacting protein–

protein sequence pairs, based on the global TM-score, the fraction of correctly predicted

interface contacts (fnat), the interface RMSD, and the global RMSD, respectively. To rule

out contamination from close homologous templates which are easy to identify by sequence

comparisons, any templates which have a sequence identity >30% to target proteins in the

testing set have been excluded from the template libraries. This filter is implemented in all

the following threading calculations unless noted specifically.

Overall, the number of successful predictions by SPRING-M is the highest among all

methods in each of the TM-score ranges. The same is true for the fraction of interface Cα-

atom contacts and the interface and global RMSD results. For instance, if we consider a TM-

score threshold of >0.5, SPRING-M, COTH, and NAIVE-M generated valid dimeric models

for 1029 (56%), 767 (42%), and 568 (31%) out of the 1838 protein targets, respectively.

Similarly, if we count for the number of cases which have an I-RMSD <5 Å and with at least

50% interface residues aligned, the number for SPRING-M, COTH, and NAIVE-M is 638

(35%), 381 (21%), and 359 (20%), respectively.

To further examine the detailed difference between the algorithms, in Figure 3A,B we

present a head-to-head comparison of dimeric models predicted by SPRING-M and COTH,

with regard to the TM-score and contact accuracy (fnat). There are 1023 cases where

SPRING-M generates models of a higher TM-score than COTH, where COTH does so in

539 cases. Overall, the average TM-score of the predicted SPRING-M models is 13% higher

than that of COTH. For interface structure modeling, SPRING-M models preserve 31% of

the native contacts, whereas in COTH it does so in only 17% of cases (see Figure 3B). Since

both methods used the top-ranked monomeric models to form the dimer models, their global

alignment coverage is close (~88%). Thus, this TM-score increase is purely due to the

identification of better dimer templates from the SPRING-M threading mapping, which

results in more precise chain orientations. This is further manifested by the modeling quality

at the interface structures. If we defined a high-quality hit as that with an I-RMSD <2.5 Å on

>90% of interface residues aligned, SPRING-M produced 162 hits compared to 89 by

COTH, which corresponds to an increase of 82%.

In Figure 3C,D, we present a similar head-to-head comparison of SPRING-M with NAIVE-

M, where the TM-scores of the dimeric models predicted by SPRING-M are on average

40% higher than that of NAIVE-M. The major reason for the TM-score increase in

SPRING-M is due to the boost of template libraries because SPRING-M has the monomer

structures built from the tertiary template library (43 571 entries) which is much larger than

the quaternary template library (7404 entries), while the latter was the only source used by

NAIVE-M for building the complex models. For interface structure, the NAIVE-M

alignments conserve 17% of native contacts (see Figure 3D), which is similar to that of

COTH but 45% lower than that of SPRING-M. Here, although the individual COTH models

are on average of higher TM-score, they do not contain more correct interface contacts than

NAIVE-M. The poor performance of COTH relative to SPRING-M is mainly due to the

alignment strategy that COTH employs to combine the monomers of the identified dimeric

template. Since COTH uses a full-length global superposition strategy, it focuses less on the

interface conservation, rather than the global topology of the complexes. In contrast,
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SPRING-M maps the monomer alignment using a subset of interface residues, which

guarantee a better match in the interface regions. Meanwhile, many of the top alignments

have the partner chain directly coming from the original oligomer entry which helps enhance

the shape match of the interfaces. Third, the quaternary chain orientation of the complexes

as identified by SPRING-M mapping has a better quality than that by monomeric or dimeric

threading, which further contributes to the interface contacts.

The observed performance differences of SPRING-M from COTH and NAIVE-M with

regard to the TM-scores are statistically significant, which have the p-values from the

pairwise student t tests of 10–72 and 10–166, respectively. In Table 1, we summarize the

overall model qualities for each method, according to the average TM-score, the fraction of

native Cα-atom contacts, the number of hits with an I-RMSD <2.5 Å, and the global

alignment coverage, respectively. The results are shown from both the first model and the

best in top-five models, where SPRING-M clearly outperforms the control methods in all

the criterions.

Illustrative Examples of Dimeric Threading

To further analyze the strength and weakness of SPRING-M in comparison with the other

methods, we dissect in detail several typical examples. Figure 4 presents the model

predictions for the 1-Cys peroxiredoxin complex (PDB ID: 1XCC), which is a typical

homodimer complex. First, NAIVE-M identified a template from the glutathione

peroxidase-5 (PDB ID: 2P5Q) with a sequence identity of 11% to the target. The predicted

model has a TM-score = 0.37 and an I-RMSD = 12 Å, covering 64% of interface residues.

The model predicted by COTH uses the same complex (PDB ID: 2P5Q) as the global

template. However, COTH derives both monomer models from the peroxiredoxin-4 protein

(PDB ID: 2PN8). The combination of the monomer templates on the dimer framework

increases the TM-score from 0.37 to 0.52, which has an I-RMSD of 7.1 Å to the native

crystal structure complex. In total, it has 376 residues aligned, which are much higher than

that in the NAIVE-M alignment.

Finally, SPRING-M derives the orientation based on the single-chain MUSTER threading,

which retrieves the dimer template from the tryparedoxin (PDB ID: 1UUL). The individual

monomers of this dimer template are structurally similar (TM-score = 0.67) to the

monomers of the template (PDB ID: 2P5Q) as identified by COTH and NAIVE-M, but the

chain orientation in 1UUL is much closer to the native than that in 2P5Q. The closer

orientation of the framework allows SPRING-M to generate a dimer model of higher quality

after the mapping of monomer structures (see Figure 4).

An interesting question is why 1UUL was only successfully identified by SPRING-M but

not other methods since both COTH and NAIVE-M use MUSTER for monomer threading.

A closer analysis showed that this template is not included in the nonredundant dimer

structural library since the complex structure contains a single decamer and thereby multiple

alternative binding modes for the homologue chain pairs. Since the other two algorithms did

not select particular binding modes from a set of alternatives, none of the putative

orientations could be detected. As an essential advantage, however, SPRING-M considers

all alternative binding modes from all complexes of the oligomer structure, since it starts
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from monomer threading with the composite SPRING-score selecting the most suitable pair.

In this example, although all monomer templates have a low sequence identity to the target

(<30%), the SPRING-score is high (27.5), which gives us a high confidence on the

prediction. The overall TM-score of the mapped dimer model is 0.75 with an I-RMSD of 3.0

Å. Again, the fraction of aligned interface residues of both SPRING-M and COTH models is

the same (= 83%), where the improvement of SPRING-M is on the choice of the better

template framework and the closer mapping of monomer structures in the individual

domains.

Figure 5 presents another example from the putative kinase complex (PDB ID: 2AN1,

chains A and D). In this example, the best template (PDB ID: 1YT5) is included in the

dimeric structural library. But the oligomer complex includes 8 biomolecules based on 4

homologues chains; these correspond to 48 dimeric alternative binding modes. The COTH

library can chose only one binding mode from the dimeric pair of chains A and D that has

the lowest solvent free energy (–183 kcal/mol) as defined in the PDB; this template results

in an incorrect orientation for this target (fnat = 0.09 and I-RMSD = 14.2 Å), although the

individual monomer models are similar to native (TM-scores >0.77).

In contrast, since SPRING-M retrieves partners from original oligomer complex structure, it

naturally considers all 48 putative binding modes in the look-up table. Despite the slightly

higher solvent free energy (–139 kcal/mol), the complex of biomolecules 3 and 5 with

chains A and B was selected by SPRING-M as the most suitable framework, since the TM-

score from TM-align superposition (0.82) and the contact potential (–41) are both better than

all other partnerships (TM-score and contact potential values for the A/D pair template are

0.44 and –22, respectively). The choice of this A/B template results in a complex model

with much better quality (fnat = 0.70 and I-RMSD = 2.6 Å) than that by COTH (see Figure

5). Meanwhile, since only one chain was required for other proteins (instead of both chains

in COTH) to be superimposed on the framework, the interface shape match is another

contribution to the quality of the interface structures of the SPRING-M models in this

example.

Performance of SPRING Using Different Monomeric Threading Algorithms

In the previous sections, we compared SPRING-M, COTH, and NAIVE-M with all three

algorithms based on MUSTER to ensure a fair comparison of different template

identification and complex construction strategies. However, neither SPRING mapping nor

the SPRING-score is restricted to specific monomeric threading algorithms. An interesting

question is whether and how the SPRING pipeline benefits from choosing different target-

template alignment algorithms. Here we test the performance of SPRING using another

threading program, HHsearch25 (SPRING-H). While MUSTER generates the target-

template alignment based on a composite sequence and structural profiles, HHsearch uses

the hidden Markov models. They can have significantly different results on template

selection and target-template alignment for specific cases, although the overall performance

in the tertiary template identification was shown comparable in previous benchmark tests.33

Based on the data of the 1838 protein complexes, we found that SPRING-H identifies on

average better quality quaternary templates than that by SPRING-M. For instance, if we
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consider a TM-score threshold >0.5, SPRING-H and SPRING-M generated valid dimeric

models for 1082 (59%) and 1029 (56%) protein targets, respectively, after excluding

homologous templates (see Figure 2). Similar conclusion is obtained, regarding the average

TM-score, contact accuracy, interface, and global RMSDs. In particular, if we count the

number of correct models with an I-RMSD <2.5 Å and >90% interface coverage, SPRING-

H has about 1.5 times more hits than SPRING-M (see Table 1).

This difference is quite striking since MUSTER and HHsearch alignments have about the

same TM-score on the tertiary template recognitions (i.e., 〈TM-score〉 = 0.57 for both

alignments in our test). A detail analysis showed that the alignment coverage of the

MUSTER alignments is ~8% higher than that of HHsearch. These extra residues of

alignments have resulted in a higher overall RMSD in the MUSTER alignment (8.1 vs 5.8 Å

in HHsearch). Since SPRING aligns monomeric models to the interfaces of the dimeric

frameworks (see Figure 1), a high monomeric RMSD can easily shift the alignment into less

favorable orientations. Thus, SPRING-H profits from the more accurate target-template

alignments although HHsearch provided a lower coverage of aligned residues.

Nevertheless, when combining the alignments HHsearch and MUSTER, SPRING (called

SPRING-C) yields a slightly but significant (pairwise student t test <10–7) improvement of

1.4 and 3.1% compared to SPRING-H, in the average TM-score and fnat, respectively (see

Figure 6A,B). Additionally the number of acceptable models (TM-score >0.5) increases

from 1082 (59%) in SPRING-H to 1115 (61%) in SPRING-C. In Figure 6C,D, we also

present a head-to-head comparison of SPRING-M with SPRING-C, where the TM-scores of

dimeric models predicted by SPRING-C are on average 4% higher than that of SPRING-M.

Considering the contact accuracy, SPRING-M preserves 31% of native contacts (see Figure

6D) compared to 34% by SPRING-C. The overall results of the comparisons are

summarized in Table 1. These data demonstrate that a complementary alignment from

different threading algorithms can further improve the yields of SPRING.

Specificity of SPRING Predictions

The confidence of the SPRING method is assessed by the SPRING-score, which is a

combination of threading Z-score, structural mapping TM-score, and interface contact

potential (see eq 1). In this section, we examine whether the SPRING-score is able to

distinguish correct from incorrect SPRING predictions, which is important in practical

applications since confidence scores of predictions essentially decide how the models should

be used by biologist users. We use SPRING-C for the illustration.

Figure 7 presents TM-score, fnat, and interface and global RMSDs of the predicted models

to the native complexes in different SPRING-score interval. Considering the first models for

the 1838 cases, SPRING-C made 987 (54%) predictions with a SPRING-score >13. In 774

(78%), 579 (59%), 601 (61%), and 519 (53%) cases, the predicted models have a TM-score

>0.5, a fnat >0.5, and interface and global RMSDs <5 Å (see the dark regions in Figure 7).

Apparently, when SPRING-score is higher, there is a higher fraction of protein targets that

have models with a better quality and vice versa. For example, when considering TM-score

>0.5 as a threshold, the fraction of successful modeling is 60, 80, and 88% for the targets in

the SPRING-score interval of [13, 15], [15, 20], and >20, respectively. If we use a threshold
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of SPRING-score >13 to predict the correct template alignments, the false-positive and

false-negative rates for TM-score >0.5 are 0.22 and 0.27, respectively. A similar tendency

was also seen when using other criterions (see Figure 7).

Nevertheless, there is a considerable fraction of proteins which have low specificity, i.e., the

proteins that have a high-scoring prediction but with poor model qualities when compared to

the native or vice versa. For instance, we identified overall 53 structures which have a

SPRING-score >20 but with a TM-score <0.5. In the majority of these cases, we found that

SPRING ranks the templates of alternative binding modes as the highest score templates.

Incorporation of specific binding affinity energy terms, such as the binding predictions by

BSpred,9 can be a possible solution to further improve the specificity of SPRING.

Comparison of SPRING with Other Conventional Threading Strategies

The majority of above SPRING benchmark data are controlled with our internal algorithms

of COTH9 and MUSTER.24 To have a general control with other external threading

algorithms, we implement two additional procedures of the naïve extension of PSI-BLAST

(NAIVE-P) and HHsearch (NAIVE-H) for complex modeling. Following the traditional

homology-based multimeric threading strategy, 8,23,32 these procedures first match the

monomer chains through the dimer template library by PSI-BLAST or HHsearch. If the two

target chains hit the monomers from the same complex template, the aligned regions isolated

from the template constitute the complex models.

As shown in Table 1, SPRING significantly outperforms NAIVE-P and NAIVE-H, in terms

of global and local quality of the models. For example, the TM-score and the number of

native contacts in the first model of SPRING-C is 124 and 190% higher than that of

NAIVE-P and 60 and 93% higher than that of NAIVE-H. Among the naïve extensions of the

monomer threading algorithms, NAIVE-M has a slightly higher TM-score than NAIVE-H

due to the higher alignment coverage but with a lower number of hits considering the I-

RMSD cutoffs. Both algorithms have a significantly better model quality than NAIVE-P,

which stems from the improved sensitivity of profile–profile alignments by MUSTER and

HHsearch on monomer threading over the sequence-profile alignment by PSI-BLAST.

Control of SPRING with Rigid-Body Docking Algorithms

To have a control of SPRING with the rigid-body docking methods,11–18 we implement

SPRING-H on the dimer complexes of the protein docking benchmark set34 3.0, which have

both complex and unbound monomer structures solved in the PDB. Since SPRING has often

partial structure aligned, we implement another version of SPRING-UB which superimposes

the unbound monomer structures to the SPRING-H models after threading.

In Figure 8, we present the modeling results of SPRING-H and SPRING-UB in terms of the

number of targets with an IRMSD <5 Å in the top-five models. As expected, the SPRING

algorithm strongly depends on the level of filters for excluding homologous templates. At

the sequence identity cutoffs of 30, 50, and 70%, SPRING-H generated models with I-

RMSD <5 Å for 16, 23, and 28 targets, respectively. SPRING-UB has a slightly better result

(with 17, 24, and 31 targets, respectively) due to the better model of the monomer structures.
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As a control, two ZDOCK programs (V2.32 and V3.02) are implemented, which represent

one of best rigid-body algorithms according to the CAPRI experiments.35 While both

ZDOCK programs use the fast Fourier transformation technique to sample the conformation

space of docking, ZDOCK V3.02 incorporates a new statistical pairwise potential to

improve modeling selections.36 ZDOCK V2.32 generates models of I-RMSD <5 Å for 11

targets, which is lower than both SPRING-H and SPRING-UB. However, the new pairwise

potential significantly improves the ZDOCK V3.02 program with models of I-RMSD <5 Å

for 26 targets, where SPRING could produce a similar number of correct models only if the

homologue filter cutoff increases up to 50–70%.

In the right column of Figure 8, we also show the results of a hybrid modeling which has

two models selected from SPRING-UB and three from ZDOCK V3.02. This combined

approach outperformed all the four individual methods at different sequence identity

thresholds (30, 50, and 70%) with correct models in the top five for 32, 36, and 40 targets,

respectively. The results illustrate that the approaches of SPRING and ZDOCK are

complementary to each other and a combination can lead to improved prediction accuracy.

CONCLUSION

We presented SPRING, a new method to identify protein complex structural templates by

mapping single-chain-based threading alignments with complex frameworks. Large-scale

benchmark testing was performed in control with a recently developed cothreading method

COTH9 and the naïve extension of three monomer threading algorithms (MUSTER,

HHsearch and PSI-BLAST), where the latter strategy is identical to that used by other

authors in former template identification studies.8,23,32

Based on a large test set of 1838 nonhomologous protein complexes, we showed that

SPRING can produce models in the top five for 1115 (61%) targets with a TM-score >0.5,

after all homologous template with a sequence identity >30% are excluded. The average

TM-score for all targets is 0.58 with 34% of native interface contacts correctly predicted. In

our recent studies, we have demonstrated that a TM-score >0.5 is statistically significant,

which corresponds to a model of the correct fold in tertiary structure prediction37 and in

quaternary structure comparisons.22 These data demonstrate that SPRING has the ability to

generate reasonably correct complex models for more than half of nonhomologous targets.

On the same benchmark protein set with same homology filter, the TM-score of the

SPRING models is 16, 45, 57, and 123% higher than that by COTH, MUSTER, HHsearch,

and PSI-BLAST, respectively. The differences are statistically significant and all with p-

values <10–76 in the pairwise student t test. Considering the fraction of correctly predicted

interface contacts, the SPRING models preserve at least twice as many native contacts

compared to the competing methods. The corresponding p-values of the pairwise student t

test are below 10–103 in all the comparisons. The number of targets with high-quality models

(i.e., with an I-RMSD <2.5 Å and >90% of interface residues aligned) was 219 in SPRING,

compared to 89/67/93/47 in the competing methods, respectively.
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Compared to COTH, a method that is conceptually closest to SPRING among the control

methods, the major advantage of SPRING is the employment of the monomer-to-oligomer

mapping which allows the use of entire PDB library for complex frame derivation, while

COTH exploits only a subset of complex structures at certain sequence identity cutoff which

renders a loss of template frameworks; in particular the different binding modes from same

monomer sequences (see the example in Figure 5). Such loss cannot be recovered by

improving the scoring function of ranking. Indeed, we have tried to immigrate the SPRING-

score (another major difference of SPRING) to COTH, but this change does not make a

significant difference on the overall TM-score of COTH threading alignments.

We also control SPRING with the rigid-body docking algorithms on the docking benchmark

databases.34 As expected, the relative performance of algorithms strongly relies on the

thresholds that are used to filter out homologous templates. However, a combination of the

two approaches outperforms individual ones at all homologous cutoffs, which demonstrates

the complementarities of the algorithms. Thus, a combination of both threading and rigid-

body docking methods should represent a promising and reliable approach to the genome-

wide structure modeling, where various targets with different levels of homology and

difficulty need to be modeled.

For the evaluation of model qualities, we illustrated that there is a strong correlation between

SPRING-score and the quality of the predicted models. If we consider a cutoff of good

quality models of TM-score >0.5, the false-positive and false-negative rates for a SPRING-

score >13 are 0.22 and 0.27, respectively. These data not only underline the high specificity

of the SPRING predictions but also highlight the limitation of current threading-based

approaches, since SPRING does not have high confidence predictions in nearly 50% of

testing cases. This is partly due to the limited availability of analogous template structures

since all homologous templates with a sequence identity >30% have been excluded in the

test. Nevertheless, considering the large number of possible protein–protein interactions in

genomes, high accuracy predictions for even less than half of all interactions would yield

highly valuable new insights, not saying that a higher successful rate should not be possible

if homologous templates are included.

As a threading-based modeling approach, SPRING only provides partial structures on the

target sequences, with Cα structural models derived from the complex templates. The full-

length atomic structural models need to be generated using separate assembly and

refinement procedures, such as TACOS (http://zhanglab.ccmb.med.umich.edu/TACOS/).

Moreover, in the presented version, SPRING only considers pairwise protein sequences

known to interact. The extension of the method to the high-order complex prediction is

straightforward since no additional template library and monomer complex lookup table are

needed. We are working on addressing these issues and plan to apply the SPRING mapping

technique to the construction of genome-wide structural networks.
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Figure 1.
Flowchart of SPRING pipeline. Target sequences A and B are first threaded against the

monomer template library, which yields two lists of templates TA (black) and TB (gray). For

chain A, we retrieve all binding partners PA (light gray) from the original template entry in

the PDB. Each binding partner is associated to its closest homologue (e.g., P2 and B2) by a

precalculated look-up table using PSI-BLAST. The complex models are then constructed by

structurally aligning the top-rank monomer models to the template/binding partner and

ranked by SPRING-score (eq 1).
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Figure 2.
Cumulative fraction of TM-score, native contacts, and interface and global RMSD at

different threshold cutoffs, for models on 1838 proteins predicted by SPRING-M, SPRING-

H, SPRING-C, COTH, and NAIVE-M, respectively. The shown data are from the best out

of five top-ranked models for each protein target.
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Figure 3.
Head-to-head comparisons of 1838 SPRING-M models with that by the control methods.

The left column shows TM-score of the best in top-five complex models, and the right

column is the fraction of the correctly predicted interface contacts. (A,B) SPRING-M vs

COTH and (C,D) SPRING-M vs NAIVE-M.
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Figure 4.
Predicted dimer models (dark color) of NAIVE-M, COTH, and SPRING-M for target

protein superposed with the native structure of the 1-Cys peroxiredoxin complex (light

color, PDB ID: 1XCC). The values below each superposition are TM-score, I-RMSD, and

fraction of aligned interface residues.
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Figure 5.
Complex models (dark color) are superposed with the native crystal structure of putative

kinase complex (light color, PDB ID: 2AN1). (A) COTH and (B) SPRING-M.
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Figure 6.
Head-to-head comparisons of the SPRING models using different monomeric threading

methods on 1838 test proteins. The left column shows TM-score of the best in top-five

complex models, and the right column is the fraction of the correctly predicted interface

contacts. (A,B) SPRING-C vs SPRING-H and (C,D) SPRING-C vs SPRING-M.
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Figure 7.
Fraction of predicted models above and below specific quality thresholds within a given

SPRING-score interval for the top-ranked models. The depicted quality measures are TM-

score, fraction of native interface contacts, interface, and global RMSD. Models with <50%

of aligned interface residues are included in the RMSD category >10 Å.
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Figure 8.
Comparison of SPRING and ZDOCK models at different target-template sequence

similarity thresholds (30, 50, and 70%) on 77 heterodimeric protein complexes. The number

of correct predictions, i.e., with I-RMSD <5 Å, is shown for SPRING-H, SPRING-UB,

ZDOCK (V2.32 and V3.02) and a combination of SPRING-UB and ZDOCK V3.02.
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Table 1

Comparison of Different Threading Methods on 1838 Nonhomologous Targets

top 1/5

methods TM-scorea fnatb hitsc coveraged

NAIVE-Pe 0.25/0.26 0.10/0.11 42/47 45/47%

NAIVE-Hf 0.35/0.37 0.15/0.17 80/93 56/58%

NAIVE-Mg 0.38/0.40 0.15/0.17 60/67 87/88%

COTH 0.48/0.50 0.15/0.17 70/89 88/88%

SPRING-M 0.54/0.56 0.26/0.31 133/162 88/88%

SPRING-H 0.55/0.57 0.29/0.33 211/246 81/81%

SPRING-C 0.56/0.58 0.29/0.34 187/219 86/83%

a
Average TM-score of predicted complex models.

b
Average fraction of conserved interface native contacts.

c
Number of targets with model of I-RMSD <2.5 Å and >90% interface covered.

d
Average fraction of aligned complex residues.

e
Naïve implementation of PSI-BLAST.

f
Naïve implementation of HHsearch.

g
Naïve implementation of MUSTER.
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