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Abstract

Dendritic cells (DC) are essential for the first-line innate defense against influenza infection. The greater
susceptibility to severe influenza infection in young infants and neonates may be attributed in part to their
defective DC function. We sought to investigate the effect of influenza A virus (IAV) infection on the matu-
ration, apoptosis, and function of monocyte-derived dendritic cells (MoDCs) from umbilical cord blood (UCB)
and compared this with responses from adult peripheral blood (APB). Our findings were as follows. First,
MoDCs derived from UCB showed deficient CD40, CD80, CD86, and HLA-DR upregulation following IAV
infection compared to APB MoDCs. Second, IAV induced a multiplicity of infection (MOI)-dependent increase
of apoptosis in UCB MoDCs, similar to that observed with APB. Third, the ability of UCB MoDCs to uptake
dextran is decreased following IAV infection. Fourth, deficient TNF-a, but not IL-6, IFN-a response was
induced by IAV infection of UCB MoDCs. Fifth, the ability of UCB MoDCs to promote allogeneic CD3 T-cell
proliferation is inhibited by IAV infection. Taken together, we demonstrated a differential response of UCB and
APB MoDCs following IAV infection, which may contribute in part to the increased susceptibility to severe
influenza infection observed in young infants and neonates.

Introduction

Influenza A virus (IAV), a single-stranded RNA virus,
can evoke seasonal epidemics or widespread pandemic

disease (26). The 2009 H1N1 pandemic highlights the im-
portance of developing more effective antiviral therapies
(29). Severe IAV infection is characterized by the production
of numerous proinflammatory cytokines known as hypercy-
tokinemia (2). Although adaptive immune response plays a
pivotal role in protective immunity against IAV infection
(5,8), innate immunity players such as dendritic cells (DCs)
serve as an important first-line antiviral immune defense.
They are distributed throughout the airway, and can sense
and capture the invading IAV. They then migrate to lymph
nodes and present the processed antigen in association with
major histocompatibility complex (MHC) to initiate T-cell
response (10,27).

Young infants are particularly vulnerable to severe in-
fluenza infection (3,4), which may be attributed in part to
the immaturity of their DC function. Kollman et al. showed
that neonatal DCs were less efficient in producing TNF-a
and IL-12 compared to adults (9). Zhang et al., however,
reported that umbilical cord blood (UCB) plasmacytoid DCs
can elicit potent antiviral innate responses (31). Few studies,

however, have compared the differential DC response
against influenza infection between adults and neonates.

The present study aims to investigate the effect of IAV
infection on maturation and function of MoDCs from UCB
compared with responses from adult peripheral blood (APB).

Materials and Methods

Samples

Mononuclear cells (MNCs) were isolated using Ficoll-
Hypaque density gradient centrifugation from heparinized
APB and UCB samples with informed consent obtained
from each subject, and with the pre-approval for the study
by the Medical Ethics and Human Clinical Trial Committee
of the Chang Gung Memorial Hospital, Taiwan. UCB was
collected in sterile tubes and was processed within 24 h of
birth. MNCs were then resuspended in RPMI with 10% fetal
calf serum (FCS) at a concentration of 1 · 106/mL.

Preparation of IAV

Influenza A/William Smith Neurotropic (WSN) virus/33
strain virus was grown in 10-day-old embryonated specific
pathogen-free hen eggs (Animal Health Research Institute,
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Council of Agriculture, Executive Yuan, Taiwan). Allantoic
fluid was harvested 48 h after infection and virus concen-
tration was determined. Virus-containing allantoic fluid was
pooled and centrifuged to pellet IAV particles. The virus
pellet was resuspended in phosphate buffered saline (PBS)
and further purified by a continuous 15–60% sucrose gra-
dient centrifugation. The purified virus was reconstituted in
PBS, stabilized with sucrose-phosphate-glutamate buffer
(Sigma, St. Louis, MO), dispensed into single-use aliquots,
and stored at - 70�C. The virus titer was determined with
Madin-Darby canine kidney cells by standard procedures (12).

Dendritic cell preparation

CD14 + monocytes were isolated from APB and UCB
MNCs by depleting T-, B-, and NK-cells using a Monocyte
Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany).
The purity of isolated CD14 + monocytes was around 90–95%,
as determined by flow cytometry. To generate immature DC,
the monocytes (1 · 106/mL) were cultured with GM-CSF
(50 ng/mL; Peprotech, Rocky Hill, NJ) and IL-4 (50 ng/mL;
Peprotech) in complete medium for 5 days (21).

Maturation of dendritic cells by IAV

Immature DCs (1 · 106/mL) were exposed or sham-
exposed to IAV at a multiplicity of infection (MOI) of 0.1
and 1 for 1 h at 37�C in serum-free RPMI1640 supple-
mented with 2 mM glutamine, 100 U of penicillin G, and
100 lg of streptomycin/mL. For sham exposures, cells
were exposed to a volume of Dulbecco’s modified Eagle’s
medium (DMEM) cultured fluid equal to that used for
virus infections. After 1 h of exposure or sham exposure
to virus, infected DC cells (1 · 106/mL) were washed in
warm medium, centrifuged, and reincubated at 37�C
in medium supplemented with 10% heat-inactivated FCS
for 18 h.

Flow cytometric analysis

DCs were washed in cold PBS with 2% FCS and 0.1%
sodium azide and then stained with fluorescein isothio-
cyanate (FITC)- or phycoerythrin (PE)-conjugated mouse
anti-human monoclonal antibodies including CD80, CD83,
major histocompatibility complex class II (MHC-II), CD40
(Becton-Dickinson/BD Pharmingen, Franklin Lakes, NJ) for

FIG. 1. A representative profile showing the changes of the CD40, CD80, CD86, and HLA-DR expression of maturation
markers from monocytes to immature dendritic cells (DCs). Purified human monocytes were cultured with GM-CSF and IL-
4 for 5 days. Then cells were analyzed for surface markers by flow cytometry.
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flow cytometric analysis. DC apoptosis was assessed using
an annexin-V (FITC)/propidium iodie (PI) apoptosis detec-
tion kits (BD Pharmingen). The fluorescent staining was
analyzed on a FACS Calibur (BD Biosciences) flow cyto-
meter. The percentage of cells stained with each monoclonal
antibody was determined by comparing each histogram with
one from control cells stained with FITC- or PE-labeled
isotype control monoclonal antibodies.

FITC-labeled dextran uptake

Infected DC endocytosis was measured by the cellular
uptake of FITC-dextran. Cultured DC (1 · 106/mL) were
washed twice and resuspended in 1 mL RPMI 1640 sup-
plemented with 10% FCS, 2 mM l-glutamine, 100 U/mL
penicillin, 100 U/mL streptomycin, and 25 mM HEPES. The
cells were then incubated with FITC-labeled dextran (0.1
and 0.2 mg/mL) (mol. Wt 40,000; Sigma) at 4�C or 37�C
for 1 h. After incubation, cells were washed twice with
cold PBS and fixed in 4% polyfluoroalkoxy. The quantita-
tive uptake of FITC-dextran by the cells was determined
using FACS.

Measurement of IFN-c and TNF-a protein
in culture supernatant

Secreted interleukin (IL)-6, IFN-a, and TNF-a was
quantitated in cell-free supernatants using a human IL-6,
human IFN-a, and human TNF-a enzyme-linked immuno-
sorbent assay (ELISA) kit (R&D Systems, Inc. Minneapolis,
MN) as recommended by the manufacturer.

Mixed lymphocyte reaction

Allogeneic peripheral CD3 + T-cells were isolated from
adult PBMC with a CD3 + T-cell isolation kit (Miltenyi
Biotec). The purity of the isolated CD3 + T-cells was around
90–95%, as determined by flow cytometry. The CD3 + T-
cells were stained with carboxyfluorescein succinimidyl ester
(CFSE; Sigma) for 15 min in serum-free RPMI-1640. Then,
CFSE-labeled CD3 + T-cells were washed by complete
RPMI-1640. The CFSE-labeled CD3 + T-cells were cultured
with LPS or Flu-A-treated DC at a ratio 1:10 or 1:100 for 5
days. After 5 days, CD3 + T-cell division was determined by
flow cytometric measurement of CFSE dye dilution.

Statistics

The Wilcoxon signed rank test was used to analyze the
difference in responses before and after treatment (calculated
with SPSS v9.0; SPSS, Inc., Chicago, IL). The Mann–
Whitney U-test was used to compare CB and APB responses.
The data are presented as means – standard error of the mean
(SEM). Groups being compared were considered signifi-
cantly different if p < 0.05.

Results

Deficient CD80, CD86, and HLA-DR expression
on UCB MoDCs compared to APB MoDCs

UCB and APB CD14 + monocytes were cultured with
GM-CSF and IL-4 for 5 days to generate immature MoDCs.
At the end of the culture, they lost the CD14 expression and
showed typical cytoplasmic projections under light microscopy

FIG. 2. Effect of LPS and influenza A virus (IAV) infection on (A) CD40, (B) CD80, (C) CD86, and (D) HLA-DR expression
on monocyte-derived dendritic cells (MoDCs) derived from adult peripheral blood (APB) and umbilical cord blood (UCB). Data
are expressed as percent expression for CD40, CD86, and mean fluorescence intensity (MFI) for HLA-DR, obtained from 13
adults and 8 cord blood samples. Values were expressed as mean percentage – standard error of the mean (SEM). *p < 0.05 and
**p < 0.01 between mock-treated cells and IAV-infected cells. :, p < 0.05 and ::, p < 0.01 between APB and UCB.
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(data not shown). Figure 1 shows a representative profile of
various maturation marker expression during the transition of
monocytes into the immature MoDCs. The immature MoDCs
showed markedly enhanced CD40, CD80, CD86, and HLA-
DR compared to monocytes. However, the CD83 expression
was only slightly enhanced. MoDC derived from UCB
monocytes, when compared to APB MoDCs, showed deficient
CD80 (39.7– 8.3% vs. 72.1– 6.9%; p = 0.032), CD86
(45.3 – 7.8% vs. 74.0– 5.1%; p = 0.01), and HLA-DR (MFI =
18905 – 4531 vs. MFI = 21331 – 3080; p = 0.015; as almost all
cells expressed HLA-DR, MFI was used) expression. The
expression of CD40 remained low and were comparable to
adults (9.4 – 3.5% vs. 10.7 – 2.9%; p = 0.772)

IAV infection induced maturation of UCB MoDCs

The immature MoDCs from UCB and APB were exposed
to IAV for 1 h, washed, and then cultured for 18 h. Figure 2
shows the effect of IAV exposure on the maturation marker
expression of UCB MoDCs, using LPS as a positive control,
and compared with adults. For APB MoDCs, IAV infection
at 0.1 MOI resulted an increased expression of CD40
(37.2 – 6.5% vs. 10.7– 2.9%; p = 0.007), CD86 (90.0 – 1.9%
vs. 74.0 – 5.1%; p = 0.002), and HLA-DR (MFI = 35,884–
4,973 vs. MFI = 21,331 – 3,080, p = 0.008) compared to mock-
treated controls respectively. A similar yet lower level of
maturation effect was observed at 1 MOI. However, we ob-
served that IAV infection at 0.1 MOI did not enhance the
expression of CD40 (13.9 – 3.6% vs. 9.4 – 3.4%; p = 0.893),

CD80 (60.9 – 10.6% vs. 39.7 – 8.3%; p = 0.208), CD86
(63.5 – 5.9% vs. 45.3 – 7.8%; p = 0.128), and HLA-DR
(MFI = 19,607 – 4,382 vs. MFI = 18,905 – 4,531; p = 0.401)
on UCB MoDCs compared to mock-treated controls re-
spectively. Thus, MoDC derived from UCB showed deficient
CD40, CD80, CD86, and HLA-DR upregulation following
IAV infection compared to APB MoDCs

IAV induces apoptosis and impaired endocytosis
in UCB and APB MoDCs

We next determined the effect of IAV on the survival
and function of UCB and APB MoDC. As shown in Figure 3,
MoDC exposed to IAV resulted in a dose-dependent in-
crease of the percentages of annexin V+ /PI- (early apoptotic)
UCB MoDCs from 9.9 – 2.5% in mock-treated controls to
17.3 – 7.6% at 0.1 MOI ( p = 0.083), and further to 21.5 – 7.5%
at 1 MOI ( p = 0.008), comparable to that observed with APB
MoDCs. The percentages of annexin V+ /PI+ (late apoptotic)
UCB MoDCs also increased by IAV infection in a dose-
dependent fashion (for 0.1 MOI: 16.8– 3.6% vs. 8.5 – 1.8%,
p = 0.043; for 1 MOI: 34.5 – 5.6% vs. 8.5 – 1.8%, p = 0.043),
UCB MoDCs were not more susceptible to IAV-induced ap-
optosis than were APB MoDCs.

We also determined the IAV induction of MoDCs endo-
cytosis by detecting dextran-FITC uptake by MoDCs (14).
Similar to that observed with APB MoDCs, the ability to
uptake dextran-FITC decreased from 67.5 – 6.9% for mock-
treated UCB MoDC to 50.8 – 13.5% following IAV infection

FIG. 3. (A) A representative profile showing the IAV infection-induced apoptosis of MoDCs derived from APB and UCB.
(B) The percentages of cells bearing annexin-V + /PI - (early apoptosis) and annexin-V + /PI + (late apoptosis) were shown.
Values were expressed as mean percentage – SEM obtained from 13 adults and 8 cord blood samples.*p < 0.05; **p < 0.01.
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at 0.1 MOI ( p = 0.043), and further to 42.4 – 14.4%
( p = 0.043) at 1 MOI, suggesting that IAV infection promotes
maturation of UCB MoDCs (Fig. 4).

Effect of IAV on IL-6, IFN-a, and TNF-a production
from UCB MoDCs

We next compared the effects of IAV exposure on IL-6,
IFN-a, and TNF-a production of UCB and APB MoDCs (Fig.
5). IAV induced a dose-dependent increase of IL-6 produc-
tion of UCB MoDCs from 311 – 94 pg/mL for mock-treated
controls to 576 – 43 pg/mL at 0.1 MOI ( p = 0.043), and fur-
ther to 625 – 37 pg/mL at 1 MOI ( p = 0.008). Mock-treated
UCB and APB MoDCs barely produced IFN-a and TNF-a.
Similar to that observed with IL-6, IAV infection resulted in a
dose-dependent increase of IFN-a and TNF-a production in
UCB MoDCs. In general, UCB MoDCs produced compara-
ble amounts of cytokines compared to their adult counter-
parts, except for a decreased production of IFN-a production
at 0.1 MOI (306 – 162 pg/mL for UCB vs. 1,102 – 337 pg/mL
for APB; p = 0.013) and at 1 MOI (1,109 – 245 pg/mL for
UCB vs. 1,626 – 288 pg/mL for APB; p = 0.017).

Deficient MLR response of UCB MoDCs compared
to APB MoDCs

We next tested the T-cell stimulatory ability of UCB and
APB MoDCs following IAV infection by co-culturing with

carboxyfluorescein diacetate succinimidyl ester (CFSE)-
labeled allogeneic CD3 + T-cells as responders. As shown
in Figure 6, LPS-treated APB MoDCs showed enhanced
induction of CD3 + T-cell proliferation compared to controls
(34.2– 9.1% vs. 8.2 – 2.7%; p = 0.02), while UCB MoDCs
showed much less response compared to APB (10.6– 5.2% vs.
34.2 – 9.1%; p = 0.043). In contrast, IAV-infected APB
MoDCs inhibited allogeneic CD3 + T-proliferation to a greater
extent compared to mock-treated controls (at 0.1 MOI:
3.4 – 1.6% vs. 8.2– 2.7%, p = 0.043; at 1 MOI: 2.3 – 1.0% vs.
8.2 – 2.7%, p = 0.018), which was similarly observed in UCB
MoDCs (for 0.1 MOI: 5.5 – 2.3% vs. 11.8 – 4.2%, p = 0.018;
for 1 MOI: 3.1 – 1.6% vs. 11.8 – 4.2%, p = 0.028).

Discussion

The biological process of DC maturation represents a
crucial step in the initiation of adaptive immune responses.
MoDCs accumulate in the lung and play an important
pathogenic role during influenza infection (1,15). Experi-
mental studies regarding the fate of human respiratory DCs
following exposure to IAV have been hampered by low cell
yield and purity. Immature functional DCs generated from
peripheral blood monocytes by culturing with GM-CSF and
IL-4 may provide a reproducible alternative to study the role
of DC in IAV infections. Similar to our study, Thitihanya-
nont et al. used MoDCs to demonstrate the high suscepti-
bility of human DCs to H5N1 (24).

FIG. 4. (A) A representative profile showing the effect of IAV on dextran-uptake of MoDCs derived from APB and UCB.
Cells were cultured with Dextran-FITC (2 mg/mL) for 1 h. (B) The percentage of dextran-FITC uptake was analyzed by flow
cytometry. Values were expressed as mean percentage – SEM obtained from six adults and six cord blood samples.*p < 0.05.
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We and others have demonstrated the deficient neonatal
immune function by studying T-cells and NK-cells isolated
from UCB, an enriched source of hematopoietic precursors
and immune cells (16,17,23). The present study is the first to
compare the effect of IAV infection on maturation of APB
and UCB MoDCs. We observed that IAV infection induced
a lesser degree of maturation marker expression in UCB
MoDCs compared to their adult counterparts. The effect of
IAV infection on apoptosis, endocytosis, and cytokine pro-
duction in UCB MoDCs was similar to that observed in
adults. The ability of UCB MoDCs to stimulate allogeneic
T-cell proliferation was deficient compared to adults, and
was further compromised by IAV infection.

CD40 and CD40L interaction is important in the regula-
tion of dendritic T-cell and dendritic B-cell crosstalk (19).
CD80 and CD86 are co-stimulatory molecules belonging to
the B7 family, capable of promoting a full T-cell activation
(20). HLA-DR expression on DCs were found to be corre-
lated with immune activation (6). We observed a deficient
expression of CD40, CD80, CD86, and HLA-DR on im-
mature DC of UCB and following LPS-induced maturation
compared to their adult counterpart, in agreement with
previous studies (7,28). We found that UCB MoDCs also
showed deficient maturation following IAV infection, con-
tributing in part to the increased susceptibility to severe IAV
infection in the young infants and neonates.

IAV infection resulted in a dose-dependent increase of
apoptosis of MoDCs, consistent with Wu et al. (30). The
degree of IAV induced apoptosis, either early or late in UCB

MoDCs, was comparable to their adult counterparts.
Therefore, the impaired maturation marker expression and
function in UCB MoDCs compared to adults is not due to
the cytotoxicity of IAV infections. The uptake of FITC-
dextran is known to be maximal in the immature MoDCs
and gradually decreased during their maturation process
(13,14). We demonstrated a reduction in FITC-dextran uptake
when UCB and APB MoDCs were exposed to IAV, suggesting
its maturation-inducing effect. The decrease in endocytotic
ability did not differ between UCB and APB MoDCs.

Previous reports have shown the decreased cytokine
production of neonatal MoDCs compared to adults (7,18),
Krumbiegel et al. showed that multiple proinflammatory
mediators were required to induce cytokine synthesis of
DCs derived from hematopoietic stem cells (11), suggesting
a higher threshold of activation for neonatal DCs. We,
however, observed a robust IL-6 and TNF-a secretion of
neonatal MoDCs in response to IAV infection, comparable
to that observed in adults, though the IFN-a secretion of
UCB MoDCs of neonatal MoDCs in response to IAV in-
fection was still deficient. It may be that the neonatal im-
mune system is Th2-biased, while IFN-a is involved in the
development of Th1 immunity by promoting IFN-c pro-
duction (22).

When the capacity of MoDCs to stimulate allogeneic
CD3 + T-cells was analyzed, UCB MoDCs showed im-
paired proliferation-promoting capacity following LPS
stimulation compared to their adult counterparts. Our find-
ing is consistent with Velilla et al. who proposed that UCB

FIG. 5. Effect of IAV infection on (A) IL-6, (B) IFN-a, (C) TNF-a production of MoDcs from APB and UCB. Data were
obtained from 13 adults and 8 cord blood samples. Values were expressed as mean percentage – SEM. *p < 0.05 and
**p < 0.01 between mock-treated cells and IAV-infected cells. :, p < 0.05 between APB and UCB.
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MoDCs, in contrast to mature adult MoDCs that can effi-
ciently prime T-cells, are poor inducers of proliferation or
production of IFN-c by T-cells (25). We found that IAV
adversely affected the MLR response in both UCB and
APB, which may be a possible mechanism for IAV to evade
antiviral immune defense.

Taken together, we demonstrated a differential response
of UCB and APB MoDCs following IAV infection. Our
findings suggest that the defective DC function in neonates
and young infants may contribute to their greater suscepti-
bility to severe influenza infection.
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