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Abstract

Segmentation of multiple surfaces in medical images is a challenging problem, further

complicated by the frequent presence of weak boundary evidence, large object deformations, and

mutual influence between adjacent objects. This paper reports a novel approach to multi-object

segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic

framework to help overcome the stated challenges. We employ an arc-based graph representation

to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular,

a shape-prior term is used to penalize local shape changes and a context-prior term is used to

penalize local surface-distance changes from a model of the expected shape and surface distances,

respectively. The globally optimal solution for multiple surfaces is obtained by computing a
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maximum flow in a low-order polynomial time. The proposed method was validated on

intraretinal layer segmentation of optical coherence tomography images and demonstrated

statistically significant improvement of segmentation accuracy compared to our earlier graph-

search method that was not utilizing shape and context priors. The mean unsigned surface

positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was

improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors.

Index Terms

Context prior; global optimization; graph search; image segmentation; optical coherence
tomography (OCT); retina; shape prior

I. Introduction

Over the recent years, automated segmentation of medical images became an important tool

contributing to medical diagnosis and treatment planning. Despite all the invested effort,

accurate segmentation of organs and other structures of interest remains a challenging

problem. The main difficulty lies in the following aspects. First, target objects in medical

image data often lack strong boundaries. Second, target objects are often surrounded by

adjacent tissues with similar intensity profiles. Furthermore, there are often many objects

lying in a small region with contextual mutual influence between each other [1], [2].

To resolve these problems, incorporating prior knowledge in the solution process plays an

important role. We report a novel algorithm for simultaneous detection of multiple surfaces

using both shape and context prior information. Our method is based on our previously

reported graph search framework—a globally optimal surface detection method proposed in

[3]–[5], which has been successfully applied to a variety of medical imaging applications

(e.g., [6]–[9]). The basic idea is to formulate the image segmentation problem as an energy

optimization problem, which can be solved by a graph-based method. The original graph

search formulation [3], [4] only used weighted nodes in the graph to represent the desired

segmentation properties, which limited the ability to incorporate a broader variety of a priori

knowledge. In this work, we propose a novel extension to this graph search method. Two

additional pair-wise terms are added to the energy function, which encode the shape and

context prior information using a set of convex functions. For optimization, new pair-wise

terms are enforced by adding specific weighted arcs in the graph. A globally optimal

solution is computed by solving a single maximum flow problem in the graph with the

solution defining the optimally segmented surfaces.

The remainder of the paper is organized as follows. Section II reviews the related work on

image segmentation. Section III presents how to incorporate both shape and context

information in the graph search framework using an arc-weighted graph representation. In

Section IV, our approach is applied to intraretinal layer segmentation in optical coherence

tomography (OCT) images and Section VII discusses the novelty and generality of the

proposed framework as well as its limitations. Finally, Section VIII summarizes the

presented work. Preliminary results related to this research have been presented in [10] and

this paper is a major extension of the previously presented conference paper.
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II. Related Work

Many image segmentation problems can be formulated as energy optimization problems.

The majority of the methods can be divided in two large groups—the optimization in a

continuous space and the optimization on a set of discrete variables. In both groups, the key

problem lies in two aspects—how can the information (e.g., shape, context) be encoded into

the energy function and how can the corresponding energy function be optimized.

A. Optimization in Continuous Space

Methods based on energy minimization in the continuous space date several decades back.

In the framework of active contour models [11], [12], the boundary of the target object was

explicitly represented through certain parametrization. These types of segmentations had

difficulties to handle multiple object segmentations or topological changes during the

optimization process. To solve the problem, level-set based methods were proposed [13],

[14], in which the boundary of the target object is given by the zero level set of an

embedding function. In the level set segmentation, the shape priors can be incorporated into

the embedding functions as described in [15]–[17]. The main drawback of the level-set

formulation as well as of parametric deformable models lies in the fact that the

corresponding cost functions are usually nonconvex. The optimization process based on

gradient descent method may consequently be trapped easily in a local minimal solution.

Furthermore, it is rarely known how far the obtained solutions are from the globally optimal

ones.

Recently, continuous image segmentation has been formulated as a convex function

minimization with guaranteed global optimality [18]–[21]. While a number of attempts have

been made, incorporating prior information into the energy function while maintaining

convexity remains challenging. Cremers et al. [22] proposed a novel implicit representation

of the shape that can be encoded in functionals, which are convex with respect to the shape

deformations. The method can only be used for single object segmentation. The Pock et al.

method [21] allowed segmentation of multiple objects using a convex relaxation approach.

However, no shape prior information was incorporated. In [23], a convex energy function

was employed, which incorporated the shape prior information into a multi-region

probabilistic segmentation based on an isometric log-ratio transformation. No context prior

information between multi-regions has been included in the energy function.

B. Optimization in Discrete Space

In recent years, segmentation through energy minimization in the discrete space has

attracted considerable attention in computer vision [24], [25], [4]. Most approaches

formulate the problem as a graph-based minimization problem. Nodes in the graph

correspond to pixels or control points in the original image. Image intensity information as

well as the prior knowledge is encoded by adding arcs with proper weights in the graph.

Felzenszwalb [26] used triangulated polygons to represent and detect deformable shapes in

images. Schoenemann et al. [27] employed a ratio functional to incorporate the elastic shape

priors. Both methods, however, only work for single surface detection in 2-D cases.
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One of the most influential advances related to our research is Boykov’s graph cut method

[25] for interactive segmentation of N-D images that used the minimum s − t cut strategy.

Several algorithms were developed to incorporate shape prior information based on the

graph cut method. Freedman et al. [28] devised an interactive shape prior segmentation

method based on graph cut algorithms. The graph arc-weights were employed, which

contained information about a level-set function of a shape template. Malcolm et al. [29]

incorporated the prior shape information from kernel PCA into an iterative graph cut

framework. Vu et al. [2] presented a multiple object segmentation framework—the shape

energy based on a shape distance function was incorporated via the weights of the arcs

connected with the terminals. The major difference between the method reported here and

the graph-cut based methods is that our graph construction allows for specific shape

constraints, which lead to an easy incorporation of shape prior information. Compared with

graph-cut based methods, the proposed framework provides a more local and flexible

control. In addition, incorporating context information for simultaneous detection of

multiple “mutually” interacting surfaces into the graph-cut framework is nontrivial. Delong

and Boykov’s work [30] reported one possible way towards that goal.

Ishikawa’s method [31] for multi-labeled MRF optimization with convex priors is also

closely related to our work. While interpreting a configuration of the multi-labeled MRF

model as a surface in the corresponding (geometric) graph, Ishikawa’s method can be used

to detect only a single optimal surface. In our work, we strive to simultaneously compute

multiple mutually interacting optimal configurations (surfaces) with additional context

constraints—an approach that enjoys a number of important applications in medical image

segmentation. Note that if we interpret the multi-surface segmentation problem in N-D as a

single (N + 1)-D surface segmentation problem, the proposed method solves a multi-labeled

MRF optimization problem in (N + 1)-D, which can be solved using a similar graph

structure as described in [31]. In fact, the additional constraints enforced in our problem can

be modeled as a special convex prior. On the other hand, if the constraint of maximum label

difference between any two interacting random variables can be relaxed, then our method

can handle general convex priors. From the computational point of view, the essential ideas

of Ishikawa’s method and our algorithm are the same, that is, to transform the problem as

the so-called minimum s-excess problem [32], although the connection was not directly

pointed out [31]. Making use of the specific structure of the underlying graph, the minimum

s-excess problem can be solved in polynomial time with Ishikawa’s graph construction. We

employ Hochbaum’s general algorithm [32] for solving the s-excess problem, allowing

negative node costs and a flexible structure of the graph.

Yin et al. [5] have developed a LOGISMOS framework based on the graph-searching

approach for knee-joint segmentation of bones and cartilages. Their work was nevertheless

limited to using the node-weighted graph representation without shape prior and context

prior penalties in the energy function, which fails to make full use of prior information.
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III. Graph Search With Shape and Context Priors

A. Review of Original Graph Search Framework

We first briefly recall the original graph search framework as introduced in [4]. The target is

to detect multiple surfaces simultaneously, which represent boundaries of 3-D objects in a

volumetric image. An on-surface cost is assigned to each voxel in the image for the

detection of the surface, which is inversely related to the likelihood that the desired surface

contains the voxel. Surface feasibility constraints are also enforced. Specifically, the hard

surface smoothness constraint requires that the change of the surface height when moving

from one neighboring surface point to the next should be in the certain range. Similarly, the

surface distance constraint reflects the allowed minimum and maximum distances between

surface pairs. Note that the height of a surface point can be interpreted as a label of a random

variable. Then the hard surface smoothness constraint and the hard surface distance

constraint correspond to the constraint of maximum label difference between two interacting

random variables. The goal of the graph search method is to find the optimal surface set

such that 1) each surface satisfies the surface feasibility constraints; 2) the total cost of

voxels on surfaces are minimized. The problem is then transformed into a minimum-cost

closed set problem by constructing a geometric graph such that the minimum-cost closed set

of the graph actually corresponds to the set of surfaces with the minimum cost. (A closed set

is a subset of nodes such that no arcs leave the subset and the cost of a closed set is the

summation of the costs of all the nodes in the subset.) The surface feasibility constraints are

encoded by adding (directed) arcs between nodes in the graph. Finally, the minimum-cost

closed set can be found by computing a minimum s-t cut in a closely related graph.

The major limitation of the original formulation lies in the fact that only node weights in the

graph representation are used to represent desired segmentation properties, e.g., on-surface

costs. The connectedness from one voxel to the voxels on its neighboring columns is

basically of equal importance, which prevents taking full advantage of prior information. In

some medical applications, the target surfaces have some preferred shape and the distance

between neighboring surfaces are relatively consistent between different datasets. The

original formulation does not allow the easy incorporation of the prior shape and context

knowledge. One possible way to solve the problem is to use varying feasibility constraints

learned from the training set, as reported in [8]. However, this method cannot penalize the

deviation inside the allowed constraints.

B. Incorporation of Shape and Context Priors

To present our method in a comprehensible manner, let us consider a task of detecting

multiple terrain-like surfaces incorporating shape and context prior knowledge. Note that

this simple principle used for this illustration is directly applicable to arbitrarily-irregularly

meshed surfaces (see Section VII-C). Consider a volumetric image (X, Y, Z) of size X × Y

× Z. For each (x, y) pair, the voxel subset { (x, y, z)|0 ≤ z < Z} forms a column parallel to

the z-axis, denoted by p(x, y). Each column has a set of neighboring columns for a certain

neighboring setting , e.g., the four-neighbor relationship. The target is to find λ terrain-like

surfaces, each of which intersects each column p(x, y) at exactly one voxel, as shown in Fig.

1(a). Thus, the terrain-like surface Si can be defined as a function Si(x, y), mapping (x, y)
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pairs to their z-values. An on-surface cost ci(x, y, z) is assigned to each voxel (x, y, z) for

surface Si, which is inversely related to the likelihood that the desired surface Si contains the

voxel.

1) Shape Prior Constraints—In this paper, the shape changes of surface Si are defined

as the surface height changes between pairs of neighboring columns. Specifically, for any

pair of neighboring columns p and q, the shape change of surface Si between (p, q) relies on

 [see Fig. 1(b)]. Suppose  represents the mean shape change learned

from certain prior-known shape change model, e.g., Gaussian model. The shape deformation

between the current shape change  and the prior mean shape change  can be

expressed as . Two kinds of shape constraints are enforced: the hard shape

constraint and the shape prior penalty. The hard shape constraint defines the possible range

of the shape deformation with the form: , where  is the shape constraint

parameter between columns p and q for surface Si, which is learned from the prior shape

change model. The shape-prior penalty is enforced using a convex function ,

which penalizes the shape deformation inside the range of the hard shape constraint.

2) Context Prior Constraints—For a set of target surfaces, the context prior penalty is

enforced to penalize the surface distance change between two adjacent surfaces. Suppose Si

and Sj are two adjacent surfaces denoted as (Si, Sj) ∈ , where  is a given surface

adjacency setting, e.g., two-neighbor relationship in z direction. The context information

between (Si, Sj) on column p is defined as  [Fig. 1(b)], which is the distance

between two surfaces on column p. Let  denote the mean surface distance obtained from

prior context model. The change between current surface distance and the learned mean

distance can be represented by . Similar to the shape prior constraints, two kinds of

context prior constraints are employed. The possible distance between two surfaces (Si, Sj)

are defined by hard context constraints as , where  is the context

constraint parameter for column p between surfaces (Si, Sj), which is learned from the prior

context model. The context-prior penalty is given by a convex function  to

penalize the surface distance change between current distance and the prior model.

Now the overall energy of the set  of λ surfaces Si’s takes the form

(1)

The first term is the boundary energy term, which is equal to the total on-surface cost of all

voxels on surfaces, as used in the original graph search framework. The boundary energy

term drives the surface set towards the best fit to the current image data. The second and the

third term are the shape-prior penalty term and the context-prior penalty term proposed in

this work, which measure how well the surface set fulfills the prior shape change model and
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the context model, respectively. Using this formulation, we strive to find the optimal terrain-

like surfaces such that 1) each surface satisfies the hard shape constraint; 2) each pair of

surfaces satisfies the hard context constraints; and 3) the energy in (1) is minimized.

Note that the hard shape constraint and the convex shape-prior penalty can be enforced

using Ishikawa’s method [31] with a modified convex function

The hard context constraint and the context-prior penalty can be enforced in the same way

using Ishikawa’s graph construction. In the following Section III-C, we present a slightly

different construction of the graph to enforce those constraints, which enables us to apply

Hochbaum’s algorithm to solve the general minimum s-excess problem [32].

C. Arc-Weighted Graph Construction

The basic idea for solving the energy minimization problem is to reduce it into a maximum

flow problem. A directed graph G containing λ node-disjoint subgraphs {Gi = (Ni, Ai) : i = 1,

2, …, λ} is defined, in which every node ni(x, y, z) ∈ Ni represents exactly one voxel in (x,

y, z).

To enforce the hard geometric constraints, the following arcs with +∞ weight are

constructed.

Intra-Column Arcs—To ensure the monotonicity of the target surfaces (i.e., the target

surface intersects with each column exactly one time), the intra-column arcs are added as

described in [4]. Along every column p(x, y), each node ni(x, y, z)(z > 0) has a directed arc

with +∞ weight to the node immediately below it (i.e., ni(x, y, z − 1)).

Inter-Column Arcs—The hard shape constraint is incorporated by adding inter-column

arcs between neighboring columns in the graph. Specifically, let p(x1, y1) and q(x2, y2) be

two neighboring columns. To enforce the hard shape constraint , a

directed arc with +∞ weight is put from each node ni(x1, y1, z) of p(x1, y1) to the node

 of q(x2, y2). Note that if , then voxel

I(x1, y1, z) cannot be on any feasible surface Si. To avoid such an invalid surface Si, we

introduce an additional node ni(x2, y2, Z) with an on-surface cost of +∞ and add a directed

arc of a +∞ weight from ni(x1, y2, z) to ni(x2, y2, Z). Meanwhile, we have a directed arc with

+∞ weight from the node ni(x2, y2, z) to . If

, we can handle it in the same way as above.

Inter-Surface Arcs—The hard context constraint can be enforced by adding inter-surface

arcs between different sub-graphs. Suppose Si and Sj are two neighboring surfaces. The hard
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context constraint  on column p(x, y) is incorporated by adding a directed arc

with +∞ weight from each node ni(x, y, z) to the node . Note

that if , then there is no feasible set of surfaces in which Si passes voxel

I(x, y, z). To avoid such an invalid solution, we introduce an additional node nj(x, y, Z) with

an on-surface cost of +∞ and put a directed arc of a +∞ weight from ni(x, y, z) to nj(x, y, Z).

On the other hand, each node ni(x, y, z) also has a directed arc with +∞ weight to the node

. If , we can handle it in the same way as

above.

The remaining challenge is how to incorporate the shape-prior penalty term and the context-

prior penalty term into the graph search framework. To solve the problem, additional

weighted arcs are introduced in the graph. We start from the incorporation of the shape prior

penalties.

Weighted Inter-Column Arcs—Let p(x1, y1) and q(x2, y2) be two neighboring columns.

To “distribute” the convex shape prior penalty  to arcs between neighboring

columns (p, q) in Gi, we make use of the (discrete equivalent of) second derivative of fs(·)

with the form [fs(h)]″ = [fs(h + 1) − fs(h)] − [fs(h) − fs(h − 1)]. Since fs(h) is a convex

function, [fs(h)]″ ≥ 0. Let [fs(h)]′ = fs(h + 1) − fs(h) denote the first derivative of fs(·). For

each , where , if [fs(h)]′ ≥ 0, an arc is added from ni(x1, y1, z) to

 carrying an arc-weight of [fs(h)]″. If [fs(h)]′ ≤ 0, an arc from ni(x2, y2,

z) to  has the weight of [fs(h)]″. Fig. 2 shows one typical graph

construction. Note that if h = h0, where [fs(h0)]′ = 0, we let  for

arcs from ni(x1, y1, z) to  and  for arcs

from ni(x2, y2, z) to . Using this construction, it is proved in [3] that

the total weight of the arcs that are cut by Si between two neighboring columns p and q

equals to the shape prior penalty represented by convex function .

Weighted Inter-Surface Arcs—The context-prior penalty is enforced in a similar way

by adding weighted inter-surface arcs between corresponding sub-graphs. Suppose Si and Sj

are two adjacent surfaces. The context-prior penalty is distributed between subgraph Gi and

Gj on the same column p(x, y). For each , where , if [fc(d)]′ ≥ 0, an

arc is added from ni(x, y, z) to  with weight [fc(d)]″. If [fc(d)]′ ≤ 0, an arc is

assigned from nj(x, y, z) to  with weight [fc(d)]″. The graph construction is

shown in Fig. 3. Using this construction, the total weight of the arcs cut by the surface set 

between two subgraphs Gi and Gj on column p equals to the context prior penalty

.
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To encode the on-surface cost, the weight of each node in the graph is designed using a

similar way as described in [4]. Suppose a voxel I(x′, y′, z′) is on a surface Si. Then all nodes

ni(x′, y′, z′) with z ≤ z′ on column p(x′, y′) are viewed as being inside the surface Si. The node

weight is assigned such that the total weight of all nodes ni inside the surface Si equals to the

boundary energy term  ci(x, y, z), where i = 1, …, λ

(2)

With the constructed graph G, we can find an optimal cut  = (A*, Ā*) (A* ∪ Ā* = N) in G,

minimizing the total weight of nodes in A* plus the total weight of those arcs with their tails

in A* and their heads in Ā*, which is the so-called minimum s-excess problem [32]. As

described in [3] and [32], this optimal cut can be found by solving a maximum flow

problem. The optimal cut in the graph uniquely defines optimal λ surfaces in  .

IV. Application to Intraretinal Layer Segmentation of OCT Images

The utility of the reported approach will be demonstrated on the automated segmentation of

3-D intraretinal layers in OCT images, an important task in ophthalmic image analysis [8].

The seven intraretinal layers that are identified in our studies are shown in Fig. 4(a) and (b).

A. Workflow

In our application, we employ similar workflow as described in [8]. As the first step, the

original images were flattened so that the surfaces near the retinal pigment epithelium layer

(RPE) became approximately planar. Then, a two-step intraretinal layer segmentation was

performed on 3-D flattened images.

1) Image Flattening—Flattening 3-D OCT images allow us to perform the intraretinal

layer segmentation in a truncated region-of-interest of original 3-D OCT image, which

reduces time and memory consumption of our graph-based segmentation. Furthermore, it

provides a more consistent shape for segmentation and also make visualization easier for

clinical use. We used exactly the same approach as described in [8] for image flattening.

First, the image was downsampled by a factor of 4. Then surfaces 1, 6, and 7 were

simultaneously segmented using the original graph search approach on the down-sampled

image, which lead to an approximate segmentation of three surfaces. A thin-plate spline was

fitted to an upsampled version of surface 7. After that, all columns of the full-resolution

images were translated so that the fitted surface became a flat plane. Then we truncated the

flattened OCT image according to the segmented surfaces 1 and 7.

2) Two-Step Intra-Retinal Layer Segmentation—Our segmentation approach was

conducted on the flattened and truncated 3-D images. A two-step approach was employed.

The surfaces 1, 6, and 7 were segmented in the full resolution image using previously

reported graph search approach without incorporating the shape or context prior

information. Our new approach in which both the shape and context penalties are

incorporated, was used in the second step to simultaneously segment the remaining surfaces
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2, 3, 4, and 5. The motivation of the two-step segmentation is as follows. First, simultaneous

segmentation of all seven surfaces in 3-D images induces large memory consumption and

significant amount of running time. In addition, our new approach needs to introduce new

arcs into the graph to encode both shape and context penalties. Simultaneously segmenting

all seven surfaces in one step requires to add additional arcs into the graph for all surfaces,

which further increases the memory and time complexity (see discussion in Section VII-B).

Thus, surfaces 1, 6, and 7 with relatively strong boundaries are segmented using our

previous method to avoid unnecessary expense of memory and time complexity. Our new

approach with both shape and context penalties was applied on surfaces 2, 3, 4, and 5, which

lack clear boundaries and of which substantial inter-surface interactions exist. Fig. 5 shows

the main workflow of the employed approach.

B. Cost Function Design

1) Boundary Cost—For the boundary energy term, we use the gradient-based on-surface

costs ci(x, y, z) for voxels (x, y, z) with respect to surfaces Si, as reported in [33], [8]. The

Sobel kernel was used to favor dark-to-light transitions for surface 4 and light-to-dark

transitions for surfaces 2, 3, 5.

2) Shape Prior Model—To incorporate the proper shape prior information, the shape

change model is derived from the labeled training dataset (see Section V-A), from which

both hard shape constraint and shape-prior penalty function are computed. The distribution

of the shape changes  on the surface i between neighboring columns p and q roughly fits

a Gaussian model with the mean  and the standard deviation . To allow 99% of the

shape change from column p to column q, the hard shape constraint was set as

. The shape-prior penalty function  was designed to

penalize the shape change deviation between the current shape change  and the original

shape change model as follows:

(3)

3) Context Prior Model—Similar as shape prior model, context prior model is also

learned from the segmented training dataset. Specifically, the distribution of distance 

between surfaces i and j on the column p is approximated using a Gaussian model. Both the

mean distance  and the corresponding standard deviation  are computed from the

training sets. The hard context constraint takes the form of . The

context-prior penalty function was set as
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(4)

V. Experimental Methods

A. Data

In our study, the same data were used as reported in [8]. Macula-centered 3-D OCT volumes

(200 × 200 × 1024 voxels or 6 × 6 × 2 mm3) were acquired from the right eyes of 27 normal

human subjects. The 3-D OCT volumes of the right eye of the first 13 subjects were

obtained using one OCT device and formed the training dataset. We use exactly the same

tracing of training sets as described in [8]. Three steps are involved to produce the

segmentation of training sets. Each dataset was firstly divided into 10 regions and one slice

was randomly selected from each region. The selected 10 slices were manually traced by

one observer. Then a preliminary version of the semi-automatic graph-search segmentation

is employed to segment OCT layers based on 10 manually segmented slices. The results

were manually edited by the observer to obtain the final tracing for the training sets.

The right eyes of the remaining subjects (14–27) were scanned twice using two different but

otherwise identical OCT devices. The obtained 28 volumetric datasets were used for

performance assessment. For each 3-D volumetric image in the test set, 10 random slices

were traced independently by two ophthalmologists. The averages of these tracings were

used as the gold standard for validation.

B. Parameter Setting

As described in Section III, our energy function contained three terms: the boundary term,

the shape-prior term and the context-prior term. The combination of these three terms can be

described by two parameters α and β as follows:

(5)

In our experiments, these two parameters were set as α = 0.9 and β = 0.1, which were

determined experimentally based on performance on the training dataset.

C. Shape and Context Prior Model

The shape prior model as well as the context prior model were learned from the training set

of 13 OCT volumes. Fig. 6 shows the mean and the standard deviation of the shape priors

for surface 2 in two directions (e.g.,  for the x-direction and

 for the y-direction). Fig. 7 illustrates the surface context priors

between surface pairs (2,3), (3,4), and (4,5).
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D. Validation

The proposed algorithm was applied to the testing set of 28 volumetric images for

validation. The unsigned surface positioning errors were calculated as the distances between

the computed surfaces and the surfaces of the gold standard in each column of the image.

The results were reported as mean ± standard deviation. The unsigned surface distances

between two expert-defined boundaries representing the same retinal surface were

considered as the inter-observer variability of the two ophthalmologists. The performance of

the proposed method was compared with the inter-observer variability and also with the

results report in [8], which used the conventional graph search method with hard constraints

only. Statistical significance of the observed differences was determined using Student t-

tests for which p values of 0.05 were considered significant.

VI. Results

A. Quantitative Validation

The unsigned surface positioning error for surfaces 2–5 are summarized in Table I. For all

these four surfaces, the resulting errors are significantly smaller than the corresponding

inter-observer variabilities (p < 0.001).

Fig. 8 shows the performance comparison of the proposed method, the original graph search

method used in [8], and the inter-observer variability achieved by two expert tracers. Our

method produced significantly lower surface positioning errors for surface 2(p = 0.01),

surface 3(p < 0.001), and surface 4(p < 0.001) compared with the original graph search

method without shape and context prior penalties. The unsigned errors for surface 5 were

not significantly different.

B. Qualitative Results

Qualitatively, the proposed algorithm produced very good segmentations. Fig. 9 shows the

illustrative results of the proposed algorithm in comparison with the traditional graph search

method using only hard constraints on one 2-D slice from the 3-D volume. Fig. 10(a) and (b)

shows the contribution of the improvement made by the shape-prior penalties and context-

prior penalties, respectively. In general, shape-prior penalties provide a better shape control,

which leads to a more accurate and smoother segmentation. The context information helps

to maintain the consistency of the layer thickness and avoid possible overlapping between

adjacent surfaces.

VII. Discussion

A. Method Properties and Novelty

A novel approach for segmentation of multiple surfaces with both shape and context prior

information was proposed. Our method advances the graph-based image segmentation in

several important ways. First, the proposed energy function incorporates both shape prior

and context prior information through a set of convex functions. Second, this approach

allows simultaneous segmentation of multiple objects. Third, our method guarantees global

optimality. To the best of our knowledge, this is the first method that fulfills these three aims
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at the same time. Here we list major novelty between our method and other state of the art

segmentation approaches as follows.

1) Soft Constraints Versus Hard Constraints—The previous graph-search

framework in [8] only allows the incorporation of hard shape constraints and hard context

constraints. All shape changes or surface distances within the hard constraints are treated

equally, which fails to fully make use of prior information. Instead, the proposed method

allows the incorporation of “soft constraints,” which encourages certain shape change or

surface distance value by penalizing the value less than other possible values within the hard

constraints. It can be enforced by introducing additional shape-prior penalty term and

context-prior penalty term in the energy through arc-weighted graph construction. Our

method allows the incorporation of a wider spectrum of prior shape and context information.

2) Global Optimality Versus Local Optimality—Active contour and level set based

methods also allow the incorporation of shape-prior information [34], [35]. A richer shape

model can be encoded using nonconvex energies and can be solved using iterative based

approach with a local optimal solution. In [36], Mishra et al. employed an active contour-

based approach for retinal layer segmentation. The initial contours are computed using

dynamic programming and then refined by adaptive kernel-based optimization. In [37], [38],

an active contour method developed from the Chan–Vese’s model was adapted for intra-

retinal layer segmentation. A circular shape prior was employed to model the boundary of

the retinal layers. The major advantage of the proposed method to those methods is that our

approach has a globally optimal guarantee, which ensures that the segmented results will not

be trapped by local minima. In addition, it is nontrivial to apply active contour or level set

based methods for simultaneous segmentation of multiple surfaces with the context

constraints between neighboring surfaces.

3) Local Shape Information Versus Global Shape Information—The proposed

method only incorporates local shape prior information, while many attempts have been

made to incorporate global shape information, e.g., [39], [22], [26]. In [40], a novel

probabilistic method was presented for intraretinal layer segmentation, which combines both

local appearance information and a global shape information. We agree that the

incorporation of global information helps to provide a better global shape control. However,

it may lack local accuracy to deal with pathological data with large variations to the shape

model in medical imaging. In addition, it is nontrivial to encode the context constraints for

multiple objects segmentation together with a global shape control.

B. Time Complexity Analysis

Here, we compare the time complexity of the proposed method with the previous graph-

search approach. Suppose the size of volumetric image is X × Y × Z. The target is to find λ

terrain-like surfaces intersecting with z-axis. A four-neighboring system is defined for each

column. Let T(n, m) denote the time for finding a maximum flow in an arc-weighted graph

with O(n) nodes and O(m) arcs. For instance, by using Goldberg and Tarjan’s algorithm

[41], T(n, m) = O(mn log(n2)/(m)). As described in [3], [4], the time complexity for the

previous graph search framework is T(n′, m′) with n′ = |λXYZ| and m′ = |λXYZ|.
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To incorporate shape-prior penalty term and the context-prior penalty term in proposed

method, additional inter-column arcs and inter-surface arcs are introduced into the graph,

respectively. Following the graph construction method in Section III-B, the total number of

arcs ms for shape-prior penalty is O(λXYZLmax), where Lmax denotes the maximum hard

shape constraint of all pairs of neighboring columns. Similarly, let Hmax represents the

maximum hard context constraint between adjacent surfaces in all columns. The total

number of arcs mc introduced for context-prior penalty is O(λXYZHmax). Note that no

additional nodes are introduced. The time complexity of the proposed approach is T(n′, m″)

with n′ = O(λXYZ) nodes and m″ = O(λXYZ(Lmax + Hmax)) arcs.

In practice, the average execution times of the proposed method as well as the previous

approach are summarized in Table II. Basically, our method runs about 10 times slower

compared with the previous approach due to the additional arcs carrying on the shape prior

and context prior penalties. To reduce the execution time, the possible solutions include a

parallel implementation of the maximum flow solver, for example, as described in [42]. In

addition, a multi-scale approach can also be used. An approximate segmentation can be first

performed using the previous method without the shape or context prior information to

determine a rough region of interest for target surfaces. Then a final segmentation with both

the shape and context prior information can be conducted in the reduced region of interest to

achieve an accurate result. Further development of the proposed approach to reduce the

running time will be our future work.

C. Extension to the Segmentation of Arbitrarily-Irregular Surfaces

The proposed framework can be directly extended to the segmentation of arbitrarily-

irregular meshed surfaces. The basic idea can be presented as follows. An initial shape

model is first built for each target object based on the prior information, which takes the

form of triangulated meshes. The meshed model reflects the approximate topological

structure of the target surfaces. A graph is then constructed based on this shape model.

Multiple constraints (i.e., shape priors constraints, context prior constraints) are incorporated

into the graph using the method proposed in Section III. Fig. 11(a) shows an example with

two initial models constructed for the segmentation of the bladder and the prostate. For the

bladder, the initial model is based on a pre-segmentation using the level-set method. For the

prostate, the model is constructed from the mean prostate model learned from the training

set, which is interactively fitted into an approximate bounding box for the prostate. The

corresponding graph Gi(i = 1, 2) is built from the triangulated meshes of two initial models

as follows. For each vertex v, a column of K nodes is created in Gi, denoted by p(v) [Fig.

11(b)]. The positions of nodes reflect the positions of the corresponding voxels in the image

domain. The target surface Si in the graph Gi is defined as the surface containing exactly one

node in each column. To incorporate the context constraints, a “partially interacting area” is

defined according to the distance between the two meshes, which indicates that the two

target surfaces may mutually interact with each other in that area. The context relationships

can be modeled in the following manner: for each column p(v1) ∈ G1 in the partially

interacting area, there exists a corresponding column p(v2) ∈ G2 with the same position in

the image space; the target surfaces S1 and S2 both cut those columns, as shown in Fig.

11(b). The context prior information is enforced in the area by adding inter-surface arcs
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between corresponding columns using the approach proposed in Section III-C. In our initial

experiments, a nonoverlapping constraint is enforced, which requires that the distance

between surfaces of the bladder and the prostate is at least 1, which avoids intersection of

two surfaces.

Example results in three views are displayed in Fig. 12(a)–(d) and the 3-D representation is

shown in Fig. 12(f), the proposed algorithm produces a very good delineation of both the

bladder and the prostate in the 3-D space. While the shape prior constraints keep the original

topological structure of the target organs, no overlap of the bladder and the prostate occur

due to the enforcement of the context constraints.

D. Extension to N-D Surface Segmentation

The proposed method can be extended to N-D by constructing a geometric graph G = (N, A)

in the N-D space (n ≥ 3) as follows. Given any undirected base graph GB = (NB, AB)

embedded in the (N − 1)-D space, a column of K nodes is built for each node ni ∈ NB

denoted by pi. If arc (ni, nj) ∈ NB, we say that Columns pi and pj are adjacent. The target N-

D “surface” is defined as the surface contains exactly one node in each column. To segment

λ surfaces in the N-D space, the directed graph G consists of λ subgraphs, each of which is

constructed from the (N − 1)-D based graph. Based on this definition, we can use exactly the

same way described in Section III-C to incorporate both the shape and context prior

information by adding weighted inter-column arcs and inter-surface arcs in the graph G. The

optimal surfaces can be found by solving a maximum-flow problem in N-D. The possible

applications include 4-D object segmentation with object motion over time, and co-

segmentation of objects in multi-modality images.

E. Limitations

While the proposed framework can be easily applied to a number of image segmentation

tasks, it also has several limitations. First, a set of convex functions is employed to enforce

the shape prior and the context prior penalties. If the distribution of the prior shape

information or the prior context information cannot be represented by a convex function set,

encoding them into our framework may lead to a computationally intractable problem. Also,

our current framework only enforces the local prior information, e.g., local shape constraints

between neighboring columns. Encoding both local priors and global constraints is a

challenging task. Some attempts have been made in [43] and [44], where the graph search

framework is combined with the active shape model to provide a better global shape control.

Furthermore, it is nontrivial for our method to deal with the regions of complex topology

without an initial shape model, which needs to contain the basic topological information

about the region’s surface. The initial model allows us to transform the problem of

segmenting irregular surfaces into the segmentation of terrain-like surfaces. Note that if the

target surfaces are already terrain-like surfaces, no initial model is required.

VIII. Conclusion

We presented a general framework for simultaneous segmentation of multiple surfaces, in

which the prior shape and context information was incorporated into the energy function
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through a set of convex functions. An arc-weighted graph representation was employed and

the optimal solution achieved by solving a maximum flow problem in a low order

polynomial time. The proposed algorithm was validated in 28 datasets depicting human

retina in OCT images. We have also demonstrated the applicability of our method to

prostate-bladder segmentation. The results clearly demonstrated the applicability and

improved performance of the proposed approach.
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Fig. 1.
(a) Terrain-like surfaces Si and Sj intersect each (x, y)-column exactly one time. (b) The

shape representation  between neighboring columns p and q on surface Si; and the

context representation  between surfaces Si and Sj on column p.
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Fig. 2.
Arc-weighted graph construction for the incorporation of the shape prior penalty on surface

Si between neighboring columns p and q. The intra-column arcs are shown in orange with

+∞ weight. The hard shape constraint  is enforced by green arcs. Here we

suppose  and . The shape prior penalty is incorporated by arcs with dashed

lines (brown, purple, yellow, and gray). Here we assume , [fs(0)]′ = 0 and fs(0) = 0.

Target surface Si cuts arcs with weight [fs(1)]″ (brown) and [fs(0+)]″ = fs(1) − fs(0) (yellow).

The total weight is equal to fs(2).
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Fig. 3.
Arc-weighted graph construction for the incorporation of the context prior constraints

between surface Si and surface Sj on column p. Two subgraphs Gi (red) and Gj (blue) are

constructed. The hard context constraint  is incorporated by green arcs. Here

. The context-prior penalty is enforced by gray and purple arcs. We assume

that [fc(0)]′ = 0 and [fc(0)] = 0. Target surface set S = {Si, Sj} cuts arcs with weight [fc(0+)]″

(gray). The total weight is equal to fc(1).

Song et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Intraretinal layers in 3-D OCT images. (a) A 2-D slice from the center of a volumetric OCT

image—the dip corresponds to the fovea. (b) Seven surfaces (labeled 1–7) and

corresponding retinal layers (NFL: nerve fiber layer; GCL+IPL: ganglion cell layer and

inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL+IS: outer

nuclear layer and photoreceptor inner segments; OS: photoreceptor outer segments and RPE:

retinal pigment epithelium).
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Fig. 5.
Workflow for OCT intraretinal layer segmentation. The reported approach is utilized in the

second step (indicated by the red box) to segment surfaces 2, 3, 4, 5 employing the shape

and context priors.
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Fig. 6.
Visualization of the shape priors for surface 2 learned from the training set. The mean and

the standard deviation are shown in the first and second rows, respectively. (a) x-direction.

(b) y-direction.
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Fig. 7.
Learned surface context priorsin the form of the mean (the first row) and the standard

deviation (the second row) between (a) surfaces (2,3); (b) surfaces (3,4); and (c) surfaces

(4,5).
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Fig. 8.
Unsigned surface positioning errors observed in 28 volumetric OCT images. Inter-observer

variability is shown in blue, errors of the original graph search method with only hard

constraints are shown in red [8], and errors of the proposed method are shown in green. For

all four surfaces, the resulting errors are significantly smaller than the corresponding inter-

observer variabilities (p < 0.001). Compared with the original graph search method, our

method showed a significant improvement for surfaces 2, 3, and 4 (p < 0.05).
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Fig. 9.
Intraretinal layer segmentation in 3-D OCT images. (a) A 2-D slice from 3-D retinal OCT

dataset. (b) Seven manually labeled surfaces (1–7). (c) Segmentation achieved using the

former graph searching approach with only hard constraints—surfaces 2, 3, 4, 5. (d)

Segmentation achieved using the proposed algorithm with shape and context prior penalties.
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Fig. 10.
Improvements of segmentation contributed by (a) shape-prior penalties and (b) context prior

penalties. The first row shows two slices of OCT images with manual segmentation.

Segmentation results of two slices with both shape and context prior penalties are shown in

the second row. The third row illustrates results (a) using context-prior penalties only (no

shape-prior penalties) and (b) using shape-prior penalties only (no context-prior penalties).
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Fig. 11.
Segmentation of the prostate and bladder. (a) Triangular meshes for the bladder (yellow) and

the prostate (blue) based on initial models. (b) Corresponding graph construction. An

example 2-D slice is presented. p(v) represents the column with respect to the vertex v on the

mesh. Dots represent nodes ni ∈ Gi. Two sub-graphs G1 and G2 are constructed for the

segmentation of the bladder and the prostate, respectively. Note that in the region of

interaction (dashed box), a corresponding column in G2 exists for each column in G1 with

the same position. The inter-surface arcs (purple) between corresponding columns enforce

the surface context constraints in the interacting region.
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Fig. 12.
Simultaneous segmentation of the bladder (yellow) and the prostate (blue) in 3-D CT images

using the graph-search approach with shape and context priors. (a), (b) Transverse views. (c)

Sagittal view. (d) Coronal view. (e) 3-D representation of the segmentation result.
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TABLE I

Unsigned Surface Positioning Errors—in m, Surfaces 2–5

Surface Algo. vs. Avg. Obs Obs. 1 vs Obs. 2

2 4.59 ± 0.89 5.49 ± 0.90

3 5.41 ± 0.97 6.68 ± 1.19

4 5.42 ± 0.90 7.06 ± 1.41

5 5.12 ± 1.01 6.16 ± 1.10

Overall 5.14 ± 0.99 6.35 ± 0.92
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TABLE II

Average Running Time for Simultaneous Segmentation of Surfaces 2–5

Method Average running time (s)

Previous Graph Search 781

Shape Priors Only 3437

Context Priors Only 3314

Shape & Context Priors 7906
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