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Abstract

Significance: Intracellular and extracellular aggregation of a specific protein or protein fragments is the
principal pathological event in several neurodegenerative conditions. We describe two such conditions: spo-
radic Creutzfeldt–Jakob disease (sCJD), a rare but potentially infectious and invariably fatal human prion
disorder, and Parkinson’s disease (PD), a common neurodegenerative condition second only to Alzheimer’s
disease in prevalence. In sCJD, a cell surface glycoprotein known as the prion protein (PrPC) undergoes a
conformational change to PrP-scrapie, a pathogenic and infectious isoform that accumulates in the brain
parenchyma as insoluble aggregates. In PD, a-synuclein, a cytosolic protein, forms insoluble aggregates that
accumulate in neurons of the substantia nigra and cause neurotoxicity. Recent Advances: Although distinct
processes are involved in the pathogenesis of sCJD and PD, both share brain iron dyshomeostasis as a common
associated feature that is reflected in the cerebrospinal fluid in a disease-specific manner. Critical Issues: Since
PrPC and a-synuclein play a significant role in maintaining cellular iron homeostasis, it is important to un-
derstand whether the aggregation of these proteins and iron dyshomeostasis are causally related. Here, we
discuss recent information on the normal function of PrPC and a-synuclein in cellular iron metabolism and the
cellular and biochemical processes that contribute to iron imbalance in sCJD and PD. Future Directions:
Improved understanding of the relationship between brain iron imbalance and protein aggregation is likely to
help in the development of therapeutic strategies that can restore brain iron homeostasis and mitigate neuro-
toxicity. Antioxid. Redox Signal. 21, 471–484.

Introduction

Several neurodegenerative conditions are charac-
terized by the presence of protein aggregates in diseased

brains (5, 46, 80). The mechanism by which these aggregates
induce neurotoxicity, however, is not clear. The prevailing
hypothesis is that the loss of normal function combined with
the gain of toxic function due to coaggregation with other
cellular proteins or metals creates a toxic environment, re-
sulting in neuronal death (82). Here, we review the recent
literature on two disorders associated with protein aggrega-
tion: sporadic Creutzfeldt–Jakob disease (sCJD) and Par-
kinson’s disease (PD). In both cases, protein aggregation is
intimately associated with the imbalance of iron homeostasis

in diseased brains. Since iron has the potential to generate
hydroxyl radicals through the Fenton chemistry and con-
sequent denaturation and aggregation of proteins, it is impor-
tant to understand the relationship between protein aggregation
and iron imbalance. This is especially important for proteins
implicated in disorders of the brain because of the limited re-
generative capacity of neurons and their susceptibility to free
radical damage.

sCJD and PD are distinct disorders where a specific protein
undergoes aggregation and accumulates in distinct regions of
the brain, resulting in clinical symptoms typical of each
disorder. The pathogenic mechanisms leading to protein ag-
gregation are also different, and so are the neurotoxic path-
ways and the set of neurons affected by the pathology. In
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sCJD, the principal pathogenic event involves the accumu-
lation of prion protein (PrPC) in the brain parenchyma in a
detergent-insoluble and partially protease-resistant form
termed PrP-scrapie (PrPSc) (127). The pathognomonic fea-
ture of PD brains, on the other hand, is the accumulation
of Lewy bodies composed principally of a-synuclein in the
substantia nigra (SN) pars compacta (113). The aggregation
of PrPC occurs as a sporadic event, is initiated by exoge-
nous PrPSc, or results from mutations in the PrPC gene (4).
Triggers that initiate the aggregation of a-synuclein include
sporadic events, environmental toxins, and mutations in the
a-synuclein gene. Other gene products are also involved,
some of which exacerbate the aggregation of a-synuclein
(113). Despite these dissimilarities, mismetabolism of iron in
diseased brains is a prominent feature of both conditions.

The diverse etiology and clinical presentation of sCJD, PD,
and other neurodegenerative disorders associated with brain
iron imbalance have led to the belief that iron accumulation
is a result of massive neuronal death or nonspecific copre-
cipitation with protein aggregates. However, recent reports
suggest otherwise (16, 23, 37, 62, 142, 150). In sCJD, the
imbalance of brain iron metabolism is believed to result from
the sequestration of iron in a biologically unavailable form,
creating a phenotype of iron deficiency (146, 149, 154). In
PD, increased expression of iron uptake proteins and down-
regulation of an iron exporter lead to the accumulation of
excess iron in the SN. This creates an environment that
promotes iron-mediated free radical generation. Since free
radicals denature and aggregate proteins, it is likely that once
the process is initiated, further accumulation of protein ag-
gregates is facilitated by the redox-active nature of associated
iron, which also exaggerates the toxic potential of these ag-
gregates. It is therefore timely to review the available infor-
mation on the role of redox-iron in protein aggregation and
the contribution of impaired cellular clearance mechanisms
in accentuating protein aggregate-mediated neurotoxicity in
sCJD and PD.

Iron and Protein Misfolding in Prion Disorders

Prion disorders are a heterogeneous group of neurode-
generative conditions of humans and animals that result from
the accumulation of protein aggregates in the brain paren-
chyma. These disorders are unique among neurodegenera-
tive diseases of protein aggregation, in that, in addition to
their sporadic and familial etiology, some forms are naturally
transmissible. sCJD is the most common human prion dis-
order and comprises *80% of all reported cases. Animal
prion disorders include scrapie in sheep and goats, bovine
spongiform encephalopathy (BSE) in cattle, and chronic
wasting disease (CWD) in the deer and elk population.
Scrapie and CWD are transmissible horizontally to the
same species, whereas BSE has been transmitted to humans,
raising significant public health concerns. The underlying
cause is a change in the conformation of PrPC, a ubiquitous
and evolutionarily conserved glycoprotein abundantly ex-
pressed on neuronal cells, mainly from an a-helical-rich to
a b-sheet-rich PrPSc form. This change renders PrPSc insol-
uble in nonionic detergents and confers limited resistance to
proteases, thus increasing its half-life significantly (127).
Aggregates of PrPSc in the brain parenchyma are the principal
cause of disease-associated neurotoxicity and transmissibility.

The change in the conformation of PrPC to PrPSc is believed
to occur as a spontaneous event in sporadic disorders, is fa-
cilitated by mutations in the PrPC gene in familial disorders,
and results from direct contact with an exogenous source of
PrPSc in transmissible disorders. Once initiated, the conversion
of additional PrPC to the PrPSc form proceeds exponentially by
the nucleation-mediated coaggregation phenomenon (Fig. 1)
(3, 4, 21, 127, 153).

Much effort has gone into the identification of triggers that
initiate or potentiate the conversion of PrPC to PrPSc, and the
mechanism by which PrPSc induces neurotoxicity. Several
important facts have emerged over the past years. Here, we
will focus on the role of iron in these processes for two main
reasons: (i) PrPC is involved in cellular iron metabolism (42,
128, 145, 147, 148, 150, 154) and (ii) iron plays a significant
role in prion disease pathogenesis (25, 26, 62, 84, 86, 146).
Since iron is highly toxic if mismanaged due to its ability to
generate reactive oxygen species via the Fenton and Haber–
Weiss reactions, it is important to understand the physio-
logical and pathological interaction of PrPC and PrPSc with
iron and the contribution of these processes to prion disease
pathogenesis.

Experimental models have provided important insight
into the factors that promote the aggregation of PrPC to PrPSc.
Principal among these are amplification of PrPSc by the
protein misfolding cyclic amplification (PMCA) reaction
(20, 30, 115), cell models replicating PrPSc in culture (159),
and transgenic mouse models lacking PrPC expression (15).
PMCA has been instrumental in demonstrating that PrPC is
the principal substrate for PrPSc, and if supplemented with
certain cofactors, can drive the amplification of PrPSc seed by
nucleation-mediated coaggregation (20). Recent studies have
demonstrated spontaneous conversion of PrPC from brain
lysates or recombinant PrP from bacteria to PrPSc by this
method (20, 34), supporting the hypothesis that the initial
conversion of PrPC to PrPSc is a sporadic event, and once
initiated, the process proceeds exponentially. Minimal fac-
tors are required for this conversion, and iron does not appear
to play a significant role in this in vitro reaction (172).
Limited studies that have explored the role of other transition

FIG. 1. Nucleation-mediated aggregation of PrP. The
nucleation–polymerization model of PrPC aggregation pro-
poses that PrPC and PrPSc exist in a reversible thermody-
namic equilibrium that favors the conformation of PrPC.
When there is a shift in this equilibrium either due to the
presence of a PrPSc seed, mutations that destabilize PrPC and
initiate its aggregation, or a sporadic event, several mono-
meric PrPC molecules coaggregate with the seed and form
the amyloidogenic PrPSc aggregate. Fragmentation of PrPSc

aggregates increases the number of seeds that coaggregate
additional PrPC, and the process continues in an exponential
manner. PrPC, prion protein; PrPSc, PrP-scrapie.
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metals in the conversion of PrPC to PrPSc in vitro have re-
ported variable results (85). It is interesting to note that
several proteins in addition to PrPC aggregate when cell or
brain lysates are subjected to the PMCA reaction, some of
which are likely to coaggregate with PrPSc because of its
hydrophobic nature (149). Among these, ferritin deserves a
special mention not only because it forms detergent-insoluble
and protease-resistant aggregates by the PMCA reaction
(149), but it has been identified as one of the major con-
taminants of PrPSc purified from diseased brains despite the
use of harsh purification conditions (104, 108, 136). Since
ferritin is very rich in iron, the complex of PrPSc and ferritin is
likely to be redox-active and cytotoxic unless degraded
promptly by the cellular degradation machinery (65, 129).

Cell and mouse models expressing PrPC and mutant PrP
forms or following infection with PrPSc have provided im-
portant information on the biogenesis, turnover, and the role
of iron in PrPSc-mediated cytotoxicity. Exposure of neuro-
blastoma cells overexpressing PrPC (PrPC-cells) to ferrous
ammonium citrate induces a change in the conformation of
cell surface PrPC to an aggregated form that resembles
pathogenic PrPSc in several characteristics, including insol-
ubility in nonionic detergents and resistance to limited di-
gestion by proteases (8). These aggregates are internalized
and accumulate in the lysosomes in association with ferritin.
When added to the culture medium of fresh cells, these ag-
gregates undergo endocytosis and serve as a nucleus for the
aggregation of additional PrPC in naive cells. Hemin, an iron-
rich compound, induces a similar change in PrPC that is in-
ternalized and ultimately degraded in the lysosomes (94).
Since ferritin is a major iron storage protein necessary for
maintaining cellular iron homeostasis, coaggregation with
PrPSc results in the sequestration of associated iron in a bi-
ologically unavailable form, creating a phenotype of cellular
iron deficiency as indicated by the upregulation of iron up-
take proteins, transferrin (Tf ) and transferrin receptor (TfR),
and downregulation of cellular ferritin to reduce iron storage
(8, 43, 44). Interestingly, ferritin isolated from CJD brains
and scrapie-infected mouse brains and cell lines is insoluble
in detergents and retains associated iron even after exposure
to strong denaturing conditions, indicating a change in its
biochemical characteristics due to coaggregation with PrPSc

(104, 108). Colocalization of PrPSc and ferritin in lysosomal
structures has been reported in scrapie-infected neuroblas-
toma cells and a hypothalamic cell line, supporting these
observations (8, 146).

Cell lines expressing disease-associated mutations of PrP
have provided important information on the pathogenic
mechanisms underlying familial prion disorders (54–60, 151,
167). Although some mutations destabilize the structure of
mutant PrP and promote its aggregation (155), diverse cel-
lular pathways are believed to contribute to the cytotoxicity
associated with familial prion disorders (79, 104, 105). Hu-
man PrPC is a 209 amino acid glycoprotein linked to the
outer leaflet of the plasma membrane by a glycosylpho-
sphatidylinositol (GPI) anchor. It contains two N-linked gly-
cans at amino acids 181 and 197, and the two cysteines at
residues 179 and 214 are linked by a disulfide bond. Several
mutations in the coding region of PrPC gene segregate with
familial prion disorders. Of these, three are in the GPI anchor
signal peptide that is replaced by a preassembled GPI anchor
within 5 min of synthesis (165). Most are in the relatively

structured C-terminal region, although an insertion in the
N-terminal octapeptide repeat region is also associated with a
familial prion disorder. Most mutations alter the trafficking
and/or turnover of the mutant protein in a manner that is spe-
cific to each mutation, and the associated cytotoxicity is
influenced by the post-translational modifications, aggregation
state, and the subcellular localization where the mutant protein
accumulates (11, 54–60, 181). Some of the mutations alter
cellular iron metabolism, and specific instances are discussed
below.

Recent reports suggest that PrPC enhances the uptake of Tf
and non-Tf-bound iron by functioning as a ferrireductase
(FR) (145). The N-terminal copper-binding octapeptide re-
peat region and the linkage of PrPC to the plasma membrane
are necessary for this activity. Thus, the uptake of radi-
olabeled iron is significantly higher in cells that overexpress
PrPC relative to cells that express mutant PrP forms that lack
the octapeptide repeat region, GPI anchor, or carry mutations
that inhibit transport of PrP to the plasma membrane (145).
Consistent with these observations, the calcein-chelatable
labile iron pool (LIP) and incorporation of radiolabeled iron
in cytosolic ferritin is significantly higher in PrPC-cells rel-
ative to mutant PrP cell lines (145, 148). A similar pattern is
noted in cell lysates, although the difference between PrPC

and mutant cell lines is less perhaps due to the activity of
other cellular FRs (114, 145, 177). Surprisingly, point mu-
tation at residue 102 (P to L) associated with a familial prion
disorder enhances the FR activity of mutant PrP. Conse-
quently, cells expressing PrP102L have higher LIP and in-
corporate significantly more radioactive iron from the
medium in cytosolic ferritin relative to PrPC-cells (145).

The functional role of PrPC in iron uptake is also reflected
in mouse models. Transgenic mice carrying a deletion in the
PrP gene and therefore lacking PrP expression in the brain
and systemic organs (PrP knockout [PrP - / - ]) show a phe-
notype of iron deficiency relative to matched (wild type
[PrP + / + ]) controls (147). The amount of total iron in the
plasma, liver, spleen, and brain of PrP - / - mice is signifi-
cantly lower, and the levels of Tf and TfR are significantly
higher than PrP + / + controls. When exposed to radiolabeled
iron by gastric gavage, PrP - / - mice incorporate relatively
more iron in red blood cells and the liver, the main iron
utilization and storage compartments, respectively (147).
Bone marrow macrophages of PrP - / - mice show minimal
stainable iron, and when cultured in vitro, incorporate sig-
nificantly less radiolabeled iron relative to PrP + / + controls.
There is no difference in the rate or amount of iron released
from cultured macrophages, indicating that PrPC mediates
uptake, not release of iron by these and other cells (145).

When considered with possible coaggregation of PrPSc

with ferritin during prion disease pathogenesis (146), it is
likely that the iron imbalance observed in CJD and scrapie-
infected animal brains is due to the combined effect of the
loss of normal function of PrPC in iron uptake and the gain of
toxic function by the PrPSc-protein complexes due to their
redox-active nature. The accumulation of redox-active iron in
association with PrPSc plaques has been reported in variant
CJD brains (123), and an increase in total iron and a paradoxical
phenotype of iron deficiency as indicated by the upregulation of
major iron uptake proteins, Tf and TfR, has been reported in
CJD and scrapie-infected mouse brains (146). Levels of Tf
increase with disease progression in scrapie-infected mouse
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and hamster brains and correlate directly with PrPSc levels,
suggesting sequestration of iron in a biologically unavailable
form in PrPSc–ferritin complexes. Transcriptional alteration of
ferritin and iron regulatory proteins 1 and 2 in the hippocampus
and cerebral cortex of scrapie-infected mice further supports
these observations (84). Furthermore, the autophagosomal
marker LC3 II is upregulated in prion disease-affected human
and animal brains, indicating an attempt by the autophagoso-
mal pathway to degrade such protein complexes (32). Figure 2
summarizes the different pathways leading to iron imbalance
in sCJD brains.

It is notable that the alteration of brain iron homeostasis in
sCJD brains is reflected in the cerebrospinal fluid (CSF) much
before end-stage disease. Levels of Tf are decreased, and the
ferroxidase activity is increased in the CSF of CJD cases (62,
144). Surprisingly, the increase in CSF ferroxidase activity is
restricted to a novel < 3 kDa fraction, indicating that ceru-
loplasmin, the major brain and CSF ferroxidase, is not altered
by CJD pathology (62, 76). Together, these biomarkers dis-
criminate CJD from other neurodegenerative conditions with
a sensitivity of 86.8%, specificity of 92.5%, and accuracy of
88.9%, indicating that the change in iron homeostasis trig-

gered by prion disease pathology is disease-specific and can
be used as a premortem diagnostic test for these disorders.

Although iron is not the principal factor that induces the
aggregation of PrPC to the PrPSc form or disease-associated
neurotoxicity, emerging evidence suggests a specific and
significant role for this metal in sCJD and animal prion dis-
orders. Future investigations on the mechanism(s) underlying
iron-induced aggregation of PrPC and the accompanying
change in brain iron homeostasis are necessary to develop
therapeutic options based on restoring brain iron metabolism
through chelation or other means.

Iron and Protein Misfolding in PD

PD is a progressive neurodegenerative disorder with se-
lective loss of dopaminergic neurons in the SN pars com-
pacta (113). Pathologically, surviving neurons accumulate
intracytoplasmic inclusions called Lewy bodies composed
principally of misfolded a-synuclein (161). Most cases of PD
are sporadic in origin with no known underlying cause, al-
though aging, genetic susceptibility, and environmental fac-
tors are believed to play a significant role in disease onset. A
small percentage of PD cases are familial in nature and
segregate with mutations in genes encoding a-synuclein,
parkin, PTEN-induced putative kinase 1 (pink1), DJ-1, leu-
cine-rich repeat kinase 2 (LRRK2), ubiquitin carboxy-
terminal hydrolase L1 (UCH-L1), and ATP13A2, a lysosomal
type 5 ATPase (130). Mutations in a-synuclein and LRRK2
are associated with autosomal dominant PD, whereas those in
DJ-1, parkin, pink1, and ATP13A2 segregate with autosomal
recessive forms (13, 48, 51, 87, 126, 162).

Several observations suggest that the aggregation of a-
synuclein is central to the pathogenesis of PD. First, over-
expression of wild-type a-synuclein as a result of gene
duplication or triplication is sufficient to cause PD in humans
and animal models, suggesting a dose-dependent relationship
between a-synuclein and PD (22, 47, 156). Second, point
mutations in the a-synuclein gene are associated with auto-
somal dominant familial PD, in particular the three point
mutations A53P, A30P, and E46K (90, 125, 182). Given the
presence of aggregated a-synuclein in Lewy bodies and the
propensity for mutant a-synuclein to misfold (38, 96), studies
have examined specific factors that promote the aggregation
of wild-type and mutant a-synuclein in cultured neuronal
cells. When overexpressed, wild-type a-synuclein forms
spherical punctate aggregates in the cytoplasm similar to
those seen in the SN neurons of PD cases, suggesting self-
aggregation in a concentration-dependent manner (47, 93,
156, 170). Gradually, these aggregates include other cellular
proteins, especially ubiquitinated proteins targeted for deg-
radation by the proteasomal machinery. In vitro studies with
recombinant proteins indicate that both wild-type and mutant
a-synuclein form amyloid-like fibrils similar to those isolated
from Lewy bodies in a concentration-, temperature-, time-,
and pH-dependent manner (29, 53, 66, 176). The rate of
aggregation is higher in mutant a-synuclein forms, perhaps
due to destabilization of the protein structure by the mutation.
Intrastriatal inoculation of fibrillar a-synuclein into wild-type
mice is sufficient to initiate Lewy body formation, dopami-
nergic cell death, and clinical symptoms of PD, reinforcing
the central role of a-synuclein misfolding and aggregation in
PD pathogenesis (75, 99).

FIG. 2. Aggregation of PrPC and iron imbalance.
Conversion of PrPC to PrPSc occurs as a sporadic event, is
initiated by PrPSc seed from an exogenous source, or is
facilitated by mutations in the PrPC gene. Aggregation of
PrPC compromises its normal function in iron uptake, cre-
ating iron deficiency. Coaggregation of PrPSc with ferritin
sequesters associated iron in a biologically unavailable
form, contributing to the iron deficiency in diseased brains.
The resultant upregulation of iron uptake proteins creates
iron imbalance, resulting in the generation of ROS. The
redox-active nature of PrPSc-ferritin aggregates increases
iron imbalance and oxidative stress, resulting in the aggre-
gation of additional PrPC to the PrPSc form. ROS, reactive
oxygen species.

474 SINGH ET AL.



This raises two questions. First, what triggers the aggre-
gation of wild-type a-synuclein, and second, why, despite
widespread expression in the central nervous system, are
dopaminergic neurons of the SN susceptible to a-synuclein
aggregation and toxicity. Although the answer to these
questions is still unclear, other pathogenic processes associ-
ated with PD such as mitochondrial dysfunction, oxidative
stress, impaired autophagy, and mismetabolism of iron in the
SN have provided important insights (40, 63, 70, 174). It
has now become increasingly clear that aggregation of a-
synuclein and the metabolic pathways implicated in these
pathogenic processes are closely related, and together, create

an ongoing environment of oxidative stress that leads to
further accumulation of misfolded a-synuclein and other
proteins, creating a self-perpetuating feedback loop of redox-
imbalance, protein aggregation, and neurotoxicity (Fig. 3)
(113, 166).

Several observations support the hypothesis that mis-
metabolism of iron in the SN promotes aggregation of a-
synuclein. Levels of iron are significantly higher in the SN
relative to other brain regions, increasing the susceptibility of
this region to iron-mediated oxidative stress (36, 49, 101,
112, 179). Elevated levels of total iron and a shift in the
equilibrium of iron to the oxidized state have been reported in
the SN of sporadic and familial cases of PD (131, 158). Re-
dox-active iron has been detected in association with a-
synuclein aggregates in Lewy bodies (19), a phenotype that
is likely to promote oxidization and further aggregation of a-
synuclein and other proteins (52). Since iron is known to
interact with the C-terminal region of a-synuclein, it is likely
that under oxidizing conditions, it denatures a-synuclein and
coprecipitates with the aggregates (10, 12, 89). Aggregation
of a-synuclein is inhibited by the iron chelator desferriox-
amine, supporting this hypothesis (64, 67).

Recent evidence suggests that iron regulates a-synuclein
expression at the translational level through an iron-response
element (IRE) in its 5¢UTR (17, 41, 45). Conversely, a-
synuclein modulates cellular iron homeostasis through its
functional activity as a FR, converting Fe3 + iron to the bio-
logically active ferrous iron (Fe2 + ) form (33). Accordingly,
a-synuclein has greater affinity for Fe3 + relative to the Fe2 +

form of iron (122). The FR activity of a-synuclein is particu-
larly important in the SN where Fe2 + iron is required as a
cofactor for tyrosine hydroxylase that catalyzes the rate-limiting
step in dopamine synthesis. Surprisingly, a-synuclein coloca-
lizes with heme synthesis enzymes in the mitochondrial mem-
brane, suggesting that it may also be involved in the synthesis or
metabolism of heme (138). Further investigations are necessary
to understand the role of a-synuclein in cellular iron and heme
metabolism.

Remarkably, the expression of divalent metal transporter 1
(DMT1), an iron import protein, is upregulated, and that of
ferroportin, an iron export protein, is downregulated in the
SN of PD cases, partly explaining the accumulation of iron in
this region. Similar observations are noted in the SN and
ventral mesencephalon of mouse models exposed to MPP +
(134). Exposure of the dopaminergic cell line MES23.5 to
6-hydroxydopamine (6-OHDA), another PD-inducing com-
pound, increases intracellular levels of iron and, paradoxically,
upregulates DMT1 containing an IRE sequence in its 5¢UTR
(DMT1 + IRE) (78), suggesting misregulation of cellular
iron metabolism. Paradoxically, the expression of ferroportin
is downregulated, exacerbating cellular iron dyshomeostasis
(160). Likewise, exposure of SH-SY5Y cells, a dopaminer-
gic cell line, to MPP + or the dopamine metabolite amino-
chrome increases the expression of iron uptake proteins
DMT1 ( + IRE) and TfRs 1 and 2, and downregulates ferro-
portin, thereby increasing the overall iron content of these
cells (2, 18). The resultant phenotype of oxidative stress
causes aggregation of a-synuclein, further compounding the
phenotype of iron mismetabolism. It is interesting to note that
polymorphisms and mutations in iron-modulating genes are
associated with PD (14, 61), suggesting a critical role for iron
in PD pathogenesis.

FIG. 3. Aggregation of a-synuclein and iron imbalance.
Aggregation of a-synuclein occurs as a sporadic event, is
mediated by environmental toxins, or is facilitated by mu-
tations in the a-synuclein gene, including gene duplication
and triplication. Since a-synuclein is associated with the
mitochondrial membrane, aggregation results in mitochon-
drial dysfunction and release of ROS. This causes further
aggregation of a-synuclein. Toxins act by inhibiting mito-
chondrial complex 1, resulting in mitochondrial dysfunc-
tion, generation of ROS, and aggregation of a-synuclein.
Since a-synuclein is a ferrireductase, aggregation interferes
with its role in cellular iron homeostasis, and combined with
the redox-active nature of a-synuclein aggregates due to
associated iron, these conditions create iron imbalance in the
affected brain region. Accumulation of a-synuclein is aug-
mented by mutations in several other genes that either induce
its aggregation directly or interfere with the autophagosomal
and proteasomal pathways of protein degradation. Inhibition
of mitophagy accentuates free radical production and ag-
gregation of a-synuclein, creating a positive feedback loop.
Moreover, levels of iron uptake proteins DMT1 and TfR1
and 2 are upregulated, and the iron export protein ferroportin
is downregulated in the SN of PD cases, increasing the total
iron in this region. Together, these conditions contribute to
free radical production and associated neurotoxicity. DMT1,
divalent metal transporter 1; PD, Parkinson’s disease; SN,
substantia nigra; TfR1, transferrin receptor 1; TfR2, trans-
ferrin receptor 2
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Although it is debatable whether excess iron is the cause or
consequence of a-synucelin aggregation, once initiated, it
creates a phenotype of continued oxidative stress that is
fueled by several other pathological changes. Principal
among these is mitochondrial damage, an invariable feature
of PD pathology. Mitochondria of dopaminergic neurons of
the SN are especially rich in a-synuclein, and its misfolding is
believed to disrupt mitochondrial function by inhibiting
Complex I of the electron transport chain, resulting in the loss
of mitochondrial membrane potential and cell death (24, 35,
98). Similar observations are noted when a-synuclein is
overexpressed in cell or mouse models, where it translocates
to the mitochondria, impairs mitochondrial function, and
increases oxidative stress (72, 117, 118, 139). Neuronal cell
lines and mouse models expressing mutant forms of a-
synuclein show a similar phenotype (9, 98, 163). When in-
cubated in vitro with mitochondria, a-synuclein translocates
to the mitochondria in a dose-dependent manner and inhibits
the Complex I activity, supporting these observations (97).
Immunocapture experiments and native gel electrophoresis
indicate that a-synuclein interacts physically with Complex I,
and the deletion of the proposed mitochondrial targeting
signal from a-synuclein abolishes this effect. Toxins used
for the induction of experimental PD such as MPP + (active
metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine),
rotenone, 6-OHDA, and aminochrome (2, 91) also inhibit
mitochondrial complex 1 activity, suggesting mitochondrial
dysfunction as a prominent feature of PD pathogenesis (83,
120, 137).

Once damaged, mitochondria are removed from the cell by
selective autophagy or mitophagy, a function necessary for
cell survival (95). This function is mediated by a distinct set
of proteins, among which parkin and pink1 play a major role.
Not surprisingly, functional mutations in parkin and pink1
are associated with young onset, autosomal recessive form of
PD partly because inhibition of mitophagy spares dysfunc-
tional mitochondria that generate reactive oxygen species
and induce further aggregation of a-synuclein and other vital
proteins (110). Furthermore, increased production of reactive
oxygen species exacerbates iron-mediated oxidative damage
through reduced production of Fe-S clusters, a key compo-
nent of the cellular iron regulatory mechanism (92, 102, 133).
Downregulation of a-synuclein protects mitochondria from
iron-induced toxicity, and conditional inhibition of autop-
hagy and mitochondrial complex 1 activity causes age-
dependent loss of dopaminergic neurons (6, 27), supporting
the role of these processes in PD pathogenesis.

Together, the above observations suggest that iron chela-
tion may provide therapeutic benefit to PD cases. Since iron
levels increase in the SN before neurodegeneration, this ap-
proach may arrest further loss of dopaminergic neurons (112)
and has shown promise in multiple PD model systems (64,
106, 135, 178). However, removing enough iron from sus-
ceptible tissues without negatively affecting systemic iron
homeostasis remains a challenge for the use of this approach
in PD cases (109).

Role of Autophagy in Protein Aggregation
and Iron Imbalance

Neurons, like other cells, use two major pathways of
protein turnover for maintaining a balance between biosyn-

thetic and catabolic processes: the ubiquitin–proteasome
system and the autophagy–lysosomal pathway. The latter
degrades whole organelles in addition to dysfunctional pro-
teins and is especially important for maintaining mitochon-
drial function.

The association of familial cases of PD with mutations in
genes implicated in proteasomal and autophagosomal path-
ways underscores the role of cellular degradation machinery
in PD pathogenesis (31). Thus, mutations in parkin, pink1,
and UCH-L1 segregate with familial PD (113). Parkin is an

FIG. 4. Hypothetical model of protein aggregation
and toxicity. Several potential triggers mediate the mis-
folding of PrPC and a-synuclein. Misfolded forms accumu-
late as insoluble oligomers and eventually polymerize into
protofibrils, fibers, and amyloidogenic aggregates. Several
proteins are sequestered within the aggregates, contributing
to their neurotoxic potential. The association of PrPSc ag-
gregates with ferritin and coaggregation of a-synuclein with
iron renders these aggregates redox-active. Since PrPC and
a-synuclein are functional ferrireductases and mediate iron
uptake, both loss of normal function and gain of toxic
function due to the redox-active nature of protein aggregates
contribute to neurotoxicity. Both PrPSc and a-synuclein
aggregates have the potential to seed the aggregation of
additional normal protein. PrPSc aggregates are transmissi-
ble through several routes, including oral, intraperitoneal,
and intracerebral, whereas a-synuclein aggregates have been
shown to spread from cell-to-cell, not by the oral and in-
traperitoneal routes.
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E3 ubiquitin ligase that targets proteins for proteasomal
degradation (107, 141, 183), pink 1 is a mitochondrial-
targeted kinase (143, 168, 173), and UCH-L1 is an ubiquitin
carboxy-terminal hydrolase. DJ-1 is a redox-dependent
chaperone that inhibits the aggregation of a-synuclein (140).
Overexpression of parkin and pink1 partially reverses the
aggregation of a-synuclein (124), emphasizing the signifi-
cance of these proteins in PD pathogenesis. Interestingly,
aggregated a-synuclein inhibits proteasomal function, thereby
sensitizing the cells to apoptosis (164) through decreased
degradation of proapoptotic factors (77). Several PD-inducing
toxins such as MPP + , rotenone, paraquat, NO, dopamine, and
iron that cause aggregation of a-synuclein and mitochondrial
dysfunction also alter the solubility of parkin, resulting in re-
duced proteasomal activity and accumulation of aggregated
proteins (171). Since parkin modulates the degradation of
DMT1 (73, 121), dysfunctional parkin spares DMT1 (50,
132) with resultant increase in iron uptake and worsening of
iron-mediated oxidative stress. Functional mutations in
DMT1 that impair iron import protect against toxin-induced
PD in mouse models (134), supporting these observations
and emphasizing the role of iron in PD-associated dopa-
minergic cell death.

Interestingly, dysfunctional pink1 induces a phenotype
similar to parkin-associated PD (168). Thus, Drosophila with
the deletion of either pink1 or parkin genes develop a muscle
phenotype and mitochondrial impairment characteristic of
PD. Although parkin overexpression rescues the phenotype
of pink1 flies, the reverse is not true (28, 119). Pink1 also
modulates mitophagy, an essential function necessary for cell
viability. Normally, pink1 is translocated to the inner mito-
chondrial membrane where it is cleaved by proteases and
eventually degraded by the proteasome system. Damaged
mitochondria with decreased membrane potential are unable
to translocate pink1, resulting in its accumulation on the outer
mitochondrial membrane where it recruits parkin and targets
mitochondria for autophagy. Disruption of this process due to
functional mutations in pink1 causes accumulation of dys-
functional mitochondria, resulting in the generation of free
radicals and aggregation of a-synuclein and other proteins
(116).

The functional deficiency of DJ-1, a recessive familial PD
gene, alters autophagy in murine and human cells (74). Wild-
type LRRK2 and the G2019S mutant, a mutation associated
with PD and known to increase its kinase activity (71), par-
ticipate in the phosphorylation of a-synuclein and promote
its aggregation and propagation to neighboring cells (88).
Parkin also interacts with LRRK2 (157), and coexpression of
parkin with mutant LRRK2 G2019S provides significant
protection against neurodegeneration in Drosophila models
(111), perhaps by degrading abnormally phosphorylated
proteins through the E3 ubiquitin ligase activity of LRRK2.
Dopaminergic cell loss can be attenuated by expressing pink1,
DJ-1, or parkin in Drosophila models of LRRK2 mutations,
supporting the above interactions (169). Moreover, mito-
chondrial membrane fragmentation induced by exogenous
expression of a-synuclein can be rescued by coexpression of
pink1, parkin, or DJ-1, not PD-associated mutations of these
genes (81). Overexpression of pink1 enhances autophagy,
which can be reduced by knocking down the gene encoding
beclin1, a protein that interacts with pink1 and modulates its
function. It is interesting to note that the W437X mutant of

pink1 demonstrates impaired interaction with beclin1 and the
ability to induce autophagy, whereas the kinase-deficient
G309D mutant of pink1 does not interact with beclin1 and has
minimal impact on autophagy (103). It is believed that the
overexpression of a-synuclein induces mitochondrial dys-
function by inhibiting autophagy through disruption of Rab1a
homeostasis (100, 175) and dysfunctional mitochondria in-
terfere with microtubule-dependent transport of autophago-
somes, further inhibiting autophagy (7).

In contrast to PD, the role of autophagy in prion disorders
is less defined (69, 152). Limited studies suggest that inhibitors
of autophagy increase intracellular accumulation of PrPSc,
whereas stimulators of this function help in its clearance (1).
Thus, lithium, trehalose, and rapamycin have been used to
enhance the clearance of PrPSc from prion-infected cells
through the induction of autophagy (1, 68). In prion-infected
mice treatment with imatinib at an early phase of peripheral
infection delays both the neuroinvasion of PrPSc and the onset
of clinical disease (39, 180), suggesting a beneficial role of
enhanced autophagy in prion disease pathogenesis.

Conclusions

Cumulative evidence from the literature leaves little doubt
that mismetabolism of iron in sCJD and PD brains is inti-
mately associated with the underlying pathogenic processes
and therefore disease-specific (Fig. 4). Reflection of this
phenotype in the CSF much before end-stage disease and the
ability to discriminate sCJD from PD and other neurode-
generative conditions by specific changes in iron-modulating
proteins with a high degree of accuracy leaves little doubt that
brain iron imbalance is intimately associated with disease
pathogenesis. In sCJD, sequestration of iron in PrPSc-protein
complexes that include the iron-rich protein ferritin creates a
phenotype of iron deficiency and is believed to be the prin-
cipal cause of iron mismetabolism in diseased brains. The
resultant alterations in the levels of total and redox-active
Fe2 + iron, iron uptake proteins Tf and TfR, and the iron
storage protein ferritin in the brain tissue and CSF are disease-
specific and of diagnostic value. PD brains, on the other hand,
accumulate iron in the SN due to diverse causes, and this
phenotype is worsened by the upregulation of iron uptake
proteins DMT1 and TfR and downregulation of the iron ex-
port protein ferroportin. Although iron chelation is an at-
tractive therapeutic option, it is unlikely to succeed unless the
pathogenic processes leading to altered iron metabolism are
better understood. Future investigations are necessary to
clarify these outstanding questions and develop effective
therapies to restore iron homeostasis in diseased brains.
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BSE¼ bovine spongiform encephalopathy
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CWD¼ chronic wasting disease
DMT1¼ divalent metal transporter 1

Fe2 + ¼ ferrous iron
FR¼ ferrireductase

GPI¼ glycosyl phosphatidylinositol
IRE¼ iron-response element
LIP¼ labile iron pool

LRRK2¼ leucine-rich repeat kinase 2
MPTP¼ 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD¼ Parkinson’s disease
pink1¼ PTEN-induced putative kinase 1

PMCA¼ protein misfolding cyclic amplification
PrP + / + ¼wild-type

PrPC¼ prion protein
PrPSc¼ PrP-scrapie

PrP - / - ¼ PrP knockout
ROS¼ reactive oxygen species
sCJD¼ sporadic Creutzfeldt–Jakob disease

SN¼ substantia nigra
Tf¼ transferrin

TfR1¼ transferrin receptor 1
TfR2¼ transferrin receptor 2

UCH-L1¼ ubiquitin carboxy-terminal hydrolase L1
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